JPH04141505A - Manufacture of sintered compact body - Google Patents

Manufacture of sintered compact body

Info

Publication number
JPH04141505A
JPH04141505A JP26532590A JP26532590A JPH04141505A JP H04141505 A JPH04141505 A JP H04141505A JP 26532590 A JP26532590 A JP 26532590A JP 26532590 A JP26532590 A JP 26532590A JP H04141505 A JPH04141505 A JP H04141505A
Authority
JP
Japan
Prior art keywords
slurry
sintering
raw material
extrusion
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26532590A
Other languages
Japanese (ja)
Inventor
Tatsuya Tanaka
達也 田中
Shinji Hashizume
慎治 橋爪
Yoji Kawatani
川谷 洋司
Minoru Hirano
稔 平野
Tatsumi Kawama
川間 達實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26532590A priority Critical patent/JPH04141505A/en
Publication of JPH04141505A publication Critical patent/JPH04141505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a cemented carbide sintered compact body having a long shape by taking-up a slurry-state raw material mixing fine metal particles, macromolecule binder, water and organic solvent after executing extrusion-malding and continuously drying and sintering it while drawing out the material. CONSTITUTION:The slurry-state raw material 5 is constituted by mixing the fine metal particles, macromolecule binder and water and/or organic solvent. The extrusion-molding is executed from a die 3 to this slurry-state raw material 5 by using a extrusion compact device 1. The extrusion-molding material 6 is once taken-up to a recessed groove 7 in a take-up drum 4. Successively, while drawing out the taken-up extrusion-molding material 6, the material is continuously dried and sintered. Further, fine ceramic particles are mixed to the slurry-state raw material. By this method, the cemented carbide sintered compact body having the optional shape, such as fine wire rod, plate, pipe, is manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属微小体またはこれにセラミックス微小体
を配合したもの、特に難加工性の単一若しくは複合材料
を素材として、たとえば線、棒、板あるいは窓枠材料の
如き異形断面形状等からなる長尺の焼結成形体を、連続
的に効率良く製造することのできる方法に関するもので
あり、この焼結成形体はたとえばワイヤドツトビンをは
じめとする様々の超硬質、耐摩耗性機械部品や刃物材料
として有効に活用される。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to metal microscopic bodies or ceramic microscopic bodies blended therewith, particularly hard-to-process single or composite materials, for example, wires, rods, etc. This invention relates to a method for continuously and efficiently manufacturing long sintered bodies having irregular cross-sectional shapes, such as plates or window frame materials, and the sintered bodies can be used to produce, for example, wire dot bins, etc. It is effectively used as a variety of ultra-hard, wear-resistant mechanical parts and cutlery materials.

[従来の技術] 殆んどの金属は、その高温溶融性を利用して様々形状に
鋳造することができ、あるいは更に展・延性を利用して
鍛造、圧延、伸線等を加えれば、線、棒、板等に任意の
形状に2次成形することができる。
[Prior art] Most metals can be cast into various shapes by taking advantage of their high-temperature melting properties, or can be made into wires, wires, etc. by forging, rolling, wire drawing, etc. by taking advantage of their malleability and ductility. It can be second-formed into any shape such as a rod or plate.

ところがたとえばステライトの様な超硬金属は、展・延
性が乏しいため、鋳造はともかくとして伸線や圧延等の
2次加工が困難であるほか、極めて硬質であるため切削
加工等も困難であり、せっかくの超硬金属材料としての
特徴が難加工性であるという欠点の為に産業界では十分
に活用されるに至っていない。
However, cemented carbide metals such as stellite have poor malleability and ductility, so apart from casting, secondary processing such as wire drawing and rolling is difficult, and since they are extremely hard, cutting is also difficult. Although it is a special feature as a cemented carbide metal material, it has not been fully utilized in industry due to its drawback of being difficult to process.

また金属をマトリックスとしこれに金属酸化物、金属窒
化物、金属炭化物等からなるセラミックスの粉末や繊維
等を含有させた複合材料(サーメット)は、セラミック
スの分散強化効果によフて超硬金属に匹敵する硬度を持
つものとなり、しかもマトリックスとなる金属の展・延
性を利用すればある程度の2次加工が行なえるところか
ら、易加工性硬質材料として注目されている。しかし当
該複合材料を構成するセラミックスと金属マトリックス
は、個々に見ればもともと物性が異なるものであり、ま
た両者の接合力は万全のものと言える訳ではないから、
加工度を高めると両者の境界面で剥離を起こして破断す
るため、細線や薄板は得られ難い。
Composite materials (cermets), which have a metal matrix and contain ceramic powders and fibers made of metal oxides, metal nitrides, metal carbides, etc., are made of cemented carbide due to the dispersion strengthening effect of ceramics. It is attracting attention as an easily processable hard material because it has comparable hardness and can be subjected to some degree of secondary processing by utilizing the malleability and ductility of the matrix metal. However, the ceramics and metal matrix that make up the composite material have different physical properties when viewed individually, and the bonding strength between the two cannot be said to be perfect.
If the degree of processing is increased, peeling and breakage will occur at the interface between the two, making it difficult to obtain thin wires or thin plates.

