JPH0414323B2 - - Google Patents

Info

Publication number
JPH0414323B2
JPH0414323B2 JP447482A JP447482A JPH0414323B2 JP H0414323 B2 JPH0414323 B2 JP H0414323B2 JP 447482 A JP447482 A JP 447482A JP 447482 A JP447482 A JP 447482A JP H0414323 B2 JPH0414323 B2 JP H0414323B2
Authority
JP
Japan
Prior art keywords
lens
object side
conditional expression
order
photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP447482A
Other languages
Japanese (ja)
Other versions
JPS58121010A (en
Inventor
Hideo Yokota
Yasuhisa Sato
Yasuyuki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP447482A priority Critical patent/JPS58121010A/en
Publication of JPS58121010A publication Critical patent/JPS58121010A/en
Publication of JPH0414323B2 publication Critical patent/JPH0414323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/18Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + only one component having a compound lens
    • G02B9/20Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + only one component having a compound lens the rear component having the compound

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はレンズシヤツターを装備する変型テツ
サー型レンズを改良した撮影レンズに関するもの
である。 レンズシヤツターを有するカメラの撮影レンズ
として、レンズの後方に絞りを配置した所謂後絞
り方式のテツサー型レンズは通常最も良く用いら
れている。この種の型の撮影レンズは種々提案さ
れており、例えば特開昭53−97824、特開昭53−
130021、特開昭56−75611等がある。 しかしながらこれらの従来例を含め、一般に撮
影レンズのコンパクト性の基準となる第1レンズ
面から焦点迄の距離すなわちレンズ全長Lと焦点
距離fとの比についてみるとFナンバーがFNo.=
2.8クラスの撮影レンズではL/f≒1.09程度で
あり、又L/f≒1.06程度まで小型化を図つた撮
影レンズになるとFナンバーがFNo.=3.5と比較
的暗くせざるを得なかつた。 本発明の目的はFナンバーがFNo.=2.9と明る
く、しかも小型化を図つた広画角の撮影レンズの
提供にあり、後述する実施例ではL/f=1.06程
度で撮影画角2ω=62°の撮影レンズを達成してい
る。 本発明の目的を達成する為の撮影レンズのレン
ズ構成の特徴は物体側より順に凸面を物体側に向
けた正の屈折力のメニスカス状の第1レンズ、両
レンズ面が凹面の第2レンズ、そして両レンズ面
が凸面の第3レンズと負の屈折力の第4レンズと
を貼合わせた貼合わせレンズの3つのレンズ群か
らなり、前記貼合わせレンズの像面側に絞りを設
け、Riを物体側より順に第i番目のレンズ面の
曲率半径、Diを物体側より順に第i番目のレン
ズ厚及び空気間隔、Niとνiを各々物体側より順
に第i番目のレンズのガラスの屈折率とアツベ
数、 全レンズ系の合成焦点距離をfとしたとき (1) 0.25<N3−N4<0.4 (2) 0.25<R1/f<0.33 (3) 2<|R3|/f 但しR3≦0 (4) 0.26<R4/f<0.35 (5) 0.07<D1/f<0.1 (6) 0.06<D3+D4/f<0.15 (7) 20<ν2<32 (8) 10<ν4−ν3<30 なる各条件を満足することである。 本発明に係る撮影レンズは撮影画角の広角化と
レンズ全長の小型化を同時に満足させるために以
下の諸事項を主眼としている。 (イ) ペツツバール和を小さくする。 (ロ) レンズのバツクフオーカスを短縮する。 (ハ) レンズの全厚を薄くする。 (イ)の事項について、通常のテツサー型レンズの
物体側より数えて第3番目の貼合わせレンズは負
と正の屈折力よりなるレンズを貼合わせた貼合わ
せレンズからなつているが、本発明に係る撮影レ
ンズでは正と負の屈折力のレンズを貼合せたレン
ズ構成としている。これは負と正の屈折力のレン
ズを貼合せた構成にすると、色収差の補正上の要
件からν3とν4を略等しくする必要がある。一方正
と負の屈折力のレンズを貼合せた構成にするとν3
<ν4とすることが出来る。これは、硝材を選択す
る際にν3<ν4なる条件においてはN3>N4とする
ことが出来る長所がある。(ロ)の事項を達成するに
は第1レンズの屈折力を強くすればよいが、あま
り強くすると球面収差の悪化と歪曲収差の悪化を
招き易すくする。(ハ)の事項を行なおうとすると球
面収差及びコマ収差の悪化を招き易くなり又画面
周辺の像面湾曲の増大を招き易くなる。本発明に
係る撮影レンズは上記の諸事項(イ)、(ロ)、(ハ)を考慮
しつつなされたものであり、本発明に係る撮影レ
ンズは上記のレンズ構成において各レンズに上記
の諸条件(1)〜(8)を設定することにより本発明の目
的を達成するものである。 次に上記各条件式について説明する。条件式(1)
は第3番目のレンズ群の貼合せレンズにおける両
レンズ間の屈折率差を大きくとりペツツバール和
を小さくするもので同条件式の下限値を越えると
ペツツバール和が大きくなり画面中間部でサジタ
ル像面湾曲が負の方向に大きくなり、又上限値を
越えると、画面周辺部でサジタル像面湾曲が正の
方向に大きくなると同時に画面中間で内向性コマ
収差が発生し画角の広角化を図るのが困難とな
る。条件式(2)は、R1を比較的小さくすることで
条件式(1)の範囲で発生しがちな画面周辺部の正方
向のサジタル像面湾曲を改善するもので同条件式
の上限値を越えると画面周辺部の正方向のサジタ
ル像面湾曲を良好に補正するのが困難となり、又
下限値を越えると、球面収差の補正が困難とな
る。条件式(3)は|R3|を比較的大きくとり画面
周辺部のサジタル像面湾曲が正の方向に大きくな
るのを抑制し更に歪曲収差の補正を良好に行うこ
とのできる範囲を示すもので同条件式の限度を越
えると画面周辺部のサジタル像面湾曲が増大し好
ましくない。又、R3≦0として条件式(3)を規制
したのはR3>0となると、正の歪曲収差が増大
し好ましくないからである。条件式(4)は、R4
比較的小さくすることによつて、バツクフオーカ
スを短かくし、又レンズ全厚を薄くすると補正困
難となる球面収差の補正をこれによつて良好に行
う為であり同条件式の上限値を越えると、球面収
差の補正が困難となると共に中間画角でのサジタ
ル像面湾曲が負の方向に増大し又下限値を越える
と、輪帯球面収差が増大し好ましくない。条件式
(5)は、D1の厚さを規制することでレンズ全厚を
薄くしかつ第1レンズのレンズ外径を小さくし
て、全レンズの小型化を図るものである。さらに
像面湾曲の改善も図つている。同条件式の上限値
を越えると、第1レンズに必要なレンズ外径が大
きくなり撮影レンズとしての小型化が困難になる
と同時に、中間画角でサジタル像面が負の方向に
大きく湾曲し又画面周辺部ではサジタル像面が正
の方向に大きく湾曲してしまう。又、下限値を越
えると球面収差の補正が困難となり好ましくな
い。条件式(6)は条件式(1)の範囲において発生し易
い中間画角での内向性コマ収差を補正しつつ撮影
レンズの小型化をバランス良く行なおとするもの
で同条件式の上限値を越えると、第1レンズの外
径が増大し小型化が困難になると共に歪曲収差が
増大し好ましくなく、又下限値を越えると、中間
画角で内向性コマ収差が発生するので好ましくな
い。条件式(7)は、軸上色収差及び倍率色収差の補
正を良好に行う為のもので、同条件式の上限値を
越えると軸上色収差は補正不足となり正方向の倍
率色収差が増大し、下限値を越えると軸上色収差
は補正過剰となり、又負の方向に倍率色収差が発
生し好ましくない。条件式(8)は、条件式(7)ととも
に軸上色収差の補正を良好に行なう為のもので同
条件式の上限値を越えると、軸上色収差が補正不
足となり、又下限値を越えると軸上色収差が補正
過剰となり好ましくない。 以上の説明のように本発明に係る撮影レンズは
上記の諸条件を満足することによつて明るく、広
画角でしかも小型化を達成することができるので
ある。例えば後述する実施例ではL/f=1.06、
2ω=64度であり、焦点距離f=34mmとするとL
=36mmとなり極めて小型でしかも良好に収差補正
を行つた撮影レンズを達成している。 又、本発明に係る撮影レンズにおいてフオーカ
シングはレンズ全体を繰り出して行つてもよく又
第1レンズのみを繰り出してもよく又第1レンズ
と第2レンズを一体として繰り出して行つてもよ
い。 次に本発明の数値実施例を示す。数値実施例に
おいてRiは物体側より順に第i番目のレンズ面
の曲率半径、Diは物体側より順に第i番目のレ
ンズ厚及び空気間隔、Niとνiは夫々物体側より
順に第i番目のレンズのガラスの屈折率とアツベ
数である。 又、数値実施例1の3次の収差係数を表1に示
す。表1から明らかのように、通常、後絞り方式
のテツサー型レンズではペツツバール和は0.25程
度であるのに対し、本発明に係る撮影レンズでは
0.16程度にまで小さくする事が可能となる。 又、参考のために各数値実施例に対する条件式
の値を以下に示しておく。
The present invention relates to a photographic lens that is an improved modified Tetsusar type lens equipped with a lens shutter. As a photographing lens for a camera having a lens shutter, a so-called rear aperture-type Tetsuser type lens in which an aperture is disposed at the rear of the lens is most commonly used. Various photographic lenses of this type have been proposed, such as JP-A No. 53-97824 and JP-A No. 53-Sho.
