JPH04141346A - Cooling mechanism for spindle of machine tool - Google Patents

Cooling mechanism for spindle of machine tool

Info

Publication number
JPH04141346A
JPH04141346A JP25886090A JP25886090A JPH04141346A JP H04141346 A JPH04141346 A JP H04141346A JP 25886090 A JP25886090 A JP 25886090A JP 25886090 A JP25886090 A JP 25886090A JP H04141346 A JPH04141346 A JP H04141346A
Authority
JP
Japan
Prior art keywords
cooling
bearing
lubricating oil
spindle
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25886090A
Other languages
Japanese (ja)
Other versions
JP3184208B2 (en
Inventor
Haruyuki Shiraishi
治幸 白石
Hideo Komatsubara
英雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP25886090A priority Critical patent/JP3184208B2/en
Publication of JPH04141346A publication Critical patent/JPH04141346A/en
Application granted granted Critical
Publication of JP3184208B2 publication Critical patent/JP3184208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE:To reduce the thermal displacement of a spindle and the useless load of a spindle driving motor, by performing the indirect cooling of the spindle bearing outer periphery with a lubrication oil being circulated in a jacket provided on a spindle housing, also performing a direct cooling with this lubrication oil being injected to the spindle bearing. CONSTITUTION:The cooling and feeding/delivery device 17 of a cooling(lubrication) liquid, a jacket 15 and 16 are connected by a coolant feeding pipe 18. The space between the jackets 15, 16 and lubrication oil feeding nozzles 19 - 22 installed in each spacer space in opposition to the spindle bearing is connected by an oil feeding pipe, and the lubrication oil is recovered from each both sides of bearings 5 - 8 by the discharging holes 23 - 27 open for each spacer space. Thus, the bearing part is cooled/lubricated effectively and yet in with range only by circulating one kind of cooling/lubricating oil, especially, the feed/discharge of the cooling/lubrication oil can be adjusted finely according to the difference in the heating or cooling quantity caused for the bearing structure and the arrangement thereof, etc., being different.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作機械の主軸の冷却機構に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling mechanism for a main shaft of a machine tool.

〔従来の技術〕[Conventional technology]

工作機械の主軸軸受装置は、その稼働中に負荷駆動によ
って発熱し、熱伝導によって主軸を加熱膨張させる結果
、たとえばハウジングに対して主軸が伸びて稼働中、ワ
ークに対する工具位置が変動するとか、発熱・放熱の不
均等に基づく主軸の姿勢変形が生じる等の不都合がある
The main spindle bearing device of a machine tool generates heat due to load drive during operation, and as a result of heat expansion of the main spindle due to heat conduction, for example, the main spindle extends relative to the housing, and during operation, the tool position relative to the workpiece changes, and heat generation occurs. - There are inconveniences such as deformation of the spindle's posture due to uneven heat radiation.

その対策として従来、主軸軸受のハウジング外周のジャ
ケットに冷媒を通して、主軸軸受から発生する熱エネル
ギーを吸収させる。
As a countermeasure, conventionally, a coolant is passed through the jacket around the housing of the main shaft bearing to absorb the thermal energy generated from the main shaft bearing.

あるいは、主軸軸受に、直接的に冷却空気−油混合ミス
トを吹き付けて発生熱を吸収する。
Alternatively, a cooling air-oil mixed mist is directly blown onto the main shaft bearing to absorb the generated heat.

また、主軸軸受、それ自体に潤滑・冷却油を直接供給、
循環させて熱発生部分を冷却する。
In addition, it supplies lubricating and cooling oil directly to the main shaft bearing itself.
Circulate to cool heat generating parts.

等々の一つまたは、それ以上の手当を施すことが行われ
ていた。
One or more of the following treatments were provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、主軸軸受のハウジング外周のみを冷却する間
接方式では、軸受装置の冷却が充分でなく、そのため主
軸の熱変位を低減することができないという欠点がある
However, the indirect method in which only the outer periphery of the housing of the main shaft bearing is cooled has the disadvantage that the bearing device is not sufficiently cooled, and therefore the thermal displacement of the main shaft cannot be reduced.

