JPH0414176B2 - - Google Patents

Info

Publication number
JPH0414176B2
JPH0414176B2 JP59190655A JP19065584A JPH0414176B2 JP H0414176 B2 JPH0414176 B2 JP H0414176B2 JP 59190655 A JP59190655 A JP 59190655A JP 19065584 A JP19065584 A JP 19065584A JP H0414176 B2 JPH0414176 B2 JP H0414176B2
Authority
JP
Japan
Prior art keywords
less
strength
alloy
fusion reactor
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59190655A
Other languages
Japanese (ja)
Other versions
JPS6169940A (en
Inventor
Koichi Oohori
Akira Watabe
Isao Takeuchi
Kyoshi Matsumoto
Tomikane Saida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP59190655A priority Critical patent/JPS6169940A/en
Publication of JPS6169940A publication Critical patent/JPS6169940A/en
Publication of JPH0414176B2 publication Critical patent/JPH0414176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、高い常温および高温強度を有し、
かつ耐食性、特に耐応力腐食割れ性にすぐれ、さ
らに改善された低放射化性およびAl合金による
低磁性を有するAl合金製核融合炉構造材に関す
るものである。 〔従来の技術〕 一般に、核融合炉は、プラズマ内に発生する巨
大なエネルギーを第一壁を通じて熱エネルギーの
形で冷却材により外部に取り出す機能をもつもの
である。従つて、その構造材、例えば第一壁材や
ブランケツト材などには、 (a) 常温および高温強度をもつこと。 (b) 冷却流体や、その他の環境に対して耐食性を
示すこと。 (c) 低磁性をもつと。 (d) 低放射化性をもつこと。 以上(a)〜(d)に示される特性を具備することが要
求されることから、通常ステンレス鋼が用いられ
ている。 また、近年、既存のステンレス鋼に代つて、低
磁性および低放射化性にすぐれ、かつ軽量化も可
能なAlが核融合炉構造材として注目されている。 〔発明が解決しようとする問題点〕 しかし、上記のAl製核融合炉構造材は、良好
な低磁性および低放射化性を示すものの、強度、
特に高温強度が不十分であるばかりでなく、耐食
性、特に溶接部などにおける耐応力腐食割れ性に
も劣るものであるため、信頼性の点で問題があ
り、広く実用化にふみきれないのが現状である。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、上記(a)〜(d)の特性を具備した核融合炉構造材
を開発すべく、特に低磁性および低放射化性を有
するAl合金に着目し研究を行なつた結果、核融
合炉構造材を、重量%で(以下%は重量%を示
す)、 Mg:4〜5.5%、Cu:0.1〜0.2%、Zr:0.05〜
0.25%およびV:0.03〜0.3%のうちの1種または
2種、 を含有し、さらに必要に応じて、 Cr:0.03〜0.2%、 を含有し、残りがAlと不可避不純物からなり、
かつ選択的に含有する不可避不純物としての
Mn、Zn、Co、Ni、およびFeの含有量を、それ
ぞれ、 Mn:0.1%以下、Zn:0.1%以下、Co:0.01%
以下、Ni:0.01%以下、Fe:0.2%以下、 とした組成を有するAl合金で構成すると、この
結果の核融合炉構造材は、Alによりもたらされ
る低磁性が損なわれることなく、この種核融合炉
構造材の仕様の1例として示される引張り強さ:
28Kg/mm2以上、耐力:12Kg/mm2以上、伸び:16%
以上の常温強度、および温度:120℃における引
張強さ:23Kg/mm2以上、同耐力:12Kg/mm2以上の
高温強度を十分に満足する高い常温および高温強
度を有し、加えて特に溶接部に応力腐食割れの発
生がない、すぐれた耐食性を示し、かつ低放射化
性が一段と改善され、さらに不可避不純物のうち
の選択的に含有するMn、Zn、Co、Ni、および
Feの上限値を上記の通りに限定することによつ
て中性子照射後の誘導放射能の減衰が満足に行な
われるようになるという研究結果を得たのであ
る。 従つて、この発明は、上記の研究結果にもとづ
いてなされたものであつて、 Mg:4〜5.5%、Cu:0.1〜0.2%、Zr:0.05〜
0.25%およびV:0.03〜0.3%のうち1種または2
種、 を含有し、さらに必要に応じて、 Cr:0.03〜0.2%、 を含有し、残りがAlと不可避不純物からなり、
さらに選択的に含有する不可避不純物としての
Mn、Zn、Co、Ni、およびFeの含有量が、それ
ぞれ、 Mn:0.1%以下、Zn:0.1%以下、Co:0.01%
以下、Ni:0.01%以下、Fe:0.2%以下、 である組成を有するAl合金で構成してなるAl合
金製核融合炉構造材に特徴を有するものである。 つぎに、この発明の核融合炉構造材において、
これを構成するAl合金の成分組成を上記の通り
に限定した理由を説明する。 (a) Mg Mg成分には、素地に固溶して常温および高
温強度を向上させる作用があるが、その含有量
が4%未満では所望の高強度を確保することが
できず、一方その含有量が5.5%を越えると、
加工性が劣化するようになるばかりでく、溶接
部などに応力腐食割れが発生し易くなることか
ら、その含有量を4〜5.5%と定めた。 (b) Cu Cu成分には、素地に固溶して強度、特に高
温強度を向上させるほか、ZrおよびVとの共
存において耐応力腐食割れ性を向上させる作用
があるが、その含有量が0.1%未満では前記作
用に所望の向上効果が得られず、一方その含有
量が0.2%を越えると、耐食性および溶接性に
劣化傾向が現われるようになることから、その
含有量を0.1〜0.2%と定めた。 (c) ZrおよびV これらの成分には、再結晶粒を微細化して、
高温強度および加工性を向上させるほか、上記
のようにCu成分との共存において耐応力腐食
割れ性を向上させる作用があるが、その含有量
が、それぞれZr:0.05%未満およびV:0.03%
未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が、それぞれZr:0.25%お
