JPH041429A - Gasoline injection engine with auxiliary combustion chamber - Google Patents

Gasoline injection engine with auxiliary combustion chamber

Info

Publication number
JPH041429A
JPH041429A JP9932290A JP9932290A JPH041429A JP H041429 A JPH041429 A JP H041429A JP 9932290 A JP9932290 A JP 9932290A JP 9932290 A JP9932290 A JP 9932290A JP H041429 A JPH041429 A JP H041429A
Authority
JP
Japan
Prior art keywords
combustion chamber
injection
engine
gasoline
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9932290A
Other languages
Japanese (ja)
Inventor
Eiji Ono
大野 栄嗣
Norihiko Nakamura
徳彦 中村
Makoto Ueno
真 上野
Kazuhiro Ito
和浩 伊藤
Yasuhiko Ishida
石田 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9932290A priority Critical patent/JPH041429A/en
Publication of JPH041429A publication Critical patent/JPH041429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make good combustion regardless of engine load by specifying the volume of an auxiliary combustion chamber to that of a whole combustion chamber, and also specifying a partial gasoline injection direction and injection timing respectively to expand a uniform combustible mixed gas region according to the increase of an engine load. CONSTITUTION:Main and auxiliary combustion chambers 5 and 10 are formed between the flat top surface of a piston 3 and the flat internal wall surface of a cylinder head 4, and in the cylinder head 4 respectively. In this case, the volume of the auxiliary combustion chamber 10 is formed almost equal to that of the main combustion chamber 5, and the volume of the auxiliary combustion chamber 10 is formed so as to be an degree from 30 - 70% of that of a whole combustion chamber. A gasoline injection direction from a fuel injection valve 13 is directed in the main combustion chamber 5 through an injection port 11. An injection period is relatively short at the time of engine low load operation, consequently injection is made when the air flow velocity in the injection port 11 is considerably fast. Meantime the injection is conducted when the air flow velocity in the injection port 11 is slow at the time of engine high load operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は副燃焼室付ガソリン噴射機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gasoline injection engine with a sub-combustion chamber.

〔従来の技術〕[Conventional technology]

噴口を介して主燃焼室内に連通ずる副燃焼室を具え、副
燃焼室内に燃料噴射弁と点火栓を配置して燃料噴射弁か
らガソリンを噴射するようにした副燃焼室材2サイクル
ガソリン噴射機関が公知である(特開昭49−1337
06号公報参照)。この2サイクル機関は副燃焼室が全
燃焼室の容積の大部分を占めており、従ってこの2サイ
クル機関では実質的に全燃焼が副燃焼室内に行われる。
A two-cycle gasoline injection engine with a sub-combustion chamber material, which is equipped with a sub-combustion chamber that communicates with the main combustion chamber through a nozzle, and a fuel injection valve and a spark plug are arranged in the sub-combustion chamber so that gasoline is injected from the fuel injection valve. is publicly known (Japanese Unexamined Patent Publication No. 49-1337
(See Publication No. 06). In this two-stroke engine, the sub-combustion chamber occupies most of the volume of the entire combustion chamber, and therefore, in this two-stroke engine, substantially all combustion takes place within the sub-combustion chamber.

〔発明が解決し、ようとする課題〕[Problem to be solved by the invention]