主軸軸受を冷却液または気体により直接冷却する方式で
は、主軸の一定の回転数以上で冷却効果が優良とはいえ
ず、また、冷却液の供給−回収孔の間においてハウジン
グ、軸受取付機構等に温度勾配が生し易く、その為、主
軸に姿勢変形を生じるおそれがある。
With the method of directly cooling the main shaft bearing with coolant or gas, the cooling effect cannot be said to be excellent above a certain rotation speed of the main shaft, and the housing, bearing mounting mechanism, etc. Temperature gradients are likely to occur, which may cause posture deformation in the main shaft.

また、構造上、冷却液またはミストを回収し易い軸受と
、回収し難い軸受とができ、冷却(潤滑液を完全に回収
できない軸受では、同装置に滞留する冷却液が連れ回り
して撹拌抵抗が生じ発熱して、主軸の熱変位を起す。
In addition, due to the structure, some bearings can easily collect coolant or mist, while others cannot. occurs, generating heat and causing thermal displacement of the spindle.

また、これに伴なって主軸駆動モータの負荷も大きくな
って好ましくない。
Moreover, the load on the main shaft drive motor also increases accordingly, which is undesirable.

軸受ハウジングのジャケット冷却方式と主軸軸受を直接
冷却する方式とを併用することによって、主軸の熱変位
を低減できる技術が開発されているが、主軸軸受の間接
冷却と、前記軸受装置の直接冷却(潤滑)とを別々の装
置〔ジャケット冷却は液冷でもよく、軸受装置の冷却は
一般に気・液混合流体または#滑油を使用するがら、両
者の冷却(潤滑)装置は、別々のものとなる可能性が高
い〕で行うことは、主軸冷却装置の構造を複雑にして、
トラブル発生の要因を多くさせるばかりでなく、コスト
アップの原因となる。
A technology has been developed that can reduce thermal displacement of the main shaft by using both a jacket cooling method for the bearing housing and a method for directly cooling the main shaft bearing. lubrication) and separate equipment [Jacket cooling may be liquid cooling, and bearing equipment cooling generally uses a gas/liquid mixed fluid or lubricating oil, but the cooling (lubrication) equipment for both is separate. [High possibility] would complicate the structure of the spindle cooling system,
This not only increases the number of causes of troubles, but also increases costs.

そこで本発明は、従来装置に内在する上述のような各種
の問題点を解消し、要するに工作機械における主軸の熱
変位の低減と、主軸駆動モータの不用な負荷の低減とを
目的とした、工作機械の主軸の冷却機構を提供しようと
するものである。
Therefore, the present invention solves the above-mentioned various problems inherent in conventional devices, and in short, the present invention aims to reduce the thermal displacement of the spindle in a machine tool and reduce the unnecessary load on the spindle drive motor. The purpose is to provide a cooling mechanism for the main shaft of a machine.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上述目的を達成するため、以下に述べるとお
りの各構成要件を具備する。
In order to achieve the above-mentioned object, the present invention includes each of the constituent elements as described below.

(1)主軸ハウジングに設けたジャケット内に潤滑油を
循環させて主軸軸受外周の間接的冷却を行うと共に、当
該潤滑油を前記主軸軸受に噴出させての直接的冷却を行
うようにしたことを特徴とする工作機械の主軸冷却機構
(1) Indirect cooling of the outer periphery of the main shaft bearing is performed by circulating lubricating oil in a jacket provided in the main shaft housing, and direct cooling is performed by jetting the lubricating oil onto the main shaft bearing. Main spindle cooling mechanism for machine tools.

(2)前記主軸軸受に噴出する潤滑油の供給側と前記潤
滑油が、その軸受を貫通した側との双方の空隙に油回収
口を穿設して、格別にサクションポンプを連結し、前記
潤滑油を回収するようにしたことより成る上記第(1)
項記載の工作機械の主軸冷却機構。
(2) An oil recovery port is formed in the gap on both the supply side of the lubricating oil spouted to the main shaft bearing and the side where the lubricating oil passes through the bearing, and a suction pump is specially connected to the The above (1) consists of collecting lubricating oil.
Main spindle cooling mechanism of machine tool described in section.

