JPH04142485A - Underwater sound receiver - Google Patents

Underwater sound receiver

Info

Publication number
JPH04142485A
JPH04142485A JP26372290A JP26372290A JPH04142485A JP H04142485 A JPH04142485 A JP H04142485A JP 26372290 A JP26372290 A JP 26372290A JP 26372290 A JP26372290 A JP 26372290A JP H04142485 A JPH04142485 A JP H04142485A
Authority
JP
Japan
Prior art keywords
piezoelectric
boot
case
acceleration
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26372290A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mikami
三上 宏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP26372290A priority Critical patent/JPH04142485A/en
Publication of JPH04142485A publication Critical patent/JPH04142485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sharply reduce the noise output voltage and largely improve the S/N ratio by floating the sensing section of a piezoelectric piece in a foam body and a filled acoustic medium. CONSTITUTION:A piezoelectric piece supporter is made of a punching metal. This case 9 is floated and supported in a boot 10 made of a bottomed and headed cylindrical body via a foam body 4. The vibration applied to the whole receiver is considerably attenuated by the foam body 4 but not to zero, it is transferred to a circular base 2 via a fitting screw 5, the noise output based on the vibration is generated at a sensing section. In case of the vertical vibration, distortions in opposite directions to each other are generated on piezoelectric pieces 1a, 1b, 3a, 3b centering on the circular base 2 via their masses, and outputs in opposite phases respectively are obtained. They are connected electrically in parallel or in series in a control circuit, the output voltage in opposite phases can be offset, and the effect of the noise output can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はブーツ内に電気音響変換素子を備え、ブーツ外
の振動を上記電気音響変換素子に伝達して電気信号に変
換し、出力するようにした水中用受渡器に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention includes an electroacoustic transducer inside the boot, and transmits vibrations outside the boot to the electroacoustic transducer, converts it into an electrical signal, and outputs the signal. The invention relates to an underwater delivery device.

(従来の技術) 水中用受波器をプラットホールから吊下して水中音波を
捕捉する場合、プラットホームの移動などで、受渡器が
動揺し、加速度雑音が発生することがある。この加速度
雑音が発生すると、電気音響変換素子にて受波される水
中音波に重畳された形で上記加速度雑音が加わり、S/
N比(信号対雑音比)を低下する欠点があり、計測値の
精度が低下する。
(Prior Art) When an underwater receiver is suspended from a platform hole to capture underwater sound waves, movement of the platform may cause the receiver to sway and generate acceleration noise. When this acceleration noise is generated, the acceleration noise is superimposed on the underwater sound wave received by the electroacoustic transducer, and the S/
This method has the disadvantage of reducing the N ratio (signal-to-noise ratio), which reduces the accuracy of measured values.

一般に、水中用受波器における雑音出力電圧は音響雑音
と加速度雑音の和で示される。ここで、音響雑音レベル
(N:μPa5)、受波感度(Mo : V/uPas
)、加速度(A:G=重力加速度)、加速度感度(Go
:V/G)とすると雑音出力電圧(Vn)は次の式のよ
うになる。
Generally, the noise output voltage in an underwater receiver is expressed as the sum of acoustic noise and acceleration noise. Here, acoustic noise level (N: μPa5), reception sensitivity (Mo: V/uPas
), acceleration (A:G=gravitational acceleration), acceleration sensitivity (Go
:V/G), the noise output voltage (Vn) is expressed by the following equation.

Vn= (N’ 0M。’+A’−G。・)阿−−−−
−−”  (1) +=u0(N” +A’  (Go ’ Mo ’ )
)’また、受波器出力のS/N比:(S/N)Eは(S
/N)E =S−MO/MO(N’ +A’% (Go ’ /MO2))   −−−−・−−−−−
−−−−・−(3)で与えられる。
Vn= (N'0M.'+A'-G.・)A----
--" (1) +=u0(N"+A'(Go'Mo')
)' Also, the S/N ratio of the receiver output: (S/N)E is (S
/N)E =S-MO/MO(N'+A'%(Go' /MO2)) -----・----
−−−・−(3) is given.