ところでオープンチャンバ型の燃焼室において機関低負
荷運転時には第9図(A)に示されるように点火栓aの
周りに均一可燃混合気領域すを形成すると共にこの均一
可燃混合気領域すの周りを空気のみからなる領域Cとし
、機関負荷が高くなルニつれて第9図(B)に示される
ように均一可燃混合気領域すを拡大すると共に空気のみ
からなる領域を縮少し、機関高負荷運転時には全燃焼室
内を均一可燃混合気領域すとすることができれば機関負
荷にかかわらずに極めて良好な燃焼を行えることが知ら
れている。ところが実際には例えば第9図(A>に示さ
れるようにオーブンチャンバ型の燃焼室内空間の一部領
域のみに均一可燃混合気領域すを形成することは困難で
あり、通常は混合気が燃焼室内全体に広がってしまうた
めに、混合気が薄くなって着火が困難となる。この場合
、点火栓aの周りにうまく濃混合気領域を形成すること
ができれば着火可能ではあるが濃混合気領域の周りは極
めて薄い混合気となるために第9図(A)に示すように
均一可燃混合気領域すを形成したときのような良好な燃
焼を得ることはできない。上述の特開昭49−1337
06号公報に記載されている2サイクル機関でもオーブ
ンチャンバ型燃焼室と同じであって機関低負荷運転時に
第9図(A)に示すような均一可燃混合気領域すを形成
することができず、斯くして良好な燃焼を得るのは困難
である。
By the way, in an open chamber type combustion chamber, when the engine is operated at low load, a homogeneous combustible mixture area is formed around the spark plug a, as shown in FIG. As the engine load increases, the homogeneous combustible mixture area is expanded and the area consisting only of air is reduced, and the engine is operated under high load. It is known that if it is possible to create a homogeneous combustible mixture within the entire combustion chamber, extremely good combustion can be achieved regardless of the engine load. However, in reality, it is difficult to form a homogeneous combustible mixture region only in a partial area of the oven chamber type combustion chamber, as shown in FIG. Because it spreads throughout the room, the air-fuel mixture becomes diluted and difficult to ignite.In this case, if a rich mixture area is successfully formed around spark plug a, ignition is possible, but the mixture is not in the rich air-fuel mixture area. Since the mixture becomes extremely thin around the combustible mixture, it is not possible to achieve good combustion as in the case where a uniform combustible mixture region is formed as shown in FIG. 9(A). 1337
The two-cycle engine described in the 06 publication also has the same oven chamber type combustion chamber, and cannot form a homogeneous combustible mixture region as shown in Figure 9 (A) during low engine load operation. , thus it is difficult to obtain good combustion.

ところが第9図(D)から(F)に示すように副燃焼室
dを具えた内燃機関では副燃焼室dが成る程度閉鎖空間
となっているので機関負荷が低し1ときに第9図(D)
および(E)で示されるように点火栓aの周りに均一可
燃混合気領域すを形成し、この均一可燃混合気領域すの
周りに空気のみからなる領域Cを形成しやすくなる。こ
の場合実際には第9図(D)に示されるように副燃焼室
d内の一部に均一可燃混合気領域すを形成するのはかな
り困難であるが第9図(E)に示すように副燃焼室d内
に均一可燃混合気領域すを形成するのは十分に可能性が
ある。
However, as shown in Figures 9 (D) to (F), in an internal combustion engine equipped with a sub-combustion chamber d, the space is closed to the extent that the sub-combustion chamber d is formed, so when the engine load is low and the (D)
As shown in (E), a uniform combustible mixture region is formed around the spark plug a, and a region C consisting only of air is easily formed around this uniform combustible mixture region. In this case, it is actually quite difficult to form a homogeneous combustible mixture region in a part of the auxiliary combustion chamber d as shown in FIG. 9(D), but as shown in FIG. 9(E), It is quite possible to form a homogeneous combustible mixture region in the sub-combustion chamber d.