〔作   用〕[For production]

冷却した潤滑油を軸受ハウジングのジャケット内を通し
てハウジング外周部分を均一に、かつ広範囲に間接冷却
すると共に、前記ジャケットと、主軸軸受の各々に対向
して配置されたノズルとの間を連通する。
Cooled lubricating oil is passed through the jacket of the bearing housing to uniformly and indirectly cool the outer peripheral portion of the housing over a wide range, and the jacket is communicated with nozzles disposed opposite to each of the main shaft bearings.

ノズルから噴出した冷却(潤滑)液は、主軸軸受に供給
され、軸受を潤滑すると共に、直接的に冷却する。そし
て、各主軸軸受を冷却・潤滑した冷却(潤滑)液は、そ
れぞれの軸受取付部空隙に滞留するが、各軸受に対応し
て、それぞれの空隙部に開口する前記冷却液の回収孔に
つながる回収ラインには、各別にサクションポンプを連
結して、各軸受毎に独立して冷却特性を従い、また冷却
液の回収を効果的に行えるようにし、結果的には、各軸
受側々の特性に合わせて冷却・給油量の設定を行う。
The cooling (lubricating) liquid ejected from the nozzle is supplied to the main shaft bearing, lubricates the bearing, and directly cools the bearing. The cooling (lubricating) fluid that cools and lubricates each main shaft bearing remains in the respective bearing mounting spaces, and is connected to the cooling fluid recovery holes that open in the respective spaces corresponding to each bearing. Separate suction pumps are connected to each recovery line to independently follow the cooling characteristics of each bearing and to effectively recover the cooling fluid.As a result, the characteristics of each bearing can be adjusted independently. Set the cooling and lubrication amounts accordingly.

要するに、冷却(潤滑)液回収の個別系統化を実現する
In short, it realizes individual systemization of cooling (lubricating) liquid recovery.

かくして、主軸軸受の発熱量および、使用済み潤滑液の
滞留によって生じる連れ回り・撹拌等の作用で失われる
主軸の駆動トルクを最小に押えることができ、主軸の熱
変位も、また減少させることができる。
In this way, the amount of heat generated by the main shaft bearing and the drive torque of the main shaft that is lost due to effects such as entrainment and stirring caused by the accumulation of used lubricant can be minimized, and thermal displacement of the main shaft can also be reduced. can.

なお、主軸軸受から回収した冷却・潤滑液は、サクショ
ンポンプ通過後、潤滑油タンク兼冷却装置に送られ、前
記タンクから再び軸受ハウジングのジャケットに供給さ
れ全体的に循環作用を行うものとなる。
The cooling and lubricating fluid recovered from the main shaft bearing passes through the suction pump and is sent to the lubricating oil tank/cooling device, and from the tank it is again supplied to the jacket of the bearing housing, thereby performing an overall circulation action.

さらに、潤滑油を軸受に噴射供給した側と、貫通した側
との双方から使用済み潤滑油を吸引することにより、前
記潤滑油が確実に軸受に回り込み、かつ、余分に供給さ
れた潤滑油は、軸受装置に滞留せずに回収される。
Furthermore, by suctioning used lubricating oil from both the side where the lubricating oil was injected into the bearing and the side through which it has penetrated, the lubricating oil is ensured to circulate around the bearing, and any excess lubricating oil is removed. , is collected without being retained in the bearing device.

〔実 施 例〕〔Example〕

以下に、図面に沿って本発明装置の一実施例につき説明
するが、当該実施例を構成する各部材の構成は、本発明
の出願当時、当業界における技術レベル範囲内において
適宜の設計変更が可能であるから、格別の理由を示さな
い限り、以下記載の実施例の構造のみに基づき本発明の
各構成要件を限定して解すべきではない。
An embodiment of the device of the present invention will be described below with reference to the drawings, but the structure of each member constituting the embodiment may be subject to appropriate design changes within the technical level of the industry at the time of filing of the present invention. Since it is possible, the constituent elements of the present invention should not be interpreted as being limited based only on the structure of the embodiments described below, unless a special reason is given.

第1図は、本発明にかかる工作機械の主軸装置の実施例
の側断面および冷却系統図を示す。
FIG. 1 shows a side cross section and a cooling system diagram of an embodiment of a spindle device for a machine tool according to the present invention.