130021, JP-A-56-75611, etc. However, in general, including these conventional examples, when looking at the distance from the first lens surface to the focal point, which is a standard for the compactness of a photographic lens, that is, the ratio of the total lens length L to the focal length f, the F number is FNo.
For a 2.8 class photographic lens, L/f is approximately 1.09, and when a photographic lens is miniaturized to approximately L/f approximately 1.06, the F number has to be relatively dark at FNo. = 3.5. The purpose of the present invention is to provide a photographic lens with a bright F number of 2.9 and a wide angle of view that is compact and has a wide angle of view. ° shooting lens has been achieved. The features of the lens configuration of the photographic lens for achieving the object of the present invention are, in order from the object side, a first lens having a positive refractive power and a meniscus shape with its convex surface facing toward the object side, a second lens having both lens surfaces concave; It consists of three lens groups: a laminated lens in which a third lens whose both lens surfaces are convex and a fourth lens with negative refractive power are laminated together.A diaphragm is provided on the image plane side of the laminated lens, and Ri is Let Di be the radius of curvature of the i-th lens surface in order from the object side, Di be the thickness and air gap of the i-th lens in order from the object side, and Ni and νi be the refractive index of the glass of the i-th lens in order from the object side. Atsbe number, when the combined focal length of all lens systems is f (1) 0.25<N 3 −N 4 <0.4 (2) 0.25<R 1 /f<0.33 (3) 2<|R 3 |/f However, R 3 ≦0 (4) 0.26<R 4 /f<0.35 (5) 0.07<D 1 /f<0.1 (6) 0.06<D 3 +D 4 /f<0.15 (7) 20<ν 2 <32 (8 ) 10<ν 4 −ν 3 <30. The photographic lens according to the present invention focuses on the following points in order to simultaneously widen the photographic field of view and reduce the overall length of the lens. (b) Reduce the Petzval sum. (b) Shorten the back focus of the lens. (c) Reduce the total thickness of the lens. Regarding item (a), the third laminated lens counting from the object side of a normal Tetsusar type lens is a laminated lens in which lenses with negative and positive refractive powers are laminated together, but the present invention The photographic lens according to the above has a lens structure in which lenses with positive and negative refractive powers are bonded together. This is because when a configuration is made in which lenses with negative and positive refractive powers are bonded together, ν 3 and ν 4 need to be approximately equal due to the requirements for correcting chromatic aberration. On the other hand, if you use a structure in which lenses with positive and negative refractive powers are bonded together, ν 3
4 . This has the advantage that N 3 >N 4 can be satisfied under the condition that ν 34 when selecting the glass material. (B) can be achieved by increasing the refractive power of the first lens; however, if the refractive power is made too strong, it tends to worsen spherical aberration and distortion. If (c) is attempted, spherical aberration and comatic aberration are likely to worsen, and field curvature at the periphery of the screen is likely to increase. The photographic lens according to the present invention has been made in consideration of the above matters (a), (b), and (c), and the photographic lens according to the present invention has the above-mentioned matters in each lens in the above lens configuration. The object of the present invention is achieved by setting conditions (1) to (8). Next, each of the above conditional expressions will be explained. Conditional expression (1)
is the one that increases the refractive index difference between both lenses in the bonded lens of the third lens group and reduces the Petzval sum.If the lower limit of the same conditional expression is exceeded, the Petzval sum becomes large and the sagittal image plane is reduced in the middle of the screen. When the curvature increases in the negative direction and exceeds the upper limit, the sagittal field curvature increases in the positive direction at the periphery of the screen, and at the same time, inward coma aberration occurs in the middle of the screen, making it difficult to widen the angle of view. becomes difficult. Conditional expression (2) improves the sagittal field curvature in the positive direction at the periphery of the screen, which tends to occur within the range of conditional expression (1), by making R 1 relatively small, and is the upper limit of the conditional expression. If the lower limit is exceeded, it becomes difficult to satisfactorily correct sagittal curvature of field in the positive direction at the periphery of the screen, and if the lower limit is exceeded, it becomes difficult to correct spherical aberration. Conditional expression (3) indicates the range in which |R 3 | is set relatively large to suppress the sagittal curvature of field at the periphery of the screen from increasing