本発明は、第9図(D)から(F)に示すように均一可
燃混合気領域すを機関負荷の増大に応じて連続的に徐々
に拡大していくことは困難であるがいくらかでもこれに
近づけるために段階的ではあるが機関負荷の増大に伴な
い第9図(E)に示すように均一混合気領域すを副燃焼
室d内のみから第9図(F)に示すように主燃焼室f内
まで拡大し、それによってできるだけ理想的な燃焼に近
づけることを目的としている。
Although it is difficult to continuously and gradually expand the homogeneous combustible mixture region as shown in FIGS. 9(D) to (F) in response to an increase in engine load, the present invention aims to achieve this goal to some extent. As the engine load increases, the homogeneous air-fuel mixture region is gradually changed from only in the sub-combustion chamber d to as shown in FIG. 9(F), as shown in FIG. 9(E). The purpose is to expand the combustion chamber f, thereby achieving as close to ideal combustion as possible.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明によれば噴口を介して
主燃焼室内に連通ずる副燃焼室を具え、副燃焼室内に燃
料噴射弁と点火栓を配置して燃料噴射弁からガソリンを
噴射するようにした副燃焼室付ガソリン噴射機関におい
て、副燃焼室の容積を全燃焼室の容積の30パーセント
から70パーセント程度とし、燃料噴射弁からの少くと
も一部のガソリン噴射方向を噴口を通って主燃焼室内に
指向させ、機関低負荷運転時には噴口から副燃焼室内に
流入する空気流によって全噴射ガソリンが実質的に副燃
焼室内に留まるように上述の空気流の流速が比較的早い
ときに燃料噴射弁からガソリンを噴射させ、機関高負荷
運転時には噴射時期を早めて一部の噴射ガソリンが主燃
焼室内に流入するように機関低負荷運転時に比べて上述
の空気流の流速が遅いときに燃料噴射弁からガソリンを
噴射させるようにしている。
In order to achieve the above object, the present invention includes an auxiliary combustion chamber that communicates with the main combustion chamber through a nozzle, a fuel injection valve and a spark plug are arranged in the auxiliary combustion chamber, and gasoline is injected from the fuel injection valve. In such a gasoline injection engine with an auxiliary combustion chamber, the volume of the auxiliary combustion chamber is approximately 30% to 70% of the total volume of the combustion chamber, and at least part of the gasoline injection direction from the fuel injection valve is directed through the nozzle. The fuel is directed into the main combustion chamber, and when the engine is running at low load, the airflow flowing into the auxiliary combustion chamber from the nozzle substantially remains in the auxiliary combustion chamber so that all the injected gasoline remains within the auxiliary combustion chamber when the airflow velocity is relatively high. Gasoline is injected from the injector, and when the engine is running at high load, the injection timing is advanced so that some of the injected gasoline flows into the main combustion chamber. Gasoline is injected from the injection valve.

〔作 用〕[For production]

機関負荷の増大に伴ない均一可燃混合気領域が副燃焼室
のみから主燃焼室内へと拡大される。
As the engine load increases, the homogeneous combustible mixture region expands from only the auxiliary combustion chamber to the main combustion chamber.

〔実施例〕〔Example〕

第1図から第3図を参照すると、1は2サイクル内燃機
関本体、2はシリンダブロック、3はピストン、4はシ
リンダヘッド、5はピストン3の平坦頂面とシリンダヘ
ッド4の平坦内壁面間に形成された主燃焼室、6は一対
の給気弁、7は給気ボート、8は一対の排気弁、9は排
気ボート、10はシリンダヘッド4内に形成された副燃
焼室、11は副燃焼室10と主燃焼室5を連通する噴口
、12は副燃焼室10内に配置された点火栓、13は副
燃焼室10の頂部に配置された燃料噴射弁を夫々示し、
第3図に示されるようにシリンダヘッド4の内壁面上に
は給気弁6のほぼ全開弁期間に亘って排気弁8側の給気
弁6開口を覆うマスク壁14が形成されている。第1図
から第3図に示す実施例では副燃焼室10の容積は主燃
焼室5の容積とほぼ等しく形成されているが副燃焼室1
0の容積は全燃焼室の容積の30パーセントから70パ
ーセント程度に形成することができる。また、第1図か
ら第3図に示す実施例では圧縮比がT0程度となってお
り、また噴口11の面積に対する副燃焼室10の容積の
比(副燃焼室10の容積(cd)/噴口11の面積(c
d))は5 cmから50m以下となっている。
Referring to FIGS. 1 to 3, 1 is a two-stroke internal combustion engine body, 2 is a cylinder block, 3 is a piston, 4 is a cylinder head, and 5 is a gap between the flat top surface of the piston 3 and the flat inner wall surface of the cylinder head 4. 6 is a pair of intake valves, 7 is an intake boat, 8 is a pair of exhaust valves, 9 is an exhaust boat, 10 is a sub-combustion chamber formed in the cylinder head 4, 11 is a main combustion chamber formed in the cylinder head 4; A nozzle port communicating the auxiliary combustion chamber 10 and the main combustion chamber 5, 12 a spark plug disposed within the auxiliary combustion chamber 10, and 13 a fuel injection valve disposed at the top of the auxiliary combustion chamber 10,
As shown in FIG. 3, a mask wall 14 is formed on the inner wall surface of the cylinder head 4 to cover the opening of the air intake valve 6 on the exhaust valve 8 side during the period when the air intake valve 6 is substantially fully open. In the embodiment shown in FIGS. 1 to 3, the volume of the sub-combustion chamber 10 is approximately equal to the volume of the main combustion chamber 5;
The zero volume can be formed to be about 30% to 70% of the total combustion chamber volume. In addition, in the embodiments shown in FIGS. 1 to 3, the compression ratio is approximately T0, and the ratio of the volume of the auxiliary combustion chamber 10 to the area of the nozzle 11 (volume of the auxiliary combustion chamber 10 (cd)/nozzle nozzle Area of 11 (c
d)) ranges from 5 cm to 50 m or less.