図中、]は、主軸で、その一端は工作機械のハウジング
外に伸びて、端面には工具のシャンク髪嵌着するテーパ
孔2を開口し、その他端は前記機械に搭載した電動機3
の出力軸4に直結している。
In the figure, ] is the main shaft, one end of which extends outside the housing of the machine tool, has a tapered hole 2 on the end face into which the shank of the tool is fitted, and the other end is the motor 3 mounted on the machine.
It is directly connected to the output shaft 4 of.

主軸1は、その長手軸方向に沿って不連続に配置された
複数個のベアリング5〜8によって後述するハウジング
12に軸受されており、本実施例の場合は、主軸先端側
から順に、ローラベアリング5、スペーサ9を隔ててボ
ールベアリング6、さらにスペーサ10を隔ててボール
ベアリング7、それから、やや間隔をおいて電動機3寄
りに、ローラベアリング8に続いてスペーサ11が配置
されている。
The main shaft 1 is supported by a housing 12, which will be described later, by a plurality of bearings 5 to 8 arranged discontinuously along its longitudinal axis, and in this embodiment, the roller bearings are 5. A ball bearing 6 is placed with a spacer 9 in between, a ball bearing 7 is placed with a spacer 10 in between, and a spacer 11 is placed next to the roller bearing 8 at a slight distance from the motor 3.

上述の各ベアリングおよびスペーサは、いずれも工作機
械のハウジング12に内装され、相互に移動・回動不能
なように取付けられる。
Each of the above-mentioned bearings and spacers are housed in the housing 12 of the machine tool, and are attached to each other so that they cannot move or rotate.

したがって、上記各スペーサによって形成された各軸受
相互間の空間は、それぞれ主軸1周面とハウジング12
の内壁とに囲まれ各ベアリングを隔てて略、独立してい
るものと解して差支えない。
Therefore, the space between the bearings formed by the spacers is divided between the circumferential surface of the main shaft 1 and the housing 12, respectively.
It can be understood that the bearings are substantially independent, surrounded by the inner wall of the bearing, and separated from each other by the bearings.

もっとも、主軸1の長手軸方向におけるベアリング7と
ベアリング8との間にはスペーサが施されていないけれ
ども、主軸1に段差を設けるとか、締付はリングを前記
軸に固着する等の手段によって、当該部分にスペーサを
施したと同等の構成を実現している。
However, although no spacer is provided between the bearings 7 and 8 in the longitudinal axis direction of the main shaft 1, it is possible to tighten the main shaft 1 by providing a step or by fixing a ring to the shaft. A configuration equivalent to that provided by adding a spacer to this part is achieved.

なお、前記電動機3は、工作機械のハウジング12に取
付けられている。
Note that the electric motor 3 is attached to a housing 12 of a machine tool.

13および14は、冷却液循環ジャケット15. lf
l設けたハウジングの外被で、前記外被は、それぞれハ
ウジング12を介してベアリング列5〜7およびベアリ
ング8の取付位置に対応する外周に隙間なく(部材相互
の接触面には、それぞれシール材一 を介在させである)嵌着しである。
13 and 14 are coolant circulation jackets 15. lf
The outer cover of the housing is provided with no gaps on the outer periphery corresponding to the mounting positions of the bearing rows 5 to 7 and the bearing 8 through the housing 12. (with one intervening).

なお、34は、主軸1の外側延長部に遊嵌し、かつハウ
ジング12に固着した主軸軸受5の押え板である。
Note that 34 is a presser plate for the main shaft bearing 5 that is loosely fitted into the outer extension of the main shaft 1 and fixed to the housing 12.

」二連構造の主軸軸受装置に対して、別に設けた、17
は、冷却(潤滑)液の冷却兼供給・送出装置、18は、
下流側をジャケット15とジャケット16とに分岐・供
給する冷却液供給パイプで、供給・送出装置17とハウ
ジングの各ジャケット15.16との間を連結している
” 17 separately provided for the main shaft bearing device of double structure.
18 is a cooling/supply/delivery device for cooling (lubricating) liquid;
A coolant supply pipe that branches and supplies downstream to the jackets 15 and 16 connects the supply/delivery device 17 and each jacket 15, 16 of the housing.