よびV:0.03%を越えると、巨大な金属間化合
物が形成されるようになつて、加工性および靱
性(伸び)が低下するようになることから、そ
の含有量を、それぞれZr:0.05〜0.25%、V:
0.03〜0.3%と定めた。 (d) Cr Cr成分には、再結晶粒をさらに一段と微細
化して、強度と加工性を一段と向上させる作用
があるので、必要に応じて含有されるが、その
含有量が、0.03%未満では所望の強度向上効果
が得られず、一方その含有量が0.2%を越える
と、巨大金属間化合物が析出するようになつて
熱間および冷間加工性が劣化することから、そ
の含有量を0.03〜0.3%と定めた。 (e) 不可避不純物のうちのMn、Zn、Co、Ni、
およびFe これらの不純物はすべてが必ずしも含有する
ものではなく、選択的に含有するものである
が、その含有量が、MnおよびZnにあつては、
それぞれ0.1%、CoおよびNiでは、それぞれ
0.01%、さらにFeは0.2%を越えると、中性子
照射後の誘導放射能の減衰が遅延するようにな
つて望ましくないことから、不可避不純物とし
てのMn、Zn、Co、Ni、およびFeの含有量を、
それぞれMn:0.1%以下、Zn:0.1%以下、
Co:0.01%以下、Ni:0.01%以下、および
Fe:0.2%以下と定めた。 実施例 つぎに、この発明の核融合炉構造材を実施例に
より具体的に説明する。 通常の低周波誘導炉を用いて溶解し、引続いて
真空溶解炉で不可避不純物除去のため精製処理を
行なつて、それぞれ第1表に示される成分組成を
もつたAl合金を溶製し、インゴツトに鋳造し、
このインゴツトに、温度:460℃に16時間保持
[Industrial Application Field] This invention has high normal temperature and high temperature strength,
The present invention also relates to an Al alloy fusion reactor structural material that has excellent corrosion resistance, particularly stress corrosion cracking resistance, and further has improved low activation property and low magnetism due to the Al alloy. [Prior Art] In general, a nuclear fusion reactor has a function of extracting enormous energy generated in plasma to the outside in the form of thermal energy through a first wall using a coolant. Therefore, the structural materials, such as the first wall material and blanket material, must: (a) have strength at room temperature and high temperature; (b) Demonstrate corrosion resistance to cooling fluids and other environments. (c) It has low magnetism. (d) It has low activation property. Stainless steel is usually used because it is required to have the characteristics shown in (a) to (d) above. In addition, in recent years, Al has been attracting attention as a structural material for fusion reactors, as it has excellent low magnetism and low activation properties, and is also lightweight, in place of the existing stainless steel. [Problems to be solved by the invention] However, although the above-mentioned Al fusion reactor structural material exhibits good low magnetism and low activation property, it has poor strength and
In particular, not only is the high-temperature strength insufficient, but also the corrosion resistance, especially stress corrosion cracking resistance in welded parts, is poor, so there are problems with reliability, and it has not been widely put into practical use. This is the current situation. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a particularly low As a result of research focusing on Al alloys that have magnetism and low activation properties, the structural materials for fusion reactors are as follows: Mg: 4 to 5.5%, Cu: 0.1 ~0.2%, Zr: 0.05~
Contains one or two of 0.25% and V: 0.03 to 0.3%, and further contains Cr: 0.03 to 0.2% as necessary, and the remainder consists of Al and inevitable impurities,
and selectively contained unavoidable impurities.
The contents of Mn, Zn, Co, Ni, and Fe are as follows: Mn: 0.1% or less, Zn: 0.1% or less, Co: 0.01%