第1図から第3図に示す実施例では第4図に示されるよ
うに排気弁8が給気弁6よりも先に開弁し、先に閉弁す
る。給気弁6が開弁すると新気はマスク壁14と反対側
の給気弁6の開口から燃焼室5内に流入し、次いでこの
新気は給気弁6下方のシリンダボア内壁面に沿って下降
した後、第3図において矢印Wで示されるようにピスト
ン3の頂面に沿って進む。このようにマスク壁14を設
けることによって新気が燃焼室5内をループ状に流れ、
斯くして良好な掃気が行われることになる。次いで下死
点BDCを過ぎてピストン3が上昇しはじめてから暫ら
くすると排気弁8が閉弁する。排気弁8が閉弁する頃に
なると給気弁6の開口面積はかなり小さくなっており、
従って排気弁8が閉弁する頃になるとピストン3の上昇
作用によって主燃焼室5内の空気の圧縮作用が開始され
る。主燃焼室5内の空気の圧縮作用が開始されて主燃焼
室5内の圧力が副燃焼室10内の圧力よりも高くなると
主燃焼室5内の空気が噴口11を介して副燃焼室10内
に流入しはじめる。主燃焼室5内の圧縮空気圧と副燃焼
室10内の圧力との圧力差はピストン3が上昇するにつ
れて次第に大きくなり、この圧力差は上死点前BTDC
30°程度で最大となる。従って第5図に示されるよう
に主燃焼室5内から副燃焼室10内に向けて噴口11内
を流れる空気の流速Vは排気弁8が閉弁する頃からピス
トン3が上昇するにつれて、次第に速くなり、この流速
Vは上死点前BTDC30°程度で最大となる。
In the embodiment shown in FIGS. 1 to 3, the exhaust valve 8 opens before the intake valve 6 and closes before the intake valve 6, as shown in FIG. When the intake valve 6 opens, fresh air flows into the combustion chamber 5 from the opening of the intake valve 6 on the opposite side of the mask wall 14, and then this fresh air flows along the inner wall surface of the cylinder bore below the intake valve 6. After descending, it advances along the top surface of the piston 3 as shown by the arrow W in FIG. By providing the mask wall 14 in this way, fresh air flows in a loop inside the combustion chamber 5,
In this way, good scavenging will be achieved. Then, a while after the piston 3 begins to rise past the bottom dead center BDC, the exhaust valve 8 closes. By the time the exhaust valve 8 closes, the opening area of the air supply valve 6 has become considerably smaller.
Therefore, when the exhaust valve 8 is about to close, the compression of the air in the main combustion chamber 5 is started by the upward movement of the piston 3. When the compression action of the air in the main combustion chamber 5 is started and the pressure in the main combustion chamber 5 becomes higher than the pressure in the sub-combustion chamber 10, the air in the main combustion chamber 5 flows through the nozzle 11 into the sub-combustion chamber 10. begins to flow inside. The pressure difference between the compressed air pressure in the main combustion chamber 5 and the pressure in the auxiliary combustion chamber 10 gradually increases as the piston 3 rises, and this pressure difference is BTDC before top dead center.
It reaches its maximum at about 30°. Therefore, as shown in FIG. 5, the flow velocity V of the air flowing through the nozzle 11 from the main combustion chamber 5 to the auxiliary combustion chamber 10 gradually increases as the piston 3 rises from around the time when the exhaust valve 8 closes. The flow velocity V reaches its maximum at about 30 degrees BTDC before the top dead center.