[発明が解決しようとする課題] 本発明者らはこの様な事情に看目し、特に上記の様な難
加工性の超硬金属やセラミックス分散強化型複合金属材
を対象として、用途や目的に応じた形状の焼結成形体を
容易に製造することのできる方法を提供しようとして色
々研究を行なった結果、次の様な方法を開発し別途特許
出願を済ませた。即ちその方法とは、超硬金属微小体あ
るいは汎用金属微小体とセラミックス微小体の混合物を
、高分子物質よりなるパンダー並びに水及び/又は有機
溶剤と混合してスラリー状原料を得、これを押出成形法
等により線状や板状などに成形した後乾燥・焼結する方
法であり、この方法であれば、超硬金属やセラミックス
の如き難加工性材料からでも、比較的簡単な操作で任意
の形状の焼結成形体を得ることができる。ところでこの
方法を実施する場合、成形装置から連続的に押し出され
てくる線や板等をそのまま引き続いて乾燥・焼結設備へ
送って連続的に操業を行なうのが理想であるが、実際に
はその様な連続操業を行なうことはできず、押出成形さ
れた線や板をある一定の長さに切り揃えた後、バッチ炉
で乾燥・焼結を行なっている。その理由は、押出成形装
置における成形速度に比べて連続炉による乾燥・焼結速
度が著しく遅いからである。
[Problems to be Solved by the Invention] In view of these circumstances, the inventors of the present invention have developed a research method for the use and purpose of the above-mentioned difficult-to-work cemented carbide metals and ceramic dispersion-strengthened composite metal materials. As a result of conducting various researches in an attempt to provide a method for easily manufacturing sintered compacts with shapes according to the requirements, the following method was developed and a separate patent application was filed. That is, the method involves mixing cemented carbide metal particles or a mixture of general-purpose metal particles and ceramic particles with a pander made of a polymeric material and water and/or an organic solvent to obtain a slurry-like raw material, which is then extruded. This is a method in which it is formed into a linear or plate shape using a molding method, etc., then dried and sintered. With this method, even difficult-to-process materials such as cemented carbide and ceramics can be formed into arbitrary shapes with relatively simple operations. A sintered compact having the shape of can be obtained. By the way, when implementing this method, ideally the wires, plates, etc. that are continuously extruded from the forming equipment are sent directly to the drying and sintering equipment, and the operation is performed continuously, but in reality, Such continuous operation is not possible, so extruded wires and plates are cut to a certain length and then dried and sintered in a batch furnace. The reason for this is that the drying and sintering speed in a continuous furnace is significantly slower than the molding speed in an extrusion molding device.

こうした状況の下で押出成形と乾燥・焼結を連続的に実
施するための方策としては、■乾燥・焼結炉を長尺なも
のとし、十分な乾燥・焼結時間を確保する方法、あるい
は■押出成形装置のダイをマルチタイプとし、押出速度
を下げて複数本の線材や板材を押出し、これらを同時に
乾燥・焼結炉へ送り込んでいく方法、等が考えられる。
Measures to carry out extrusion molding, drying, and sintering continuously under these circumstances include: ■ Using a long drying and sintering furnace to ensure sufficient drying and sintering time, or One possible method is to use a multi-type die in the extrusion molding device, lower the extrusion speed, extrude multiple wire rods or plates, and send them simultaneously to the drying and sintering furnace.

しかし前記■の方法を実現するには非常に長い乾燥・焼
結炉が必要となるため、炉体建設費用や設備占有面積の
拡大を考慮すれば採用し難い。一方前記■の方法を採用
する場合、次の様な理由から、均一な焼結成形体は得ら
れ難い、即ちマルチタイプの各ダイからの吐出速度や吐
出物の密度を一定に保つことは均一な溶融状態の樹脂で
さえも困難なことであり、まして微小体の分散系である
スラリー状原料ではマルチの各ダイからの押出物を等速
度・等密度で吐出させることは実質的に不可能であり、
走行速度が色々異なる押出成形物を乾燥・焼結炉へ送給
すると夫々の焼結時間が変わってくるため、焼結完了状
態がまちまちとなり、円買の焼結成形体は得られない。
However, in order to realize method (1) above, a very long drying and sintering furnace is required, so it is difficult to adopt this method in consideration of the cost of constructing the furnace body and the expansion of the area occupied by the equipment. On the other hand, when method (2) is adopted, it is difficult to obtain a uniform sintered compact for the following reasons.In other words, it is difficult to maintain a uniform discharge speed and density of the discharged material from each multi-type die. This is difficult even with resin in a molten state, and it is virtually impossible to discharge extrudates from each multi-die at the same speed and density with a slurry-like raw material that is a dispersion of microscopic particles. can be,
If extruded products running at various running speeds are fed to the drying/sintering furnace, the sintering time for each will vary, resulting in different sintering completion states, making it impossible to obtain sintered products at a reasonable price.