19〜22は、主軸軸受に対向し、各スペーサ空間に設
置された潤滑油供給ノズルで、各ノズル19〜22とジ
ャケット15.16との間を、それぞれ連結して送油パ
イプが設けである。
Reference numerals 19 to 22 denote lubricating oil supply nozzles that face the main shaft bearing and are installed in each spacer space, and oil supply pipes are provided to connect each nozzle 19 to 22 and the jackets 15 and 16, respectively. .

23〜27は、それぞれ各スペーサ空間に開口する潤滑
油等の排出孔で、ベアリング5〜8の各両側から潤滑油
を回収できるようになっている。
Reference numerals 23 to 27 are discharge holes for lubricating oil, etc., which open into the spacer spaces, respectively, so that lubricating oil can be recovered from both sides of the bearings 5 to 8.

すなわち、ノズル】9から供給された潤滑油は排出孔2
3および24から、ノズル20から供給された潤滑油は
排出孔24および25から、ノズル21がら供給=8− された潤滑油は排出孔25および26から、ノズル22
から供給された潤滑油は排出孔26および27から、そ
れぞれ吸引される。
That is, the lubricating oil supplied from the nozzle ]9 is discharged from the discharge hole 2.
3 and 24, the lubricating oil supplied from the nozzle 20 is supplied from the discharge holes 24 and 25, and the lubricating oil supplied from the nozzle 21 is supplied from the discharge holes 25 and 26 to the nozzle 22.
The lubricating oil supplied from the exhaust holes 26 and 27 is sucked from the exhaust holes 26 and 27, respectively.

そして、排出孔23〜27に連なる各油排出パイプの下
流側には、各別にインバータモータ付サクションポンプ
28〜32が、それぞれ独立して連結されている。
Suction pumps 28 to 32 with inverter motors are each independently connected to the downstream side of each oil discharge pipe connected to the discharge holes 23 to 27.

インバータモータの出力は各スペーサ空間から回収する
使用済み潤滑油の油温センサからの信号に基づいて制御
され、前記回収油温が所定よりも高い場合にはサクショ
ンポンプの機能を高めて、その結果、冷却潤滑油の供給
量を増加するよう調整し、比較的に低い場合にはサクシ
ョンポンプを通常運転するよう設けである。
The output of the inverter motor is controlled based on the signal from the oil temperature sensor of the used lubricating oil collected from each spacer space, and when the collected oil temperature is higher than a predetermined value, the function of the suction pump is increased and the result is , the supply amount of cooling lubricant is adjusted to be increased, and if the amount is relatively low, the suction pump is operated normally.

したがって、主軸軸受の配置、軸受および、その取付構
造などの相違に起因して各軸受部分の発熱量が異なると
か冷却効果が相違するなどの原因で、各スペーサ空間か
ら回収する使用済み潤滑油の油温に差異が生じた場合に
も、それに応して、使用済み潤滑油をスペーサ空間から
排出する各すクションポンプの能力を個々に制御するこ
とにより、ジャケットによる軸受外周部分の間接冷却効
果と相俟って、稼働中、主軸および各軸受部分のすべて
が設計値に近い温度範囲に納まるよう冷却・潤滑するこ
とができる。
Therefore, the used lubricating oil collected from each spacer space is Even if there is a difference in oil temperature, by individually controlling the ability of each action pump to discharge used lubricating oil from the spacer space, the indirect cooling effect of the jacket on the outer circumference of the bearing can be improved. Together, during operation, the main shaft and each bearing part can be cooled and lubricated so that they all stay within a temperature range close to the design value.

もっとも、定型機種の軸受構造の場合には、経験−に、
各軸受部分の発熱量は前もって予測または計測可能であ
るから、冷却潤滑油供給ノズルまたは、これに対応する
サクションポンプ容量を前記発熱量に合わせて、あらが
しめ調整しておくことにより、敢えてインバータモータ
などを設備する必要はない。
However, in the case of the bearing structure of standard models, based on experience,
Since the amount of heat generated by each bearing part can be predicted or measured in advance, by adjusting the capacity of the cooling lubricant supply nozzle or the corresponding suction pump according to the amount of heat generated, it is possible to use the inverter. There is no need to install a motor or the like.