ところで第1図から第3図に示される実施例では燃料噴
射弁13からのガソリン噴射方向は噴口11を通って主
燃焼室5内に指向されており、従って第6図および第7
図においてFで示されるように燃料噴射弁13からは噴
口11を通して主燃焼室5内に向けてガソリンが噴射さ
れる。第5図においてT1は機関低負荷低速運転時の噴
射期間を示しており、T2は機関低負荷高速運転時の噴
射期間を示している。また、T、は機関高負荷低速運転
時の噴射期間を示しており、T4は機関高負荷高速運転
時の噴射期間を示している。なお、機関低負荷運転時と
高負荷運転時の中間では噴射時期は機関負荷が高くなる
につれて早くなる。
By the way, in the embodiment shown in FIGS. 1 to 3, the direction of gasoline injection from the fuel injection valve 13 is directed into the main combustion chamber 5 through the nozzle 11, and therefore the direction shown in FIGS.
As indicated by F in the figure, gasoline is injected from the fuel injection valve 13 into the main combustion chamber 5 through the nozzle 11. In FIG. 5, T1 indicates the injection period during low engine load and low speed operation, and T2 indicates the injection period during engine low load and high speed operation. Furthermore, T indicates the injection period during high-load, low-speed operation of the engine, and T4 indicates the injection period during high-speed operation of the engine with high load. Note that, between low-load engine operation and high-load engine operation, the injection timing becomes earlier as the engine load increases.

第5図かられかるように機関低負荷運転時には上死点前
BTDC30°で、即ち噴口11内の空気流速Vが最大
となる付近で噴射作用が完了せしめられる。
As can be seen from FIG. 5, when the engine is operating at low load, the injection action is completed at 30° BTDC before top dead center, that is, near the point where the air flow velocity V in the nozzle 11 is at its maximum.

機関低負荷運転時には噴射期間が比較的短かく、従って
噴口11内の空気流速Vがかなり速いときに噴射が行わ
れることになる。このように噴口11内の空気流速Vが
かなり速いときに噴射が行われると第6図に示されるよ
うに噴射されたガソリンFは噴口11から副燃焼室10
内に向かう空気流Zによって主燃焼室5内に侵入するの
が阻止させる。従ってこのときには噴射されたガソリン
Fは副燃焼室10内に留まり、副燃焼室10内に均一可
燃混合気を形成する。一方、このとき主燃焼室5は空気
のみによって、実際には残留既燃ガスを含んだ空気のみ
によって満されており、従って機関低負荷運転時には燃
焼室内の一部に均一可燃混合気領域が形成されることに
なる。この均一可燃混合気は点火栓12によって着火せ
しめられ、斯くして良好な燃焼が得られることになる。
When the engine is operating at low load, the injection period is relatively short, and therefore the injection is performed when the air flow velocity V in the nozzle 11 is quite high. If injection is performed when the air flow velocity V in the nozzle 11 is quite high as described above, the injected gasoline F will flow from the nozzle 11 into the auxiliary combustion chamber 10 as shown in FIG.
The inward air flow Z is prevented from entering the main combustion chamber 5. Therefore, at this time, the injected gasoline F remains in the sub-combustion chamber 10 and forms a homogeneous combustible mixture within the sub-combustion chamber 10. On the other hand, at this time, the main combustion chamber 5 is filled only with air, in fact only with air containing residual burnt gas, and therefore a homogeneous combustible mixture region is formed in a part of the combustion chamber during low engine load operation. will be done. This homogeneous combustible mixture is ignited by the spark plug 12, thus achieving good combustion.

一方、第5図に示されるように機関高負荷運転時には低
負荷運転時に比べて噴射時期が早約られ、例えば上死点
BTDC80°程度で噴射作用が完了せしめられる。従
って機関高負荷運転時には低負荷運転時に比べて噴口1
1内の空気流速Vが遅いときに噴射が行われる。このよ
うに噴口11内の空気流速Vが遅いときに噴射が行われ
ると第7図に示すように噴射されたガソリンFの一部は
主燃焼室5内に侵入し、斯くしてこのときには副燃焼室
10内および主燃焼室5内に均一可燃混合気が形成され
る。
On the other hand, as shown in FIG. 5, when the engine is operating under high load, the injection timing is earlier than when operating under low load, and the injection action is completed, for example, at about 80° BTDC at the top dead center. Therefore, during high-load engine operation, the nozzle 1 is smaller than during low-load operation.
Injection takes place when the air flow velocity V within 1 is slow. If injection is performed when the air flow velocity V in the nozzle 11 is slow as described above, a part of the injected gasoline F will enter the main combustion chamber 5 as shown in FIG. A homogeneous combustible mixture is formed within the combustion chamber 10 and the main combustion chamber 5.