上記の様な理由から、スラリー状原料を用いて押出成形
と乾燥・焼結を連続的に行なう方法は実施されておらず
、特に乾燥・焼結については、前述の如く連続的に押出
されてくる長尺物を一定の長さに切り揃えた後バッチ式
で乾燥・焼結を行なっているので、非常に長い長尺線材
や長尺板材は得られない。
For the reasons mentioned above, a method of continuously extruding, drying and sintering using a slurry raw material has not been implemented. Since the long products are cut to a certain length and then dried and sintered in a batch process, it is not possible to obtain very long wires or plates.

本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、前述の様なスラリー状原料を用いて押
出成形及び乾燥・焼結を行なって焼結成形体を製造する
に当たり、特に押出成形品の乾燥・焼結を連続的に実施
できる様にし、それにより長尺の焼結成形体を円滑に製
造することのできる方法を提供しようとするものである
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to manufacture a sintered body by extrusion molding, drying and sintering using the slurry-like raw material as described above. In particular, it is an object of the present invention to provide a method that enables continuous drying and sintering of an extrusion molded product, thereby making it possible to smoothly produce a long sintered body.

[課題を解決するための手段] 上記の目的を達成することのできた本発明の構成は、金
属微小体、あるいは金属微小体とセラミックス微小体の
混合物を、高分子バインダー並びに水及び/若しくは有
機溶剤と混合して得られるスラリー状原料を押出成形し
、得られた押出成形物を一旦巻取り、次いで巻取られた
押出成形物を繰り出しつつ連続的に乾燥・焼結するとこ
ろに要旨を有するものである。
[Means for Solving the Problems] The configuration of the present invention that has achieved the above object is to mix metal microspheres or a mixture of metal micros and ceramic micros with a polymer binder and water and/or an organic solvent. The gist is that the slurry-like raw material obtained by mixing with It is.

[作用] 本発明は、金属、特に難加工性の超硬金属よりなる焼結
成形体あるいは上記金属にセラミックスを配合したセラ
ミックス分散強化型複合金属材よりなる焼結成形体を製
造する方法として開発されたものである。尚金属だけを
原料とする場合は、超硬金属を使用することによって超
硬焼結成形体を得ることができるが、セラミックス分散
強化型の場合は汎用金属を用いる場合であっても超硬焼
結体が得られるので、以下の説明においては超硬金属を
原料とする場合および汎用金属とセラミックスを組合せ
て原料とする場合について説明するが、これによって本
発明の原料物質を特定しようとするものではない。
[Function] The present invention was developed as a method for producing a sintered compact made of a metal, particularly a difficult-to-process cemented carbide metal, or a ceramic dispersion-strengthened composite metal material made by blending ceramics with the above-mentioned metal. It is something. If only metal is used as a raw material, a cemented carbide sintered body can be obtained by using a cemented carbide metal, but in the case of a ceramic dispersion strengthened type, even if a general-purpose metal is used, a cemented carbide sintered body cannot be obtained. Therefore, in the following explanation, we will explain cases in which cemented carbide is used as a raw material and cases in which a combination of general-purpose metals and ceramics are used as raw materials, but this is not intended to specify the raw material of the present invention. do not have.