(S/N)Eの向上のためには(3)式の分母の加速度
感度(GO)と受波感度(MO)の比を大きくすること
によって得られる。
(S/N)E can be improved by increasing the ratio between the acceleration sensitivity (GO) and the reception sensitivity (MO) in the denominator of equation (3).

(発明が解決しようとする課!り そこで、電気音響変換素子として2個の円筒状圧電子を
環状ペースを介して互いにタンデムに連結し、上記環状
ベースをブーツ内の圧電子支持体に支持して、ブーツ内
に充填した液状の音響媒体を介してブーツ外の振動を上
記圧電子に伝達する時、少なくとも上記圧電子の軸方向
の加速雑音については、これを各圧電子の振動から発生
する信号で相殺するようにして、S/N比の低下を回避
することがなされている。この場合、上記ペースは圧電
子支持体を介してブーツ内に機械的に支持されなければ
ならず、そのための吊持支柱などが装備されている。
(The problem to be solved by the invention! Therefore, two cylindrical piezoelectric elements are connected in tandem to each other via an annular pace as electroacoustic transducing elements, and the annular base is supported on a piezoelectric support in a boot. When vibrations from outside the boot are transmitted to the piezoelectric element via a liquid acoustic medium filled in the boot, at least the acceleration noise in the axial direction of the piezoelectric element is generated from the vibration of each piezoelectric element. The signal is offset to avoid a reduction in the signal-to-noise ratio.In this case, the pace has to be mechanically supported in the boot via a piezoelectric support, so that It is equipped with hanging supports.

しかし、このように、上記ペースが機械的に吊持される
と、その吊持支柱を介して上記ペースに振動が伝達され
、その振動に基く雑音出力が検出出力に重畳され、S/
N比を低下させる結果となる。
However, when the pace is mechanically suspended in this way, vibrations are transmitted to the pace through the suspension struts, and the noise output based on the vibration is superimposed on the detection output, causing the S/
This results in a decrease in the N ratio.

(発明の目的) 本発明は上記事情にもとづいてなされたもので、電気音
響変換素子としては、円筒状圧電子のほかに、各端末に
つける円板状圧電子を用意し、これらを支える環状ベー
スをブーツ内の圧電子支持体に支持する時、この圧電子
支持体に直接、ブーツ側からの機械的振動が伝達される
ことがないようにして、各圧電子の受感部に器体の振動
に基づく雑音出力が伝達されないように工夫した水中用
受波器を提供しようとするものである。
(Object of the Invention) The present invention has been made based on the above circumstances, and as an electroacoustic transducer, in addition to the cylindrical piezoelectric element, a disc-shaped piezoelectric element attached to each terminal is prepared, and an annular piezoelectric element supporting these is prepared. When supporting the base on the piezoelectric support in the boot, make sure that mechanical vibrations from the boot are not directly transmitted to the piezoelectric support. The present invention aims to provide an underwater receiver that is devised to prevent the transmission of noise output due to vibrations.

(課題を解決するための手段) このため、本発明では、図示の実施例でも明らかにした
ように、電気音響変換素子として2個の円筒状圧電子(
la、lb)を備え、該圧電子(1a、1b)をその対
向する一端で環状ベース(2)に取付け、該環状ベース
(2)をブーツ(10)内の圧電子支持体に支持し、上
記圧電子(la、lb)の各自由端には円板状圧電子(
3a、3b)を取付けて内部空間を仕切ると共に、上記
圧電子支持体は、上記圧電子(la。
(Means for Solving the Problem) Therefore, in the present invention, as clarified in the illustrated embodiment, two cylindrical piezoelectric elements (
la, lb), the piezoelectric elements (1a, 1b) being mounted at opposite ends thereof on an annular base (2), the annular base (2) being supported on a piezoelectric support in a boot (10); Each free end of the piezoelectric element (la, lb) has a disc-shaped piezoelectric element (
3a, 3b) to partition the internal space, and the piezoelectric support body is attached to the piezoelectric elements (la.