かくして、主軸の各軸受温度を所定範囲内に納めるよう
調整できることは勿論、各スペーサ空間に使用済み潤滑
油が必要量以」二滞留して主軸軸受の駆動に応じて連れ
回り撹拌され、それが原因で発熱するとか、主軸の回転
1〜ルクを無用に消費するといった不都合が生じること
を防ぐことができる。
In this way, it is possible not only to adjust the temperature of each bearing of the main shaft to within a predetermined range, but also to keep the used lubricating oil in the required amount in each spacer space and to rotate and agitate it as the main shaft bearing is driven. It is possible to prevent inconveniences such as generation of heat due to such causes or unnecessary consumption of torque per rotation of the spindle.

すなわち、稼働中の主軸の熱変形を所定の範囲、最小限
に納めることが可能となると共に、潤滑油の撹拌による
ロストルクを最小に押えることができる。
That is, it is possible to minimize the thermal deformation of the main shaft during operation within a predetermined range, and it is also possible to minimize loss torque due to agitation of the lubricating oil.

サクションポンプ28〜32から排出された潤滑油は、
まとめて潤滑油タンク33に放出され、潤滑油がタンク
33に残る。
The lubricating oil discharged from the suction pumps 28 to 32 is
All the lubricating oil is discharged into the lubricating oil tank 33 and the lubricating oil remains in the tank 33.

タンク33に滞留した潤滑油は、潤滑油冷却兼供給装置
17に移送され、再び冷却(潤滑)液供給パイプ18を
通してジャケット]5および16に移送され、かくして
、冷却・潤滑油は主軸装置に付設した冷却機構内を循環
する。
The lubricating oil retained in the tank 33 is transferred to the lubricating oil cooling/supplying device 17, and again transferred to the jackets 5 and 16 through the cooling (lubricating) liquid supply pipe 18, and thus the cooling/lubricating oil is attached to the spindle device. It circulates through the cooling mechanism.

なお、ジャケット15.16に供給される冷却(潤滑)
液は、必要に応じ、その全部を主軸軸受の冷却・潤滑の
ために利用する事を要さず、たとえば軸受冷却機構に対
してバイパス流路を施し、余剰分の冷却液をジャケット
15.16から直接潤滑油冷却・供給装置17に戻すこ
とも自由である。
In addition, cooling (lubrication) supplied to jackets 15 and 16
If necessary, it is not necessary to use all of the liquid for cooling and lubricating the main shaft bearing.For example, a bypass flow path is provided for the bearing cooling mechanism, and the excess cooling liquid is used for cooling and lubricating the main shaft bearing. It is also possible to return the lubricating oil directly to the lubricating oil cooling/supplying device 17 from there.

上述のように、本実施例主軸冷却機構は、一種類の冷却
・潤滑油を循環させるだけで効果的に、かつ広範囲に軸
受部分を冷却・潤滑し、殊に、軸受構造とか、その配置
などが異なるために生じる当該個所の発熱または冷却量
の相違に応じ、きめ細かく冷却・潤滑油の供給・排出を
調整でき、また、冷却作用の調整が軸受温度に敏速に対
応するので、主軸の熱変形を所定範囲内に納め、かつ、
使用済み潤滑油撹拌に基づく主軸のロス1−ルクを大1
]に軽減することができた。
As mentioned above, the main shaft cooling mechanism of this embodiment effectively cools and lubricates the bearing portion over a wide range by simply circulating one type of cooling/lubricating oil, and in particular, the bearing structure, its arrangement, etc. Cooling and lubricating oil supply and discharge can be finely adjusted in response to differences in heat generation or cooling amount at the relevant location due to differences in the temperature.Also, since the adjustment of the cooling action quickly corresponds to the bearing temperature, thermal deformation of the main shaft can be prevented. within the specified range, and
The loss of the spindle due to agitation of used lubricating oil is reduced by 1 - 1 lux.
] was able to be reduced.

〔発明の効果〕〔Effect of the invention〕

以4二のとおりであるから、本発明装置によれば、(1
)主軸軸受(発熱源)を外周から冷却する間接冷却と、
ノズルによる直接冷却とを共用しているために、冷却効
果が良好で、かつ、軸受装置の温度変動に対する応答速
度も速い。
Since the following is as follows, according to the device of the present invention, (1
) Indirect cooling that cools the main shaft bearing (heat source) from the outer periphery;
Since direct cooling by the nozzle is also used, the cooling effect is good and the response speed to temperature fluctuations of the bearing device is fast.