本発明の実施に当たっては、まず超硬金属の微小体(粒
状、板状、フレーク状、短繊維状、鱗片状等の微小体を
含む二以下同じ)、あるいは汎用金属の微小体とセラミ
ックスの微小体を、押出成形工程でバインダーとして作
用する高分子物質並びに流動化剤として作用する水及び
/若しくは有機溶剤と混合してスラリー状原料とし、こ
れを押出成形装置により線、棒、飯等任意の形状に成形
する。本発明ではこの押出成形物を一旦巻取り、この押
出成形物を未乾燥の柔軟な状態に保持した後繰り出して
乾燥・焼結炉へ送り、所定の条件で連続的に乾燥・焼結
を行なう。この方法であれば、押出成形と乾燥・焼結が
、巻取保持工程を介して非連続的に組合されることとな
るが、むしろこのことにより押出成形速度と乾燥・焼結
速度が夫々別個に調整できるようになる。しかも押出成
形後−旦巻取られた成形物は、その中に含まれる流動化
剤(水及び/又は有機溶剤)が揮発除去しない限り柔軟
性を保っているので、これを長尺のままで順次繰り出し
て乾燥・焼結を行なうことにより長尺の焼結成形体を得
ることができる。
In carrying out the present invention, first, microscopic objects of cemented carbide (including microscopic objects in the form of particles, plates, flakes, short fibers, scales, etc.), or microscopic objects of general-purpose metals and microscopic objects of ceramics, etc. The slurry material is mixed with a polymer substance that acts as a binder and water and/or an organic solvent that acts as a fluidizing agent in the extrusion molding process to form a slurry raw material. Form into shape. In the present invention, this extruded product is once wound up, kept in an undried and flexible state, and then unwound and sent to a drying/sintering furnace where it is continuously dried and sintered under predetermined conditions. . With this method, extrusion molding and drying/sintering are discontinuously combined through the winding and holding process, but rather, this allows the extrusion molding speed and drying/sintering speed to be separated from each other. can be adjusted to. Moreover, after extrusion molding, the rolled-up molded product remains flexible unless the fluidizing agent (water and/or organic solvent) contained therein evaporates and is removed. A long sintered compact can be obtained by sequentially drawing out the material and drying and sintering it.

尚押出成形物は、高分子バインダーの接合力により一応
の保形性は有しているものの、小さな外力をうけただけ
で変形する程度の軟弱なものであり、巻取り時の張力に
よって断面の寸法・形状が変化する恐れもあるので巻取
りに当たっては、たとえば第1図(要部平面説明図、図
中1は押出成形装置、2はスラリ:L−3はダイ、4は
巻取りドラム、5は原料スラリー 6は押出成形物、7
は凹溝を夫々示す)に示す如く、押出成形物6の断面に
応じた寸法・形状の凹溝7を巻取りドラム4に形成して
おき、該凹溝7で押出成形物6の変形を防止しながら巻
取るのがよい。
Although the extruded product retains its shape to some extent due to the bonding force of the polymer binder, it is so weak that it deforms even when subjected to a small external force, and the cross-section may change due to the tension during winding. There is a possibility that the dimensions and shape may change, so when winding, for example, Figure 1 (plan explanatory diagram of the main parts, 1 is the extrusion molding device, 2 is the slurry, L-3 is the die, 4 is the winding drum, 5 is a raw material slurry, 6 is an extruded product, 7 is
As shown in (respectively, the grooves are grooves), a groove 7 having a size and shape corresponding to the cross section of the extruded product 6 is formed in the winding drum 4, and the groove 7 prevents the deformation of the extruded product 6. It is best to wind it up while preventing it.

この場合、巻取り後成形物を比較的短時間のうちに繰り
出して乾燥・焼結を行なうのであれば、当該成形物が乾
燥して柔軟性を失うことはないが、巻取りから乾燥・焼
結までの待ち時間が長い場合は、巻取られた成形物中の
水及び/または有機溶剤が揮発して成形物が柔軟性を失
ない、繰出し工程で成形物が折れることもあるので、こ
の様な場合は巻取られた押出成形物を保湿性雰囲気(た
とえば10〜20℃で80〜90%R,H。
In this case, if the molded product is rolled out and dried and sintered within a relatively short period of time after winding, the molded product will not dry out and lose its flexibility, but If the waiting time for the product to close is long, the water and/or organic solvent in the wound product may evaporate, causing the product to lose its flexibility and may break during the feeding process. In such cases, the rolled extrudate is placed in a moisturizing atmosphere (e.g. 80-90% R,H at 10-20°C).

程度)に保持し、水及び/又は有機溶剤の揮発を防止す
ることが望まれる。そしてこの様に巻取り成形物を一定
の保湿性雰囲気で保持する工程を設けておけば、同一の
保湿性雰囲気に保持しておいた複数の巻取り成形物を各
巻取ドラムから同時に繰り出して乾燥・焼結を行なうこ
とができ、乾燥・焼結の為の全所要時間を著しく短縮す
ることができる。
It is desirable to maintain the water and/or organic solvent at a certain level (at a certain level) and prevent the volatilization of water and/or organic solvent. If a process is provided in which the rolled products are held in a constant moisture-retaining atmosphere in this way, multiple rolled products kept in the same moisture-retaining atmosphere can be simultaneously unwound from each winding drum and dried. - Can be sintered, and the total time required for drying and sintering can be significantly shortened.