lb)を包囲する筒形のケース(9)て構成し、該ケー
ス(9)を発泡体(4)でブーツ(10)内に保持し、
該ケース(9)およびブーツ(10)内に充填した液体
を音響媒体として、上記ブーツ(lO)外の振動を上記
圧電子(la、1b)(3a、3b)に伝達するように
構成している。
a cylindrical case (9) surrounding the cylindrical case (9), the case (9) being held within the boot (10) by a foam (4);
The case (9) and the boot (10) are configured to transmit vibrations outside the boot (lO) to the piezoelectric elements (la, 1b) (3a, 3b) using a liquid filled in the case (9) and the boot (10) as an acoustic medium. There is.

(作 用) したがって、上記圧電子(la、lb)(3m、3b)
の受感部は発泡体(4)および充填された音響媒体に浮
いた状態になっていて、他の固体と直接触れることがな
いので、水中用受波器としての特性を悪化させる振動の
影響を受けることがなく、広帯域の受渡感度特性が維持
される。
(Function) Therefore, the piezoelectric elements (la, lb) (3m, 3b)
The sensing part is floating on the foam (4) and the filled acoustic medium and does not come into direct contact with other solid objects, so it is free from the effects of vibrations that deteriorate its characteristics as an underwater receiver. broadband transmission sensitivity characteristics are maintained.

また、発泡体(4)には加速度を減衰させる効果もあり
、受感部に伝わる加速度は更に小さくできる。その結果
、円筒状圧電子(la、lb)の相互の加速度相殺効果
とあいまって、加速度出力か大幅に抑制され、かつ、円
板状圧電子(3a。
Furthermore, the foam (4) also has the effect of attenuating acceleration, so that the acceleration transmitted to the sensing section can be further reduced. As a result, combined with the mutual acceleration canceling effect of the cylindrical piezoelectric elements (la, lb), the acceleration output is significantly suppressed, and the disc-shaped piezoelectric element (3a).

3b)も加わることで、受波感度が向上するから、S/
N比は高められる。
By adding 3b), the receiving sensitivity improves, so S/
The N ratio can be increased.

(実施例) 以下、本発明の一実施例を第1図および第2図を参照し
て具体的に説明する。図において符号1aおよび1bは
、電気音響変換素子として採用された円筒状圧電子であ
り、該圧電子1a、lbはその対向する一端で、環状ベ
ース2に取付けられている。また、上記圧電子1a、l
bの他の自由端には円板状圧電子3a、3bが取付けら
れており、これによって、圧電子1a、lb、3a。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to FIGS. 1 and 2. In the figure, numerals 1a and 1b are cylindrical piezoelectric elements employed as electroacoustic transducers, and the piezoelectric elements 1a and 1b are attached to an annular base 2 at one end facing each other. In addition, the piezoelectric elements 1a, l
At the other free end of b, disk-shaped piezoelectric elements 3a, 3b are attached, whereby the piezoelectric elements 1a, lb, 3a.

3bで囲まれた空間は密封されている。上記環状ベース
2の外周には支持ビンを兼ねる取付けねじ5が螺着して
あり、これによって、上記ペース2は、筒形のケース9
よりなる圧電子支持体に支持されている。
The space surrounded by 3b is sealed. A mounting screw 5 that also serves as a support bottle is screwed onto the outer periphery of the annular base 2, so that the pace 2 can be attached to the cylindrical case 9.
It is supported by a piezoelectric support consisting of.