(2)主軸軸受を直接冷却する方式は、冷却(潤滑)液
の出入口の間付近で温度勾配が生じ易いが、ジャケット
による間接冷却方式を併用することによって略、均等に
装置を冷却することができて、主軸の熱変形を低減でき
た。
(2) Direct cooling of the main shaft bearing tends to cause temperature gradients near the entrance and exit of the cooling (lubrication) fluid, but by using indirect cooling with a jacket, the equipment can be cooled almost evenly. This made it possible to reduce thermal deformation of the spindle.

(3)必要個所(各スペーサ空間)に、それぞれ独立し
てサクション機構を連結したから、各主軸軸受側々の条
件に合わせて冷却・潤滑油の供給量(冷却能力)を設定
・調整することが可能となり、結果的には使用済み潤滑
油撹拌に起因する発熱を減少し、かつ、主軸モータ負荷
に軽減することができる。
(3) Since the suction mechanisms are independently connected to the required locations (each spacer space), the amount of cooling and lubricating oil supplied (cooling capacity) can be set and adjusted according to the conditions of each spindle bearing. As a result, it is possible to reduce heat generation caused by agitation of used lubricating oil and reduce the load on the main shaft motor.

(4)潤滑油を軸受に噴射供給する側と、潤滑油が貫通
した側との双方から使用済み潤滑油を吸引することによ
り、潤滑油が確実に軸受に回り込み、かつ、余分に供給
された潤滑油は装置に滞留せず効果的に回収される。
(4) By suctioning used lubricating oil from both the side where lubricating oil is injected into the bearing and the side through which lubricating oil has penetrated, lubricating oil is reliably circulated around the bearing and an excess amount is supplied. The lubricating oil does not remain in the equipment and is effectively recovered.

(5)主軸外周の間接冷却も主軸軸受の直接冷却につい
ても、一種類の潤滑油を用いて装置内を循環させるだけ
であるから、潤滑油冷却装置が一個で済み、経済的であ
る。
(5) For indirect cooling of the spindle outer periphery and direct cooling of the spindle bearing, only one type of lubricating oil is used and circulated within the device, so only one lubricating oil cooling device is required, which is economical.

等々、従来、実施されている工作機械の主軸冷却機構に
は期待することができない、格別の作用および効果を奏
するものである。
These and other special functions and effects cannot be expected from conventional spindle cooling mechanisms for machine tools.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明、主軸冷却機構の側断面および冷却液
循環系統図を示すものである。 1・主軸、 3・・電動機、 5〜8 主軸軸受、 12・ハウジング、 15.16・・ジャケット、 17・潤滑油冷却・供給装置、 18・・冷却(潤滑)液供給パイプ、 19〜22・・・冷却液供給ノズル、 23〜27・潤滑油排出パイプ、 28〜32・・・インバータモータ付すクショ33・・
潤滑油タンク、  34・・・押え板。 2・・テーバ孔、 4 出力軸、 9〜1トスペーサ、 1.3.14・・外被、 ンボンプ、
FIG. 1 shows a side cross section of the main shaft cooling mechanism and a cooling fluid circulation system diagram according to the present invention. 1. Main shaft, 3. Electric motor, 5-8 Main shaft bearing, 12. Housing, 15.16. Jacket, 17. Lubricating oil cooling/supply device, 18. Cooling (lubricating) liquid supply pipe, 19-22.・・Cooling liquid supply nozzle, 23-27・Lubricating oil discharge pipe, 28-32・・Choice 33 for attaching inverter motor・・
Lubricating oil tank, 34...pressing plate. 2...Taber hole, 4 Output shaft, 9~1 spacer, 1.3.14...Outer cover, Bump,

Claims (2)