in the positive direction and further correct distortion aberration satisfactorily. If the limit of the same conditional expression is exceeded, the sagittal curvature of field at the periphery of the screen increases, which is undesirable. Furthermore, the reason why conditional expression (3) is set as R 3 ≦0 is because when R 3 >0, positive distortion increases, which is not preferable. Conditional expression (4) is intended to shorten the back focus by making R4 relatively small, and to effectively correct spherical aberration, which is difficult to correct if the total lens thickness is made thin. If the upper limit of the conditional expression is exceeded, it becomes difficult to correct the spherical aberration, and the sagittal curvature of field at intermediate angles of view increases in the negative direction, and if the lower limit is exceeded, the annular spherical aberration increases, which is preferable. do not have. conditional expression
(5) is intended to reduce the total lens thickness by regulating the thickness of D 1 and to reduce the lens outer diameter of the first lens, thereby reducing the size of the entire lens. Furthermore, improvements have been made in field curvature. If the upper limit of the conditional expression is exceeded, the outer diameter of the first lens becomes large, making it difficult to downsize the photographic lens, and at the same time, the sagittal image plane at intermediate angles of view will be greatly curved in the negative direction. At the periphery of the screen, the sagittal image plane is significantly curved in the positive direction. Moreover, if the lower limit is exceeded, it becomes difficult to correct spherical aberration, which is not preferable. Conditional expression (6) is intended to reduce the size of the photographic lens in a well-balanced manner while correcting inward coma aberration at intermediate angles of view, which tends to occur within the range of conditional expression (1), and is the upper limit of the conditional expression. If it exceeds the lower limit, the outer diameter of the first lens increases, making it difficult to downsize and increases distortion, which is not preferable. If it exceeds the lower limit, inward coma aberration occurs at intermediate angles of view, which is not preferable. Conditional expression (7) is for good correction of longitudinal chromatic aberration and lateral chromatic aberration.If the upper limit of the conditional expression is exceeded, the axial chromatic aberration will be undercorrected and the lateral chromatic aberration in the positive direction will increase, and the lower limit If the value exceeds this value, axial chromatic aberration will be overcorrected, and lateral chromatic aberration will occur in the negative direction, which is undesirable. Conditional expression (8), along with conditional expression (7), is used to properly correct longitudinal chromatic aberration.If the upper limit of the conditional expression is exceeded, the longitudinal chromatic aberration will be undercorrected, and if the lower limit is exceeded, the longitudinal chromatic aberration will be insufficiently corrected. Axial chromatic aberration is overcorrected, which is not desirable. As explained above, by satisfying the above conditions, the photographic lens according to the present invention can be bright, have a wide angle of view, and be compact. For example, in the example described later, L/f=1.06,
2ω = 64 degrees and focal length f = 34mm, L
= 36mm, achieving an extremely compact photographic lens with excellent aberration correction. Further, in the photographic lens according to the present invention, focusing may be performed by extending the entire lens, or by extending only the first lens, or by extending the first lens and the second lens as a unit. Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface from the object side, Di is the thickness and air gap of the i-th lens from the object side, and Ni and νi are the i-th lens surface from the object side, respectively. are the refractive index and Atsube number of the glass. Further, Table 1 shows the third-order aberration coefficients of Numerical Example 1. As is clear from Table 1, the Petzval sum is usually about 0.25 in a Tetsusar type lens with a rear diaphragm system, whereas in the photographic lens according to the present invention, the Petzval sum is about 0.25.
It is possible to reduce it to about 0.16. For reference, the values of the conditional expressions for each numerical example are shown below.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の数値実施例1のレンズ断面
図、第2図から第5図までは各々本発明の数値実
施例1から数値実施例4までの諸収差図である。
図中、Sはサジタル像面、Mはメリデイオナル像
面である。
FIG. 1 is a sectional view of a lens according to Numerical Example 1 of the present invention, and FIGS. 2 to 5 are various aberration diagrams of Numerical Example 1 to Numerical Example 4 of the present invention, respectively.
In the figure, S is a sagittal image plane, and M is a meridional image plane.