When composed of an Al alloy with the following composition: Ni: 0.01% or less, Fe: 0.2% or less, the resulting fusion reactor structural material can be made with this type of nuclear material without losing the low magnetism brought about by Al. Tensile strength shown as an example of specifications for fusion reactor structural materials:
28Kg/mm 2 or more, yield strength: 12Kg/mm 2 or more, elongation: 16%
It has high room temperature and high temperature strength that fully satisfies the room temperature strength of 23Kg/mm 2 or more, the tensile strength at 120℃, and the high temperature strength of 12Kg/mm 2 or more. It exhibits excellent corrosion resistance with no stress corrosion cracking in the parts, and has further improved low activation properties, and also contains selectively Mn, Zn, Co, Ni, and other unavoidable impurities.
The research results showed that by limiting the upper limit of Fe as described above, the induced radioactivity after neutron irradiation can be satisfactorily attenuated. Therefore, this invention was made based on the above research results, and includes Mg: 4-5.5%, Cu: 0.1-0.2%, Zr: 0.05-0.05%.
0.25% and V: 1 or 2 of 0.03-0.3%
Contains seeds, and further contains Cr: 0.03 to 0.2% as necessary, with the remainder consisting of Al and unavoidable impurities,
Furthermore, as an unavoidable impurity that is selectively contained.
The contents of Mn, Zn, Co, Ni, and Fe are: Mn: 0.1% or less, Zn: 0.1% or less, Co: 0.01%
The following is a feature of an Al alloy fusion reactor structural material made of an Al alloy having the following composition: Ni: 0.01% or less, Fe: 0.2% or less. Next, in the fusion reactor structural material of this invention,
The reason why the composition of the Al alloy constituting this is limited as described above will be explained. (a) Mg The Mg component has the effect of improving the strength at room temperature and high temperature by solidly dissolving in the base material, but if the content is less than 4%, the desired high strength cannot be secured; If the amount exceeds 5.5%,
The content was set at 4 to 5.5% because it not only deteriorates workability but also makes stress corrosion cracking more likely to occur in welded parts. (b) Cu The Cu component not only improves strength, especially high-temperature strength, by solid solution in the base material, but also has the effect of improving stress corrosion cracking resistance when coexisting with Zr and V, but the content is 0.1 If the content is less than 0.2%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 0.2%, corrosion resistance and weldability tend to deteriorate. Established. (c) Zr and V These components have fine recrystallized grains,
In addition to improving high temperature strength and workability, as mentioned above, coexistence with the Cu component has the effect of improving stress corrosion cracking resistance, but the content is less than 0.05% for Zr and 0.03% for V, respectively.