本発明で使用される超硬金属とは難加工性の超硬金属及
び超硬合金のすてべを包含するものであり、たとえばス
テライト(Co−Cr−W合金)、wc−Co系、WC
−TiC−Co系、T i C−MO2C−WC−Co
−N i系、Tic−Mo2C−Ni系等従来から知ら
れたすべての超硬金属がその対象となる。一方、セラミ
ックスと複合して使用される汎用金属としては、たとえ
ばFe、Ni、C”、Ti等あるいはこれらの諭属を含
む様々の合金が挙げられるが、勿論超硬途属とセラミッ
クスの組合せを排除するものでないことは前に述べた。
The cemented carbide used in the present invention includes all hard-to-process cemented carbide metals and cemented carbide alloys, such as stellite (Co-Cr-W alloy), wc-Co series, and WC.
-TiC-Co system, TiC-MO2C-WC-Co
All conventionally known cemented carbide metals such as -Ni series and Tic-Mo2C-Ni series are applicable. On the other hand, general-purpose metals used in combination with ceramics include, for example, Fe, Ni, C'', Ti, etc., and various alloys containing these metals; I mentioned earlier that it is not something that can be excluded.

またセラミックスとしては、上記金属に対し分散強化作
用を発揮するすべてのセラミックスを包含するものであ
り、St、Ti、Al、Zr。
Ceramics include all ceramics that exhibit a dispersion strengthening effect on the above metals, including St, Ti, Al, and Zr.

Ni、Nb、Mo等の酸化物、窒化物、炭化物等が例示
され、セラミックスウィスカーもセラミックス微小体の
中に含まれる。
Examples include oxides, nitrides, carbides, etc. of Ni, Nb, Mo, etc., and ceramic whiskers are also included in the ceramic microscopic bodies.

尚超硬金属微小体や汎用金属微小体はたとえはアトマイ
ズ法、還元法、熱分解法、合金分解法彎従来から知られ
た方法によって製造することができ、またセラミックス
微小体は、たとえば気相桓(蒸発凝縮法、気相反応法)
、液相法(沈殿法、溶媒蒸発法)、固相法(熱分解法、
固相反応法)等の従来から知られた任意の方法によって
製造される。これら微小体の好ましいサイズは、焼結拮
形体の断面寸法(線径や肉厚)や目標密度、あるいは微
小体自身の形状等によって異なるので−lに決める訳に
はいかないが、粒状、フレーク状、鱗片状の如く長径と
短径の差が小さいものを基準にして好ましいサイズを示
すならば、長径が50μm以下、より好ましくは44μ
m以下のものが推奨される。また短繊維状の場合は、直
径が10μm以下で且つ長さが50μm以下のものを使
用するのがよい。しかして微小体のサイズが大きすぎる
場合は、成形体の細線化および薄肉化にとって障害とな
るばかりでなく、乾燥・焼結後の成形体内部にボイドが
でき易くなるからである。もっともこの様な場合でも)
IIP処理等を施してやればボイドのない中実の焼結成
形体を得ることができる。
Cemented carbide metal particles and general-purpose metal particles can be produced by conventionally known methods such as atomization, reduction, thermal decomposition, and alloy decomposition methods, and ceramic particles can be produced by, for example, vapor phase production. Huan (evaporation condensation method, gas phase reaction method)
, liquid phase method (precipitation method, solvent evaporation method), solid phase method (pyrolysis method,
It is manufactured by any conventionally known method such as solid phase reaction method). The preferred size of these microscopic bodies varies depending on the cross-sectional dimensions (wire diameter and wall thickness) of the sintered antagonist, the target density, the shape of the microscopic body itself, etc., so it cannot be decided exactly, but it may be granular, flaky, etc. The preferred size is based on a scale-like shape with a small difference between the major axis and the minor axis, and the major axis is 50 μm or less, more preferably 44 μm.
m or less is recommended. In the case of short fibers, it is preferable to use those with a diameter of 10 μm or less and a length of 50 μm or less. However, if the size of the microscopic bodies is too large, it not only becomes an obstacle to making the molded body thinner and thinner, but also tends to cause voids to form inside the molded body after drying and sintering. However, even in cases like this)
By performing IIP treatment or the like, a solid sintered body without voids can be obtained.

