JPH04141196A - Turbidity detector for dry cleaner - Google Patents

Turbidity detector for dry cleaner

Info

Publication number
JPH04141196A
JPH04141196A JP26205590A JP26205590A JPH04141196A JP H04141196 A JPH04141196 A JP H04141196A JP 26205590 A JP26205590 A JP 26205590A JP 26205590 A JP26205590 A JP 26205590A JP H04141196 A JPH04141196 A JP H04141196A
Authority
JP
Japan
Prior art keywords
turbidity
solvent
detector
light
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26205590A
Other languages
Japanese (ja)
Other versions
JP2532988B2 (en
Inventor
Yoshitaka Kakumoto
角本 佳隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2262055A priority Critical patent/JP2532988B2/en
Publication of JPH04141196A publication Critical patent/JPH04141196A/en
Application granted granted Critical
Publication of JP2532988B2 publication Critical patent/JP2532988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decide the cause of turbidity accurately: if excess of soap content, excess of water content or pollution from clothes, by providing a turbidity detector which is able to detect the turbidity of solvent flowing through a pipe and deciding the detection according to color variation. CONSTITUTION:A passage switching value V12 at the lower part of a turbidity detector 20 is open, a passage to a tank 3 is opened by valves V13, V11, and a circulating pump is operated. From the start of filling, the passage switching valve V12 is closed to store solvent in the turbidity detector 20, while the solvent is supplied to a tank 3 through a bypass passage 21. The turbidity detection of solvent in the detector 20 is performed after the passage transfer valve V12 is closed. the solvent in the detector which is not affected by the circulating pump due to the passage transfer operation is made quiet and in a state without air bubbles in the solvent. Thus, turbidity is decided by the variation rate according to color wavelength from each color sensor and by the initial value of solvent turbidity at the time of solvent changing.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、水辺外の溶剤を利用するドライクリーナに
関し、詳しくは溶剤の濁度を色の変化として検出し、検
出した色がソープ、水あるいは衣類の汚れかを識別し、
報知する機能を備えたドライクリーナの濁度検出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a dry cleaner that uses a solvent outside the waterside. Specifically, the turbidity of the solvent is detected as a change in color, and the detected color Identify water or clothing stains,
The present invention relates to a turbidity detection device for a dry cleaner equipped with a notification function.

(ロ)従来の技術 この発明に最も近い先行技術としては、特開昭63−3
17191号公報などがある。これらに記載の濁度検出
方法は、洗濯槽の排水路中に、循環流路を設け、濁度検
出素子として受光側にはCd s sホ)LED、ホト
Trを設け、水を循環させたときの受光側の照度(lu
x)の変化を検出し、濁度の変化として取り扱っている
(b) Prior art The closest prior art to this invention is JP-A No. 63-3
There are publications such as Publication No. 17191. In the turbidity detection method described in these documents, a circulation channel is provided in the drainage channel of the washing tub, and a Cdss(e)LED and a phototransmitter are provided on the light receiving side as turbidity detection elements to circulate water. Illuminance on the receiving side (lu
x) is detected and treated as a change in turbidity.

従来の濁度の検出は、水あるいは溶剤中に異物が含まれ
、光の透過度が低下するのを間接的に濁度の変化として
取り扱うものである。
Conventional turbidity detection indirectly treats a decrease in light transmittance due to the inclusion of foreign matter in water or a solvent as a change in turbidity.

水を利用しfこ洗濯槽においては、照度の変化を濁度の
変化として識別し、それに基づいて洗濯時間、すすぎ時
間の延長あるいは短縮をする洗濯運転の制御に活用して
おり、ある程度の効果を発揮しているものと思われる。
In washing tanks that use water, changes in illuminance are identified as changes in turbidity, and based on this, the washing operation is controlled by extending or shortening the washing time and rinsing time, which has some effect. seems to be demonstrating this.

(ハ)発明が解決しようとする課題 溶剤を利用した洗濯槽に、上記しに従来の濁度検出素子
構造を適用した場合、溶剤の汚れがかなり高い場合につ
いては、濁度を検出することか可能であると思われる。
(c) Problems to be Solved by the Invention If the conventional turbidity detection element structure described above is applied to a washing tub that uses a solvent, it is difficult to detect turbidity when the solvent dirt is quite high. It seems possible.