Claims (1)

【特許請求の範囲】 1 物体側より順に凸面を物体側に向けた正の屈
折力のメニスカス状の第1レンズ、両レンズ面が
凹面の第2レンズ、そして両レンズ面が凸面の第
3レンズと負の屈折力の第4レンズとを貼合わせ
た貼合わせレンズの3つのレンズ群からなり、前
記貼合わせレンズの像面側に絞りを設け、Riを
物体側より順に第i番目のレンズ面の曲率半径、
Diを物体側より順に第i番目のレンズ厚及び空
気間隔、Niとνiを各々物体側より順に第i番目
のレンズのガラスの屈折率とアツベ数、 前記レンズ系の合成焦点距離をfとしたとき 0.25<N3−N4<0.4 0.25<R1/f<0.33 2<|R3|/f 但しR3≦0 0.26<R4/f<0.35 0.07<D1/f<0.1 0.06<D3+D4/f<0.15 20<ν2<32 10<ν4−ν3<30 なる条件を満足する事を特徴とする撮影レンズ。
[Claims] 1. A first lens in the form of a meniscus with a positive refractive power with its convex surface facing the object side in order from the object side, a second lens with both lens surfaces concave, and a third lens with both lens surfaces convex. and a fourth lens with negative refractive power are bonded together, a diaphragm is provided on the image plane side of the bonded lens, and Ri is set to the i-th lens surface in order from the object side. radius of curvature,
Di is the thickness and air gap of the i-th lens in order from the object side, Ni and νi are the refractive index and Atsube number of the glass of the i-th lens in order from the object side, and f is the composite focal length of the lens system. When 0.25<N 3 −N 4 <0.4 0.25<R 1 /f<0.33 2<|R 3 |/f However, R 3 ≦0 0.26<R 4 /f<0.35 0.07<D 1 /f<0.1 0.06<D 3 +D 4 /f<0.15 20<ν 2 <32 10<ν 4 −ν 3 <30 A photographic lens that satisfies the following conditions.
JP447482A 1982-01-13 1982-01-13 Photographic lens Granted JPS58121010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP447482A JPS58121010A (en) 1982-01-13 1982-01-13 Photographic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP447482A JPS58121010A (en) 1982-01-13 1982-01-13 Photographic lens