次に高分子バインダーは、焼結までの段階でバインダー
として作用し且つ焼結の為の加熱により熱分解して消失
し得る有機買の高分子物置、たとえばゼラチン、カゼイ
ン、寒天、アラビアゴム、アルギン酸の如幹天然の有機
高分子物質、あるいはポリビニルアルコール系、ポリア
クリル酸系、ポリ酢酸ビニル系、メチルセルロース、カ
ルボキシルメチルセルロース、ポリビニルエーテル系、
ポリビニルピロリドン等の如き合成の有機高分子物質が
好ましいものとして挙げられるが、このほかたとえばポ
リアルキルシラン[たとえば新日曹化工社製商品名: 
「ポリシラスチレン」等]の様に、熱分解してセラミッ
クスを生成し得る様な元素を分子内に有する高分子バイ
ンダーも好ましいものとして賞月される。また流動化剤
としては水及び/又は有機溶剤が使用され、その種類は
高分子バインダーの種類に応じてこれを溶解し得るもの
が適宜選択して使用されるが、最も一般的なのは水であ
り、また好ましい有機溶剤としてはアルコール類、ケト
ン類、芳香族炭化水素類、低級炭化水素のハロゲン化物
等が挙げられる。尚流動化剤として水を用いた場合は粘
り気のあるスラリーが得られ易く、成形性及び成形物の
保形性が良好となるので取扱性がよく、一方有機溶剤を
使用すると、金属酸化物の様な酸化物系セラミックスは
もとより、S i C−1PS i s Naの様な非
酸化物系セラミックスを用いた場合でもこれらを酸化変
質させることがないという利点が得られる。
Next, the polymer binder is an organic polymer binder that acts as a binder in the stage up to sintering and can be thermally decomposed and disappeared by heating for sintering, such as gelatin, casein, agar, gum arabic, and alginic acid. Natural organic polymer substances such as polyvinyl alcohol, polyacrylic acid, polyvinyl acetate, methylcellulose, carboxymethylcellulose, polyvinyl ether,
Preferred examples include synthetic organic polymeric substances such as polyvinylpyrrolidone, but in addition, polyalkylsilanes [eg, trade name manufactured by Nippon Sokako Co., Ltd.:
Polymer binders that have elements in their molecules that can be thermally decomposed to produce ceramics, such as "polysilastyrene", are also praised as preferred. Water and/or an organic solvent are used as the fluidizing agent, and the type of fluidizing agent is appropriately selected depending on the type of polymer binder and is capable of dissolving it, but the most common is water. Further, preferable organic solvents include alcohols, ketones, aromatic hydrocarbons, and halides of lower hydrocarbons. When water is used as a fluidizing agent, it is easy to obtain a sticky slurry, which improves moldability and shape retention of the molded product, making it easy to handle.On the other hand, when using an organic solvent, the metal oxide Even if non-oxide ceramics such as S i C-1PS i s Na are used as well as oxide ceramics such as the above, there is an advantage that they will not undergo oxidative deterioration.

本発明においては上記の超硬金属微小体(^)または汎
用金属微小体とセラミックス微小体(^゛)を、高分子
バイダー(B)並びに水及び/又は有機溶剤(C) と
混合してスラリーとし、これを前述の如く押出成形によ
り線、棒、板等に成形した後−旦巻取り、次いでこれを
繰り出しつつ連続的に乾燥・焼結することにより高分子
バインダーの分解除去(またはセラミックス化)と微小
体の焼結を行なうことによって長尺の焼結成形体を得る
。スラリー調製時における微小体(^)又は(^°)、
高分子パンダー(B)並びに水及び/又は有機溶剤(C
)の配合比率は、特に限定されないが、最も一般的なの
は微小体(A)又は(^’)100重量部に対して高分
子バインダー(B)は2〜15重量部、より好ましくは
5〜10重量部、水及び/又は有機溶剤(C)は10〜
40重量部、より好ましくは12〜30重量部の範囲で
ある。また金属微小体とセラミックス微小体を併用する
ときの両者の配合率は各原料微小体の種類や焼結成形体
の目標硬度等によって変わってくるので一律に定めるこ
とはできないが、標準的な値として示すならば、金属微
小体100重量部に対しセラミックス微小体0.2〜1
00重量部の範囲、より一般的には2〜40重量部の範
囲である。このスラリー調製に当たっては、剪断速度が
1〜1000sec−’の範囲における粘度が10”〜
106ポイズとなる様に、高分子バインダー(B)並び
に水及び/又は有機溶剤(C)の配合量をコントロール
することが望まれる。
In the present invention, the above-mentioned cemented carbide metal microspheres (^) or general-purpose metal microspheres and ceramic microspheres (^゛) are mixed with a polymer binder (B) and water and/or an organic solvent (C) to form a slurry. This is formed into a wire, rod, plate, etc. by extrusion molding as described above, then wound up, and then continuously dried and sintered while being unrolled to decompose and remove the polymer binder (or turn it into a ceramic material). ) and sintering the microscopic bodies to obtain a long sintered body. Microscopic particles (^) or (^°) during slurry preparation,
Polymer pander (B) and water and/or organic solvent (C
) is not particularly limited, but the most common is 2 to 15 parts by weight, more preferably 5 to 10 parts by weight of the polymer binder (B) per 100 parts by weight of the microscopic particles (A) or (^'). Part by weight, water and/or organic solvent (C) is 10-
The amount is 40 parts by weight, more preferably 12 to 30 parts by weight. In addition, when using metal microspheres and ceramic micros, the mixing ratio of both varies depending on the type of raw material microspheres and the target hardness of the sintered compact, so it cannot be set uniformly, but it can be set as a standard value. If shown, 0.2 to 1 part by weight of ceramic particles per 100 parts by weight of metal particles
00 parts by weight, more typically from 2 to 40 parts by weight. In preparing this slurry, the viscosity is 10" to 10" at a shear rate of 1 to 1000 sec-'.
It is desirable to control the blending amounts of the polymer binder (B) and water and/or organic solvent (C) so that the poise is 106 poise.