If the content exceeds Zr: 0.25% and V: 0.03%, a huge intermetallic compound will be formed, resulting in poor workability. and the toughness (elongation) decreases, so the contents are respectively reduced to Zr: 0.05-0.25% and V:
It was set at 0.03-0.3%. (d) Cr The Cr component has the effect of further improving the strength and workability by further refining the recrystallized grains, so it is included as necessary, but if the content is less than 0.03%, The desired strength-improving effect cannot be obtained, and if the content exceeds 0.2%, giant intermetallic compounds will precipitate and hot and cold workability will deteriorate, so the content should be reduced to 0.03%. It was set at ~0.3%. (e) Among the inevitable impurities, Mn, Zn, Co, Ni,
and Fe These impurities are not necessarily contained in all, but are contained selectively, but when the content is Mn and Zn,
0.1% each, respectively for Co and Ni
If the content exceeds 0.01%, and even 0.2% for Fe, the decay of stimulated radioactivity after neutron irradiation will be delayed, which is undesirable. Therefore, the content of Mn, Zn, Co, Ni, and Fe as unavoidable impurities of,
Mn: 0.1% or less, Zn: 0.1% or less, respectively.
Co: 0.01% or less, Ni: 0.01% or less, and
Fe: Set at 0.2% or less. Examples Next, the fusion reactor structural material of the present invention will be specifically explained using examples. Al alloys having the respective compositions shown in Table 1 are produced by melting using a normal low frequency induction furnace, followed by purification treatment to remove inevitable impurities in a vacuum melting furnace, Cast into an ingot,
This ingot is kept at a temperature of 460℃ for 16 hours.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1、2表に示される結果から、本発明第一壁
材1〜20は、いずれも核融合炉構造材に要求され
る常温および高温強度を十分に満足する高い常温
および高温強度を有し、かつ溶接性および耐応力
腐食割れ性にもすぐれているのに対して、比較第
一壁材1〜7に見られるように、Al合金の構成
成分のうちいずれかの成分含有量(第1表に※印
を付す)がこの発明の範囲から外れると上記の特
性のうち少なくともいずれかの特性が劣つたもの
になることが明らかである。 上述のように、この発明の核融合炉構造材は、
高い常温および高温強度を有し、かつ耐食性、特
に耐応力腐食割れ性にもすぐれ、さらにAlによ
る低磁性および改善された低放射化性も具備して
いるので、実用に際しては著しく長期に亘つてす
From the results shown in Tables 1 and 2, the first wall materials 1 to 20 of the present invention all have high room temperature and high temperature strengths that fully satisfy the room temperature and high temperature strengths required for fusion reactor structural materials. , and also has excellent weldability and stress corrosion cracking resistance. However, as seen in Comparative First Wall Materials 1 to 7, the content of any of the constituent components of the Al alloy (the first It is clear that if the characteristics (marked with * in the table) are outside the scope of the present invention, at least one of the above characteristics will be inferior. As mentioned above, the fusion reactor structural material of this invention is
It has high strength at room temperature and high temperature, and is also excellent in corrosion resistance, especially stress corrosion cracking resistance, as well as low magnetism due to Al and improved low activation property, so it can be used for an extremely long time in practical use. vinegar