Publications (2)

Publication Number Publication Date
JPS58121010A JPS58121010A (en) 1983-07-19
JPH0414323B2 true JPH0414323B2 (en) 1992-03-12

Family

ID=11585106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP447482A Granted JPS58121010A (en) 1982-01-13 1982-01-13 Photographic lens

Country Status (1)

Country Link
JP (1) JPS58121010A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991408A (en) * 1982-11-18 1984-05-26 Nippon Kogaku Kk <Nikon> Behind-aperture diaphragm lens
JPH0259492U (en) * 1988-10-25 1990-05-01

Also Published As

Publication number Publication date
JPS58121010A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
JP2526979B2 (en) Rear conversion lens
JP2558138B2 (en) Zoom lens
JPH0827430B2 (en) Two-group zoom lens
JP3254239B2 (en) Large aperture medium telephoto lens
JPS6155087B2 (en)
JPS6154202B2 (en)
JP4007468B2 (en) Wide-angle lens with long back focus
US4364641A (en) Wide angle zoom lens
JPH0412448B2 (en)
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JP2000028919A (en) Middle telephotographic lens
JPH0443245B2 (en)
JP2599311B2 (en) Super wide angle lens
JPH0414763B2 (en)
US4422734A (en) Photographic lens system having an auxiliary lens
JPH05127082A (en) Small-sized zoom lens
JPS6117114A (en) Converter lens
JPH0420161B2 (en)
US4348085A (en) Inverted telephoto type wide angle lens
US5631777A (en) Photographing lens for lens-fitted film unit or fixed focus lens camera
JP3203566B2 (en) Wide-angle lens
JPS6358324B2 (en)
JPH0850238A (en) Wide angle lens
JP3038974B2 (en) Small wide-angle lens
JP4374505B2 (en) Wide angle conversion lens