乾燥・焼結の条件は特に限定されないが、金属微小体の
表面酸化を防止しつつ高分子バインダーの分解除去を効
率良く行なううえでは真空条件下で行なうのがよい。但
し還元性ガスや不活性ガス雰囲気で焼結することも勿論
可能であり、また大気雰囲気で焼結した場合でも焼結成
形体は有機高分子物質の熱分解により生成するガスによ
って外気からシールドされるので、焼結成形体内部の酸
化は殆んど起こらず、それほど大きな問題とはならない
。またセラミックス形成性の高分子バインダーを使用す
るときは、窒素あるいはアンモニアガス雰囲気で焼結を
行なうことにより窒化物よりなるセラミックスを生成さ
せることができる。焼結温度は通常1100〜1500
℃程度、より一般的なのは1200〜1400℃である
が、微小体の種類によってはこの範囲を外れる焼結温度
が好ましい場合もあり得る。
Although the conditions for drying and sintering are not particularly limited, it is preferable to carry out the drying and sintering under vacuum conditions in order to efficiently decompose and remove the polymer binder while preventing surface oxidation of the metal particles. However, it is of course possible to sinter in a reducing gas or inert gas atmosphere, and even when sintered in an atmospheric atmosphere, the sintered body is shielded from the outside air by the gas generated by thermal decomposition of the organic polymer material. Therefore, oxidation inside the sintered compact hardly occurs and does not pose a big problem. Furthermore, when a ceramic-forming polymer binder is used, ceramics made of nitride can be produced by sintering in a nitrogen or ammonia gas atmosphere. Sintering temperature is usually 1100-1500
The sintering temperature is approximately 1200 to 1400°C, but depending on the type of microscopic object, a sintering temperature outside this range may be preferable.

[実施例] 第1表に示す配合原料を使用し、双腕形ニーダで30〜
40分間混練してスラリーを調製する。
[Example] Using the blended raw materials shown in Table 1, 30~
Prepare a slurry by kneading for 40 minutes.

このスラリーを、25m++aφのスクリューを内蔵し
た押出成形装置に供給して線状物の押出成形を行なった
。この場合吐出ノズルの内径を0.5〜4mmφの範囲
で種々変更し、押出成形物は、表面にV型の螺旋溝を設
けたドラム(直径125mmX幅300mm)10個に
一旦巻取り、15℃、90%R,H,の恒温恒湿室に保
存して乾燥を防いだ。
This slurry was supplied to an extrusion molding apparatus equipped with a screw of 25 m++aφ to extrude a linear product. In this case, the inner diameter of the discharge nozzle was varied in the range of 0.5 to 4 mmφ, and the extruded product was wound around 10 drums (diameter 125 mm x width 300 mm) with V-shaped spiral grooves on the surface, and heated to 15°C. , 90% R, H, and stored in a constant temperature and humidity room to prevent drying.

こうして10個のドラムに巻取られた成形体を、今度は
繰り出しつつ連続乾燥・焼結炉へ送り、スラリー1の場
合は最高温度1290℃で、またスラリーIIについて
はアンモニアガス雰囲気下1300℃で焼結し、夫々的
7mの線状焼結成形体10本を得た。
The molded bodies thus wound around 10 drums are then unrolled and sent to a continuous drying/sintering furnace at a maximum temperature of 1290°C for slurry 1, and at 1300°C under an ammonia gas atmosphere for slurry II. The mixture was sintered to obtain 10 linear sintered bodies, each 7 m long.

これに対し、押出成形物を壱取った後屋内に0.5〜1
時間放置し、その後上記と同様に巻取りドラムから繰り
出して乾燥・焼結を行なおうとしたが、屋内での放置時
に押出成形物が乾燥して可撓性を失ない、繰出し工程で
成形体がすぐに折れるため乾燥・焼結の連続化は不可能
であった。
On the other hand, after taking out the extruded product, 0.5 to 1
I tried to dry and sinter the extruded product by leaving it for a while, and then paying it out from the winding drum in the same way as above, but when I left it indoors, the extruded product dried and lost its flexibility, and the molded product did not lose its flexibility during the feeding process. It was impossible to carry out continuous drying and sintering because it broke easily.