なお、この実施例では、とくに上記圧電子支持体はパン
チングメタルで構成されている。そして、このケース9
は有底、有頭の円筒状体よりなるブーツ10内に、発泡
体4を介して浮かされた状態で支持されている。また、
上記発泡体4内に含浸されるようにして、液体、例えば
シリコンオイルなどの音響媒体11が上記ブーツ10内
およびケース9内に充填されている。
In this embodiment, the piezoelectric support is made of punched metal. And this case 9
is supported in a suspended state via a foam 4 in a boot 10 which is a cylindrical body with a bottom and a head. Also,
An acoustic medium 11 such as a liquid such as silicone oil is filled in the boot 10 and the case 9 so as to be impregnated into the foam 4 .

なお、図中、符号8はブーツ10頂部に設けた金属板°
であり、ブーツキャップ12を貫通して接続されたケー
ブル13からの導電線を、ケース9内の各圧電子1a、
lb、3a、3bにリート線7を介してそれぞれ電気的
に接続するための水密性の貫通端子6を装備している。
In addition, in the figure, the code 8 is a metal plate provided on the top of the boot 10.
The conductive wire from the cable 13 that passes through the boot cap 12 and is connected to each piezoelectric element 1a in the case 9,
lb, 3a, and 3b are each equipped with watertight through-terminals 6 for electrically connecting via leait wires 7.

このような構成では、上記圧電子1a、lb。In such a configuration, the piezoelectric elements 1a, lb.

3a、3bの受感部は発泡体4で弾持され、充填した音
響媒体11中に浮かされており、ケース9も、他の固体
に直接触れていないことから、水中用受波器としての特
性を悪化させる振動の影響を受けることがなく、広帯域
の受渡感度周波数特性か維持される。
The sensing parts 3a and 3b are elastically supported by the foam 4 and floated in the filled acoustic medium 11, and the case 9 is not in direct contact with other solid objects, so it has characteristics as an underwater receiver. It is not affected by vibrations that worsen the transmission, and maintains a wide range of transmission sensitivity and frequency characteristics.

また、発泡体4には加速度を減衰させる効果があり、受
感部に伝わる加速度はかなり小さくなっている。そして
、更にその加速度による出力は、次のようにして抑制さ
れる。すなわち、受波器全体に与えられた振動は、発泡
体4によりかなり減衰されるが、ゼロにはならないので
、取付けねし5を介して、環状ベース2に伝わり、受感
部にその振動に基く雑音出力が生じるが、上下方向の振
動の場合には、環状ベース2を中心として各圧電子1a
、lb、3a、3bは自己の質量により互いに逆方向の
ひずみを生じ、従って、それぞれの出力が逆相となる。
Furthermore, the foam 4 has the effect of attenuating acceleration, and the acceleration transmitted to the sensing portion is considerably reduced. Further, the output due to the acceleration is suppressed as follows. In other words, although the vibration applied to the entire receiver is considerably attenuated by the foam body 4, it does not become zero, so it is transmitted to the annular base 2 via the mounting screw 5, and the vibration is transmitted to the sensing part. However, in the case of vibration in the vertical direction, each piezoelectric element 1a around the annular base 2
, lb, 3a, and 3b generate distortions in opposite directions due to their own masses, and therefore, their respective outputs have opposite phases.

これを、電気的に並列あるいは直列に接続する制御回路
で、互いに逆相の出力電圧として相殺でき、雑音出力と
しての影響を消去できる。
This can be canceled out as output voltages of opposite phases to each other by a control circuit that is electrically connected in parallel or in series, and the influence of noise output can be eliminated.

従って、加速度出力は、発泡体4による減衰効果と受感
部の加速度出力電圧との相殺により、従来の水中用受波
器より著しく抑制される。
Therefore, the acceleration output is significantly suppressed compared to conventional underwater wave receivers due to the cancellation of the damping effect by the foam 4 and the acceleration output voltage of the sensing section.