しかしながら、溶剤中に含まれるソープ含有量、水分含
有量が多すぎる場合には、照度(lux)の変化量が少
ないため、濁度を検出することが困難になる。また、照
度(ILIK)の変化量が微小でも濁度を検出すること
ができるように設定したとしても、ソープ含有量の多す
ぎ、水分含有量の多すぎによって照度(lux)が同一
レベルであった場合、検出した濁度の要因が何によるも
のかを識別することが困難になる。
However, if the soap content and water content contained in the solvent are too large, it becomes difficult to detect turbidity because the amount of change in illuminance (lux) is small. Furthermore, even if the setting is made so that turbidity can be detected even if the amount of change in illuminance (ILIK) is minute, the illuminance (lux) may remain at the same level due to too much soap or water content. In this case, it becomes difficult to identify the cause of the detected turbidity.

まf二、従来の濁度検出器を、溶剤を活用する洗濯槽に
採用すると、上記したように、照度(ILIX)変化が
少ない1こめ、濁度検出か不正確になるという問題以外
に、配管中の溶剤の流れが循環ポンプを利用して得てい
るために、濁度検出器内で溶剤以外の気泡を多量に含ん
だ状態が発生するという問題もあった。すなわち、発光
側の光がその気泡に乱反射し、それにより白く濁った状
態として受光側に検出されるという問題である。このよ
うに、濁度の変化が少ない上に気泡による乱反射を沼〈
従来の濁度検出器では、溶剤を活用する洗濯槽に適さな
いことか理解できる。
Second, if a conventional turbidity detector is used in a washing tank that uses solvent, in addition to the problem of inaccurate turbidity detection due to the small change in illuminance (ILIX) as mentioned above, Since the flow of the solvent in the piping is obtained using a circulation pump, there is also a problem in that the turbidity detector contains a large amount of bubbles other than the solvent. That is, the problem is that the light on the light emitting side is diffusely reflected by the bubbles, and as a result, it is detected as a cloudy white state on the light receiving side. In this way, there is little change in turbidity, and the diffused reflection caused by air bubbles is reduced to swamp.
It is understandable that conventional turbidity detectors are not suitable for washing tubs that utilize solvents.

この発明は以上の事情を考慮してなされfこちので、溶
剤の濁度を正確に検出することができ、かつ検出時には
溶剤中に含まれる気泡の影響を低減しうるドライクリー
ナの濁度検出装置を掛供する。
The present invention has been made in consideration of the above circumstances, and is therefore a turbidity detection device for a dry cleaner that can accurately detect the turbidity of a solvent and reduce the influence of air bubbles contained in the solvent during detection. to offer.

(ニ)課題を解決するための手段 この発明のドライクリーナの濁度検出装置には2つの形
態がある。第1の装置は、低速または高速で回転するド
ラムを洗濯槽内に備え、この洗濯槽に、タンクに連なる
溶剤循環路の給液路および排液路が連結されたドライク
リーナにおいて、前記溶剤の循環路途中に光透過窓を設
け、該光透過窓を挟んだ状態で一方に複数色の発光を呈
する発光素子を、他方に、アモルファスシリコンの光起
電力効果を有する可視光センサと前記各発光色と対応す
るカラーフィルタとを組み合わせてなる受光素子を配置
し、それにより管路に流れる溶剤の濁度を検出しうる濁
度検出器を構成し、さらに該濁度検出器によって検出さ
れた濁度を報知する手段を設けたことを特徴としている
(d) Means for Solving the Problems There are two forms of the turbidity detection device for a dry cleaner according to the present invention. The first device is a dry cleaner in which a drum rotating at low or high speed is provided in a washing tub, and a supply path and a drainage path of a solvent circulation path connected to a tank are connected to the washing tub. A light transmitting window is provided in the middle of the circulation path, and with the light transmitting window sandwiched between them, a light emitting element that emits light of multiple colors is placed on one side, and a visible light sensor having a photovoltaic effect made of amorphous silicon and each of the above-mentioned light emitting elements are placed on the other side. A turbidity detector is configured by arranging a light-receiving element consisting of a combination of a color and a color filter corresponding to the color, thereby configuring a turbidity detector capable of detecting the turbidity of the solvent flowing in the pipe, and further detecting the turbidity detected by the turbidity detector. It is characterized by the provision of a means to notify the degree.