従って機関高負荷運転時には燃焼室内全体が均一混合気
によって満たされるので良好な燃焼を得ることができる
Therefore, when the engine is operated under high load, the entire combustion chamber is filled with a uniform air-fuel mixture, so that good combustion can be achieved.

このように本発明は噴口11内を流れる空気流速Vの変
化を利用し、段階的にではあるが機関負荷が高くなるに
つれて均一可燃混合気領域を拡大するようにしたもので
あり、斯くしてガソリンを筒内噴射した場合であっても
機関負荷にかかわらずに良好な燃焼を得ることができる
In this way, the present invention utilizes changes in the air flow velocity V flowing through the nozzle 11 to expand the homogeneous combustible mixture region as the engine load increases, albeit in stages. Even when gasoline is injected into the cylinder, good combustion can be obtained regardless of the engine load.

第8図はガソリン噴射角を比較的広角にして噴射ガソリ
ンFの一部のみが噴口11を通って主燃焼室5内に向か
うようにした場合を示している。この場合でも噴射時期
は第5図においてT+  、T2 。
FIG. 8 shows a case where the gasoline injection angle is made relatively wide so that only a portion of the injected gasoline F passes through the nozzle 11 and heads into the main combustion chamber 5. Even in this case, the injection timings are T+ and T2 in FIG.

T3  、T−で示されるように設定される。T3 is set as shown by T-.

〔発明の効果〕〔Effect of the invention〕

機関負荷の増大に応じて均一可燃混合気領域を段階的に
ではあるが拡大できるので機関負荷にかかわらずに良好
な燃焼を得ることができる。
Since the homogeneous combustible mixture region can be expanded in stages as the engine load increases, good combustion can be achieved regardless of the engine load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図のI−I線に沿ってみた2サイクル機関
の側面断面図、第2図は第1図のシリンダヘッドの底面
図、第3図はピストンが下死点にあるときの第2図の■
−■線に沿ってみた断面図、第4図は給排気弁の開弁時
期を示す線図、第5図は噴射時期を説明するための線図
、第6図は低負荷運転時を示す図、第7図は高負荷運転
時を示す図、第8図は別の実施例の側面断面図、第9図
は燃焼方法を説明するための図である。 5・・・主燃焼室、   10・・・副燃焼室、11・
・・噴口、     12・・・点火栓、13・・・燃
料噴射弁。 躯i! l−二 第3図 第2図 第 図 第 図 (A) (D) (B) (E) (C) (F) 第 図
Figure 1 is a side sectional view of the two-stroke engine taken along line I-I in Figure 2, Figure 2 is a bottom view of the cylinder head in Figure 1, and Figure 3 is when the piston is at bottom dead center. ■ in Figure 2 of
A cross-sectional view taken along the line - ■, Figure 4 is a diagram showing the opening timing of the supply and exhaust valves, Figure 5 is a diagram to explain the injection timing, and Figure 6 is a diagram showing low load operation. FIG. 7 is a diagram showing a high-load operation, FIG. 8 is a side sectional view of another embodiment, and FIG. 9 is a diagram for explaining the combustion method. 5... Main combustion chamber, 10... Sub-combustion chamber, 11.
...Nozzle port, 12... Spark plug, 13... Fuel injection valve. Body i! Figure l-2 Figure 3 Figure 2 Figure Figure (A) (D) (B) (E) (C) (F) Figure

Claims (1)