また、4個の圧電子1a、lb、3m、3bを直列接続
することで受波感度(Mo)をMO: MO1+ MO
2+ MO3+ Mo4とすることができ、例えば各圧
電子の受渡感度か同しとすれば、4倍の受渡感度が得ら
れる。
In addition, by connecting four piezoelectric elements 1a, lb, 3m, and 3b in series, the receiving sensitivity (Mo) can be changed to MO: MO1+ MO
2+MO3+Mo4.For example, if the transfer sensitivity of each piezoelectric element is the same, a transfer sensitivity four times higher can be obtained.

したがって、加速度出力が抑制され、かつ、受渡感度が
向上するので雑音出力電圧は著しく低減される。これに
よって、従来の水中用受波器より、S/Nを大幅に向上
できる。
Therefore, the acceleration output is suppressed and the transfer sensitivity is improved, so that the noise output voltage is significantly reduced. This allows the S/N to be significantly improved compared to conventional underwater receivers.

なお、上記実施例では、円筒状圧電子1a。In the above embodiment, the cylindrical piezoelectric element 1a is used.

1bに直平面の円板状圧電子3a、3bを設けたが、第
3図あるいは第4図のように凹状あるいは凸状平面の円
板状圧電子3a、3bとしてもよい。
Although the disk-shaped piezoelectric elements 3a, 3b with straight planes are provided on 1b, the disk-shaped piezoelectric elements 3a, 3b with concave or convex planes may be used as shown in FIG. 3 or 4.

また、円筒状圧電子1a、lbに円板14a。Further, a disk 14a is provided on the cylindrical piezoelectric elements 1a and lb.

14bを取付け、これに円板状圧電子3a、3bを取付
けるようにしてもよい(第5図ないし第7図参照)。こ
の場合の圧電子3a、3bの取付けは、円板14m、1
4bの両面、内面あるいは外面に対してなされている。
14b may be attached, and the disc-shaped piezoelectric elements 3a, 3b may be attached thereto (see FIGS. 5 to 7). In this case, the piezoelectric elements 3a and 3b are attached to the disks 14m and 1
It is applied to both sides, inner or outer surface of 4b.

更に、上記圧電子3a、3bを第8図に示すように半円
球状にして、上記円板14a、14bに取付けるように
してもよい。
Furthermore, the piezoelectric elements 3a, 3b may be formed into semicircular shapes as shown in FIG. 8, and may be attached to the discs 14a, 14b.

(発明の効果) 本発明は以上詳述したようになり、加速度出力か抑制さ
れ、かつ、受渡感度が向上するので雑音出力電圧が低下
し、S/N比が向上でき、微弱な信号音でも検出が可能
になる。
(Effects of the Invention) The present invention has been detailed above, and the acceleration output is suppressed and the transfer sensitivity is improved, so the noise output voltage is reduced, the S/N ratio is improved, and even a weak signal sound can be achieved. Detection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断側面図、第2図は
第1図のA−A線に沿う断面図、第3図ないし第8図は
圧電子の組立構造の変形例を示す縦断側面図である。 la、lb−圧電子、  2・−ベース、3a、3b−
圧電子、  9−ケース、10−・ブーツ、    4
−・発泡体、11−・音響媒体。
FIG. 1 is a longitudinal sectional side view showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIGS. 3 to 8 show modified examples of the piezoelectric assembly structure. FIG. la, lb-piezoelectric, 2-base, 3a, 3b-
Piezoelectric, 9-case, 10-boot, 4
-・Foam, 11-・Acoustic medium.