[発明の効果] 本発明は以上の様に構成されており、超硬金属あるいは
セラミックス分散強化型複合金属よりなる難加工性の超
硬焼結成形体であっても、長尺の細線棒、板、菅笠任意
の形状のものとして容易に製造し得ることになった。
[Effects of the Invention] The present invention is configured as described above, and even if it is a difficult-to-process cemented carbide sintered compact made of a cemented carbide metal or a ceramic dispersion-strengthened composite metal, a long thin wire rod or plate can be used. , it became possible to easily manufacture sedge hats of any shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で採用される押出成形物の巻取り状況を
示す要部断面平面図である。 1・・・押出成形装置  2・・・スクリュー3・・・
ダイ      4・・・巻取りドラム5・・・スラリ
ー    6・・・押出成形物7・・・凹溝
FIG. 1 is a sectional plan view of a main part showing how the extruded product used in the present invention is wound. 1... Extrusion molding device 2... Screw 3...
Die 4... Winding drum 5... Slurry 6... Extruded product 7... Concave groove

Claims (2)

【特許請求の範囲】[Claims] (1)金属微小体、 高分子バインダー並びに 水及び/若しくは有機溶剤 を混合して得られるスラリー状原料を押出成形し、得ら
れた押出成形物を一旦巻取り、次いで巻取られた押出成
形物を繰り出しつつ連続的に乾燥・焼結することを特徴
とする焼結成形体の製造方法。
(1) A slurry-like raw material obtained by mixing metal microspheres, a polymer binder, and water and/or an organic solvent is extruded, the obtained extruded product is once rolled up, and then the rolled extruded product A method for manufacturing a sintered compact, characterized by continuous drying and sintering while drawing out a sintered body.
(2)金属微小体、 セラミックス微小体、 高分子バインダー並びに 水及び/若しくは有機溶剤 を混合して得られるスラリー状原料を押出成形し、得ら
れた押出成形物を一旦巻取り、次いで巻取られた押出成
形物を繰り出しつつ連続的に乾燥・焼結することを特徴
とする焼結成形体の製造方法。
(2) A slurry-like raw material obtained by mixing metal microspheres, ceramic micros, a polymer binder, and water and/or an organic solvent is extruded, and the resulting extruded product is once rolled up. A method for producing a sintered compact, characterized by continuously drying and sintering the extruded product while drawing it out.
JP26532590A 1990-10-02 1990-10-02 Manufacture of sintered compact body Pending JPH04141505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26532590A JPH04141505A (en) 1990-10-02 1990-10-02 Manufacture of sintered compact body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26532590A JPH04141505A (en) 1990-10-02 1990-10-02 Manufacture of sintered compact body

Publications (1)

Publication Number Publication Date
JPH04141505A true JPH04141505A (en) 1992-05-15

Family

ID=17415623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26532590A Pending JPH04141505A (en) 1990-10-02 1990-10-02 Manufacture of sintered compact body

Country Status (1)

Country Link
JP (1) JPH04141505A (en)

Similar Documents

Publication Publication Date Title
US5774779A (en) Multi-channel structures and processes for making such structures
US2593943A (en) Methods of molding powders of metal character
US20060154057A1 (en) Ceramic hollow fibers made from nanomscale powder particles
DE3624934A1 (en) AT HIGH TEMPERATURES, CONSTANT CATALYST MOLDED BODIES AND METHOD FOR THE PRODUCTION THEREOF
US5864743A (en) Multi-channel structures and processes for making structures using carbon filler
WO2001078923A1 (en) Metallic miniaturized hollow shaped bodies and method for producing shaped bodies of this type
EP0431165A1 (en) Ceramic composite material and method of obtaining it
JPS62235253A (en) Binder for ceramic, cermet or metal powder
DE19726961C1 (en) Production of porous or highly porous metal, ceramic or composite moulding with cohesive structure
DE3922057A1 (en) CERAMIC COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
WO2001005540A1 (en) Continuous compounding of aqueous injection molding feedstocks
EP1040887B1 (en) Method of producing sintered body
JPS63310903A (en) Production of long-sized sintered body product
JPH02282442A (en) Aluminide structure
EP3541552A1 (en) Method for producing a porous moulded body and porous moulded body
JPH04141505A (en) Manufacture of sintered compact body
JP2001504077A (en) Multi-channel structure and manufacturing method thereof
US4312670A (en) System for stretch casting filamentary shaped bodies
JPH04141503A (en) Manufacture of sintered compact body
EP0810982B1 (en) Process for producing ceramic, metallic or ceramo-metallic shaped bodies
RU2563084C1 (en) Production of high-temperature nickel-based composite
JPH03130305A (en) Manufacture of sintered body having hollow part and manufacturing apparatus used thereto
JPH04141504A (en) Manufacture of sintered compact body
JP2977841B2 (en) Manufacturing method of metal-ceramic composite material
JPH04141535A (en) Manufacture of metal-ceramic composite sintered green compact