第2の装置は、上記濁度検出装置において、濁度検出装
置が設けられている濁度検出流路と並行してバイパス流
路を設け、濁度検出器に対して給液側となる流路に、濁
度検出流路をバイパス流路に切り換え、それにより濁度
検出器内の溶剤の流れを沈静化させるための切換弁を設
けてなることを特徴としている。
In the turbidity detection device, the second device includes a bypass flow path in parallel with the turbidity detection flow path in which the turbidity detection device is provided, and a flow path that is on the liquid supply side with respect to the turbidity detector. The turbidity detector is characterized in that the flow path is provided with a switching valve for switching the turbidity detection flow path to a bypass flow path, thereby calming the flow of the solvent within the turbidity detector.

(ホ)作用 第1の装置に従えば、水の濁度に比べ測度の変化量が少
ない溶剤の濁度を、照度(lux)の変化量の他に、各
カラーセンサからの色波長に応じた変化量、さらに、溶
剤交換時の溶剤の濁度の初期値によって識別することが
可能となり、濁度の度合いに応じたドライクリーナの運
転制御を実現できる。
(E) Effect According to the first device, the turbidity of the solvent, which has a smaller amount of change in measurement than the turbidity of water, can be measured based on the color wavelength from each color sensor in addition to the amount of change in illuminance (lux). This makes it possible to identify the change amount based on the amount of change in the turbidity of the solvent and the initial value of the turbidity of the solvent when replacing the solvent, and it is possible to control the operation of the dry cleaner according to the degree of turbidity.

第2の装置に従えば、第1の装置による濁度検出時に、
濁度検出器内の気泡の混入を著しく低減させることがで
きるので、濁度検出の誤差を小さくすることができ、濁
度検出の精度を向上させることかできる。
According to the second device, when the first device detects turbidity,
Since the inclusion of air bubbles in the turbidity detector can be significantly reduced, the error in turbidity detection can be reduced, and the accuracy of turbidity detection can be improved.

(へ)実施例 以下図に示す実施例に基づいてこの発明を詳述する。な
お、これによってこの発明は限定されるものではない。
(F) EXAMPLES The present invention will be described in detail below based on examples shown in the figures. Note that this invention is not limited by this.

この実施例では、濁度検出器の濁度受光素子としてカラ
ーセンサを採用する。このカラーセンサは、第15図に
示すアモルファスシリコンの光起電力効果を応用した可
視光センサ150と、Red、Green、 Blue
等のカラーフィルタ160とを組み合わせ1ニ構造を持
つものである(第16図参照)。
In this embodiment, a color sensor is employed as the turbidity light receiving element of the turbidity detector. This color sensor includes a visible light sensor 150 that applies the photovoltaic effect of amorphous silicon shown in FIG.
It has a one-two structure in combination with a color filter 160 such as (see FIG. 16).

可視光センサ150は、ガラス基板151と透明電極1
52とアモルファスシリコン153と裏面電極154と
を積層し、不純物を添付しないノンドープ層を設けたp
−1−n接合の構造からなる。
The visible light sensor 150 includes a glass substrate 151 and a transparent electrode 1.
52, amorphous silicon 153, and a back electrode 154 are laminated, and a non-doped layer with no impurities added is provided.
It consists of a -1-n junction structure.

禁制帯幅Eg(1,6〜1.8eV)よりも高いエネル
ギーを持つ光が入射すると、第17図に示すようにp、
nの両端を短絡しておけば、入射光量に比例した短絡光
電流1scが流れる。可視光センサ150はこの特性を
活用し、p、nの両端を小さ−)負荷抵抗で接続するこ
とにより、第18図の照度−出力電圧特性に示されるよ
うに、入射光量に比例しf二出力電圧か得られる。
When light with energy higher than the forbidden band width Eg (1.6 to 1.8 eV) is incident, p, as shown in FIG.
If both ends of n are short-circuited, a short-circuit photocurrent 1sc proportional to the amount of incident light will flow. The visible light sensor 150 takes advantage of this characteristic and connects both ends of p and n with a small load resistor, so that f2 is proportional to the amount of incident light, as shown in the illuminance-output voltage characteristic in FIG. Output voltage can be obtained.