【特許請求の範囲】[Claims] (1)主軸ハウジングに設けたジャケット内に潤滑油を
循環させて主軸軸受外周の間接的冷却を行うと共に、当
該潤滑油を前記主軸軸受に噴出させての直接的冷却を行
うようにしたことを特徴とする工作機械の主軸冷却機構
(1) Indirect cooling of the outer periphery of the main shaft bearing is performed by circulating lubricating oil in a jacket provided in the main shaft housing, and direct cooling is performed by jetting the lubricating oil onto the main shaft bearing. Main spindle cooling mechanism for machine tools.
(2)前記主軸軸受に噴出する潤滑油の供給側と前記潤
滑油が、その軸受を貫通した側との双方の空隙に油回収
口を穿設して、格別にサクションポンプを連結し、前記
潤滑油を回収するようにしたことより成る請求項(1)
記載の工作機械の主軸冷却機構。
(2) An oil recovery port is formed in the gap on both the supply side of the lubricating oil spouted to the main shaft bearing and the side where the lubricating oil passes through the bearing, and a suction pump is specially connected to the Claim (1) consisting of collecting lubricating oil.
Spindle cooling mechanism of the machine tool described.
JP25886090A 1990-09-29 1990-09-29 Spindle cooling mechanism for machine tools Expired - Lifetime JP3184208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25886090A JP3184208B2 (en) 1990-09-29 1990-09-29 Spindle cooling mechanism for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25886090A JP3184208B2 (en) 1990-09-29 1990-09-29 Spindle cooling mechanism for machine tools

Publications (2)

Publication Number Publication Date
JPH04141346A true JPH04141346A (en) 1992-05-14
JP3184208B2 JP3184208B2 (en) 2001-07-09

Family

ID=17326043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25886090A Expired - Lifetime JP3184208B2 (en) 1990-09-29 1990-09-29 Spindle cooling mechanism for machine tools

Country Status (1)

Country Link
JP (1) JP3184208B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724687A (en) * 1993-07-07 1995-01-27 Makino Milling Mach Co Ltd Main spindle device for machine tool
JP2008100326A (en) * 2006-10-20 2008-05-01 Okuma Corp Main spindle device
CN115106823A (en) * 2022-07-26 2022-09-27 武汉重型机床集团有限公司 Power device of turning, milling and grinding tool rest main shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724687A (en) * 1993-07-07 1995-01-27 Makino Milling Mach Co Ltd Main spindle device for machine tool
JP2008100326A (en) * 2006-10-20 2008-05-01 Okuma Corp Main spindle device
CN115106823A (en) * 2022-07-26 2022-09-27 武汉重型机床集团有限公司 Power device of turning, milling and grinding tool rest main shaft

Also Published As

Publication number Publication date
JP3184208B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US4322030A (en) Lubrication and cooling system for a high speed ultracentrifuge drive assembly
US20090046965A1 (en) Lubricating device for rolling bearing
US4596476A (en) Lubricating system for shaft bearings
US7404779B2 (en) Planetary gear
KR20000000512A (en) Multi-stage screw spindle compressor
JP2008240938A (en) Lubrication device for rolling bearing
WO2020090278A1 (en) Spindle device with built-in motor
JPH04141346A (en) Cooling mechanism for spindle of machine tool
KR20190045999A (en) Cooling apparatus of main spindle for machine center
JP2000288870A (en) Rotating spindle device
JP3613477B2 (en) Bearing lubrication and cooling equipment
SE516023C2 (en) Industrial robot comprising an gearbox configuration and method in an industrial robot
JP2005180703A (en) Lubricating device of rolling bearing
US11447918B2 (en) Intentionally replaceable earth working machine milling unit having a cooling fan for cooling a closed operating-medium circuit
KR101492637B1 (en) Cooling device for main spindle of machining center
US3417636A (en) Heat transfer apparatus
JP4622194B2 (en) Spindle device
JPH06169545A (en) Protective apparatus for lubricating means for bearing of rotating machine
JP3043930B2 (en) Lubrication method
CN221185779U (en) Lubrication cooling system of electric spindle
US2457893A (en) Machine tool lubricating system
JPH0914277A (en) Bearing device for vertical rotating machine
JP2020069604A (en) Motor built-in type spindle device
JPH02264193A (en) Magnet pump and lubricating method in magnet pump
JPH0721929Y2 (en) Bearing cooling device for horizontal shaft type rotating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10