【特許請求の範囲】[Claims] 噴口を介して主燃焼室内に連通する副燃焼室を具え、副
燃焼室内に燃料噴射弁と点火栓を配置して燃料噴射弁か
らガソリンを噴射するようにした副燃焼室付ガソリン噴
射機関において、上記副燃焼室の容積を全燃焼室の容積
の30パーセントから70パーセント程度とし、上記燃
料噴射弁からの少くとも一部のガソリン噴射方向を上記
噴口を通って主燃焼室内に指向させ、機関低負荷運転時
には噴口から副燃焼室内に流入する空気流によって全噴
射ガソリンが実質的に副燃焼室内に留まるように該空気
流の流速が比較的早いときに燃料噴射弁からガソリンを
噴射させ、機関高負荷運転時には噴射時期を早めて一部
の噴射ガソリンが主燃焼室内に流入するように機関低負
荷運転時に比べて上記空気流の流速が遅いときに燃料噴
射弁からガソリンを噴射させるようにした副燃焼室付ガ
ソリン噴射機関。
In a gasoline injection engine with a sub-combustion chamber, the sub-combustion chamber communicates with the main combustion chamber through a nozzle, and a fuel injection valve and a spark plug are arranged in the sub-combustion chamber so that gasoline is injected from the fuel injection valve. The volume of the auxiliary combustion chamber is set to about 30% to 70% of the volume of the entire combustion chamber, and at least part of the gasoline injection direction from the fuel injection valve is directed into the main combustion chamber through the nozzle, thereby reducing the engine temperature. During load operation, gasoline is injected from the fuel injection valve when the flow velocity of the air flow is relatively high so that all the injected gasoline substantially remains in the sub-combustion chamber due to the air flow flowing into the sub-combustion chamber from the nozzle, thereby reducing the engine height. During load operation, the injection timing is advanced so that some of the injected gasoline flows into the main combustion chamber, and gasoline is injected from the fuel injection valve when the air flow velocity is slower than when the engine is running at low load. Gasoline injection engine with combustion chamber.
JP9932290A 1990-04-17 1990-04-17 Gasoline injection engine with auxiliary combustion chamber Pending JPH041429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9932290A JPH041429A (en) 1990-04-17 1990-04-17 Gasoline injection engine with auxiliary combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9932290A JPH041429A (en) 1990-04-17 1990-04-17 Gasoline injection engine with auxiliary combustion chamber

Publications (1)

Publication Number Publication Date
JPH041429A true JPH041429A (en) 1992-01-06

Family

ID=14244403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9932290A Pending JPH041429A (en) 1990-04-17 1990-04-17 Gasoline injection engine with auxiliary combustion chamber

Country Status (1)

Country Link
JP (1) JPH041429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747583A1 (en) * 1995-06-05 1996-12-11 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine of the auxiliary vortex combustion chamber type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747583A1 (en) * 1995-06-05 1996-12-11 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine of the auxiliary vortex combustion chamber type
US5769050A (en) * 1995-06-05 1998-06-23 Yamaha Hatsudoki Kabushiki Kaisha Prechamber for diesel engine

Similar Documents

Publication Publication Date Title
US4071001A (en) Stratified combustion engine with prechamber
US4821687A (en) Two-stroke engine
US4185598A (en) Internal combustion engine
US4178903A (en) Internal combustion engine with an auxiliary combustion chamber
US4023541A (en) Combustion chamber for internal-combustion engine
JPS59687B2 (en) Combustion chamber of internal combustion engine
US5163396A (en) Combustion chamber for injected engine
US3967611A (en) Stratified-combustion type internal combustion engine with pre-combustion-chamber
US4230073A (en) Combustion chamber of an internal combustion engine
JPH041429A (en) Gasoline injection engine with auxiliary combustion chamber
JPH0458030A (en) Cylinder injection type two-cycle internal combustion engine
JPH0571348A (en) Combustion chamber of direct injection type diesel engine
JP3300965B2 (en) Two-cycle in-cylinder injection engine
JP3948081B2 (en) Spark ignition internal combustion engine
JPH0533650A (en) Two-cycle internal combustion engine
JPS5911728B2 (en) 4 cycle engine
JPH04179840A (en) Two-cycle gasoline injection engine with sub-combustion chamber
JP3162145B2 (en) Engine combustion chamber structure
JPH09217627A (en) Direct injection lean burn high compression ratio gasoline engine
JPS5924817Y2 (en) Combustion device of internal combustion engine
JPS5851373Y2 (en) 2-stroke internal combustion engine
JP2763556B2 (en) Engine combustion chamber
JPS6131289B2 (en)
JP2001098946A (en) Direct-injection spark ignition type internal combustion engine
JPS58178822A (en) Two cycle internal-combustion engine