Claims (1)

【特許請求の範囲】[Claims] 1、電気音響変換素子として2個の円筒状圧電子を備え
、該圧電子をその対向する一端で環状ベースに取付け、
該環状ベースをブース内の圧電子支持体に支持し、上記
圧電子の各自由端には円板状圧電子を取付けて内部空間
を仕切ると共に、上記圧電子支持体は、上記圧電子を包
囲する籠形のケースで構成し、該ケースを発泡体でブー
ツ内に保持し、該ケースおよびブーツ内に充填した液体
を音響媒体として、上記ブーツ外の振動を上記圧電子に
伝達するように構成したことを特徴とする水中用受波器
1. Two cylindrical piezoelectric elements are provided as electroacoustic transducing elements, and the piezoelectric elements are attached to an annular base at one end facing each other,
The annular base is supported on a piezoelectric support in the booth, and a disc-shaped piezoelectric is attached to each free end of the piezoelectric to partition an internal space, and the piezoelectric support surrounds the piezoelectric. The device is configured to have a cage-shaped case, the case is held inside the boot with a foam, and vibrations outside the boot are transmitted to the piezoelectric element using a liquid filled in the case and the boot as an acoustic medium. This underwater receiver is characterized by:
JP26372290A 1990-10-03 1990-10-03 Underwater sound receiver Pending JPH04142485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26372290A JPH04142485A (en) 1990-10-03 1990-10-03 Underwater sound receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26372290A JPH04142485A (en) 1990-10-03 1990-10-03 Underwater sound receiver

Publications (1)

Publication Number Publication Date
JPH04142485A true JPH04142485A (en) 1992-05-15

Family

ID=17393401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26372290A Pending JPH04142485A (en) 1990-10-03 1990-10-03 Underwater sound receiver

Country Status (1)

Country Link
JP (1) JPH04142485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464925B1 (en) * 1997-12-11 2005-05-17 국방과학연구소 Fixed structure of hydrophone for sound wave detector
JP2012023643A (en) * 2010-07-16 2012-02-02 Nec Tokin Corp Transducer for underwater and method for manufacturing the same
JP2013511037A (en) * 2009-11-12 2013-03-28 シュルンベルジェ ホールディングス リミテッド Method and apparatus for measuring hydrophone parameters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147613A (en) * 1974-10-22 1976-04-23 Sumitomo Precision Prod Co
JPH0210694B2 (en) * 1984-10-26 1990-03-09 Ashland Oil Inc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147613A (en) * 1974-10-22 1976-04-23 Sumitomo Precision Prod Co
JPH0210694B2 (en) * 1984-10-26 1990-03-09 Ashland Oil Inc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464925B1 (en) * 1997-12-11 2005-05-17 국방과학연구소 Fixed structure of hydrophone for sound wave detector
JP2013511037A (en) * 2009-11-12 2013-03-28 シュルンベルジェ ホールディングス リミテッド Method and apparatus for measuring hydrophone parameters
JP2012023643A (en) * 2010-07-16 2012-02-02 Nec Tokin Corp Transducer for underwater and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6091828A (en) Dynamic microphone
US6473365B2 (en) Supporting structure of hydrophones for towed array sonar system
JP4318433B2 (en) Piezoelectric element and vibration transducer using the piezoelectric element
JPS5927150B2 (en) Piezoelectric transducer unit and hydrophone assembly
US6130952A (en) Microphone
EA009298B1 (en) Vibration sensor
AU622595B2 (en) Hydrophones and similar devices
US4427845A (en) Dynamic microphone
KR20120093446A (en) Ultrasonic vibration device
US3953829A (en) Partially filled fluid damped geophone
US4709359A (en) End weighted reed sound transducer
JPS5863288A (en) Support for electroacoustic converter
JPH0242174B2 (en)
JPH04142485A (en) Underwater sound receiver
KR20060029187A (en) Ultrasonic transmitter-receiver
RU2677097C1 (en) Three-component vector-scalar receiver
US4453046A (en) Elastic support for electroacoustic transducers
GB2305065A (en) Difar sensor
RU2679931C1 (en) Combined vector-scalar receiver
JP3030428B2 (en) Cylindrical hydrophone
CA1108744A (en) Low frequency inertia balanced dipole hydrophone
RU2060506C1 (en) Differential accelerometer
JPH0754997B2 (en) Underwater receiver
SU1120262A1 (en) Piezoelectric seismometer
JPS6025199Y2 (en) ultrasonic ceramic microphone