【表】 ぐれた性能を発揮するのである。【table】 It exhibits excellent performance.

Claims (1)

【特許請求の範囲】 1 重量%で、 Mg:4〜5.5%、Cu:0.1〜0.2%、Zr:0.05〜
0.25%およびV:0.03〜0.3%のうちの1種または
2種、 を含有し、残りがAlと不可避不純物からなり、
さらに選択的に含有する不可避不純物としての
Mn、 Zn、Co、Ni、およびFeの含有量が、それぞ
れ、 Mn:0.1%以下、Zn:0.1%以下、Co:0.01%
以下、Ni:0.01%以下、Fe:0.2%以下、 である組成を有するAl合金で構成したことを特
徴とするAl合金製核融合炉構造材。 2 重量%で、 Mg:4〜5.5%、Cu:0.1〜0.2%、Zr:0.05〜
0.25%およびV:0.03〜0.3%のうちの1種または
2種、 を含有し、さらに、 Cr:0.03〜0.2%、 を含有し、残りがAlと不可避不純物からなり、
さらに選択的に含有する不可避不純物とての
Mn、Zn、Co、Ni、およびFeの含有量が、それ
ぞれ、 Mn:0.1%以下、Zn:0.1%以下、Co:0.01%
以下、Ni:0.01%以下、Fe:0.2%以下、 である組成を有するAl合金で構成したことを特
徴とするAl合金製核融合炉構造材。
[Claims] 1% by weight, Mg: 4~5.5%, Cu: 0.1~0.2%, Zr: 0.05~
0.25% and one or two of V: 0.03 to 0.3%, with the remainder consisting of Al and inevitable impurities,
Furthermore, as an unavoidable impurity that is selectively contained.
The contents of Mn, Zn, Co, Ni, and Fe are: Mn: 0.1% or less, Zn: 0.1% or less, Co: 0.01%
An Al alloy fusion reactor structural material comprising an Al alloy having the following composition: Ni: 0.01% or less, Fe: 0.2% or less. 2% by weight, Mg: 4~5.5%, Cu: 0.1~0.2%, Zr: 0.05~
Contains one or two of 0.25% and V: 0.03 to 0.3%, and further contains Cr: 0.03 to 0.2%, with the remainder consisting of Al and inevitable impurities,
In addition, as unavoidable impurities that are selectively included,
The contents of Mn, Zn, Co, Ni, and Fe are: Mn: 0.1% or less, Zn: 0.1% or less, Co: 0.01%
An Al alloy fusion reactor structural material comprising an Al alloy having the following composition: Ni: 0.01% or less, Fe: 0.2% or less.
JP59190655A 1984-09-13 1984-09-13 Al alloy for structural material of nuclear fusion reactor Granted JPS6169940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190655A JPS6169940A (en) 1984-09-13 1984-09-13 Al alloy for structural material of nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190655A JPS6169940A (en) 1984-09-13 1984-09-13 Al alloy for structural material of nuclear fusion reactor

Publications (2)

Publication Number Publication Date
JPS6169940A JPS6169940A (en) 1986-04-10
JPH0414176B2 true JPH0414176B2 (en) 1992-03-12

Family

ID=16261699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190655A Granted JPS6169940A (en) 1984-09-13 1984-09-13 Al alloy for structural material of nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPS6169940A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210944A (en) * 1981-06-18 1982-12-24 Sukai Alum Kk Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210944A (en) * 1981-06-18 1982-12-24 Sukai Alum Kk Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint

Also Published As

Publication number Publication date
JPS6169940A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
US4612165A (en) Ductile aluminide alloys for high temperature applications
US20090321405A1 (en) Ni-Co-Cr High Strength and Corrosion Resistant Welding Product and Method of Preparation
JP2011516735A (en) Ultra-supercritical boiler header alloy and manufacturing method
EP0225226B1 (en) Aluminum alloy with superior thermal neutron absorptivity
JPS60133996A (en) Welding material having excellent creep rupture ductility
US3677723A (en) Composite material of vanadium alloys and iron or nickel alloys
JP3303641B2 (en) Heat resistant titanium alloy
US2996379A (en) Cobalt-base alloy
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US5019333A (en) Zirconium alloy for use in spacer grids for nuclear reactor fuel claddings
US3156560A (en) Ductile niobium and tantalum alloys
US5425912A (en) Low expansion superalloy with improved toughness
JPH0414176B2 (en)
US3249429A (en) Tantalum brazing alloy
JPH0114991B2 (en)
JPH03140433A (en) High strength aluminum alloy having excellent corrosion resistance
JP3323192B2 (en) High strength aluminum alloy with excellent heat resistance
JPH02173235A (en) Corrosion resisting zirconium alloy
US3223522A (en) Chromium, tungsten cobalt base alloys containing additions of tantalum, titanium and niobium
JP3060873B2 (en) Austenitic stainless steel for neutron shielding
JPS6122022B2 (en)
JPS5850307B2 (en) Structural aluminum-based alloy with excellent neutron shielding effect
JPS6311644A (en) High-strength ni-cr alloy excellent in corrosion resistance and heat resistance
US2428205A (en) Permanent magnet alloy
JPS6338553A (en) Aluminum alloy having superior thermal neutron absorbing power