第16図においてカラーセンサ+61は、可視光センサ
150の上部にカラーフィルタ+60を配し、入射した
光を各カラーフィルタの特性(第1O図、第11図参照
)かみ、各波長成分に分離した後、可視光センサ150
に光を入射させる構造である。第13図にその外観を示
す。第14図にその等低回路を示す。結果として、カラ
ーセンサ161の出力は、各フィルターの特性に応じた
波長の成分が出力電圧として取り出される。したがって
、各出力電圧の数値、各色の電圧比から、入射光か何色
であるかを識別することができる。
In Fig. 16, the color sensor +61 has a color filter +60 arranged above the visible light sensor 150, and separates the incident light into each wavelength component by taking into consideration the characteristics of each color filter (see Figs. 1O and 11). After, visible light sensor 150
It is a structure that allows light to enter. Figure 13 shows its appearance. FIG. 14 shows the equal low circuit. As a result, from the output of the color sensor 161, a wavelength component corresponding to the characteristics of each filter is extracted as an output voltage. Therefore, it is possible to identify the color of the incident light from the numerical value of each output voltage and the voltage ratio of each color.

実施例の濁度検出器を採用したドライクリーナを第1図
に示す。このドライクリーナは、1−1−1・トリクロ
ル・エタン溶剤を活用して洗濯を行うものである。
FIG. 1 shows a dry cleaner employing the turbidity detector of the embodiment. This dry cleaner performs washing using a 1-1-1 trichloroethane solvent.

同図において、ドライクリーナlは、高速で回転するド
ラム2を洗濯槽内に備え、この洗濯槽にはタック3に連
なる溶剤の給液路4および排液路5か連結されるととも
に、加熱器(図示しない)からの蒸気回路6および冷却
器(図示しない)からの冷却水回路7が連結されている
。なお、8は溶剤タンク、9は溶剤ポンプ、10は蒸留
器、11はフィルタ、12は新液タンク、13は回収槽
、14はリントフィルタ、15はソープ濃度センサ、1
6はボタントラップである。
In the figure, a dry cleaner 1 is equipped with a drum 2 that rotates at high speed in a washing tub, and a solvent supply path 4 and a drainage path 5 connected to a tuck 3 are connected to this washing tub, and a heater is also provided. A steam circuit 6 from a cooler (not shown) and a cooling water circuit 7 from a cooler (not shown) are connected. In addition, 8 is a solvent tank, 9 is a solvent pump, 10 is a distiller, 11 is a filter, 12 is a new liquid tank, 13 is a collection tank, 14 is a lint filter, 15 is a soap concentration sensor, 1
6 is a button trap.

洗濯動作においては、タンク3内の溶剤を、弁を開き、
循環ポンプを作動させてドラム2内へ溶剤を供給する。
In the washing operation, the solvent in the tank 3 is drained by opening the valve and
The circulation pump is operated to supply the solvent into the drum 2.

そして設定液位に至ると、循環ポンプを停止させて弁を
閉じ、ドラム2反転による洗濯を、設定しf二時間につ
いて実行する。脱液動作においては、弁を開き、循環ポ
ンプを作動させてトラム2内の溶剤をタンク3へ戻す。
When the set liquid level is reached, the circulation pump is stopped, the valve is closed, and washing is carried out by reversing the drum 2 for f2 hours. In the dewatering operation, the valve is opened and the circulation pump is operated to return the solvent in the tram 2 to the tank 3.

溶剤の汚わの浄化においては、弁を開き、循環ポンプを
作動させ、タンク3内の溶剤をフィルタ11に通過させ
、再度タンク3へ戻す循環動作を行う。すなわち、フィ
ルタ11に溶剤を通すことにより溶剤を浄化する。
In cleaning the solvent, the valve is opened, the circulation pump is operated, and the solvent in the tank 3 is passed through the filter 11 and returned to the tank 3, thereby performing a circulation operation. That is, the solvent is purified by passing it through the filter 11.

このような構成において実施例では、第2図に示すよう
に、濁度検出器20は溶剤の循環経路内に設ける。モし
てこの濁度検出器20に並行してバイパス流路21を設
け、かつ濁度検出器20の下部に、流路を制御するfこ
めの弁22を設ける。
In this embodiment, the turbidity detector 20 is provided in the solvent circulation path, as shown in FIG. A bypass flow path 21 is provided in parallel with the turbidity detector 20, and a valve 22 for controlling the flow path is provided below the turbidity detector 20.

第3図に温度検出器20のA−A方向(水平方向)断面
を示す。同図において溶剤の流れる配管30の一部には
、発光素子31、および受光素子としてのカラーセンサ
32のにめの光通過用の孔が設けられている。孔の部分
にはシールを施し、Siガラス33が取り付けられてお
り、光の直進性を向上させるfこめ、発光素子31とS
iガラス33およびSiガラス33とカラーセンサ32
との間に、内面に黒色塗装を施したフード34を取り付
けている。35はカラーセンサ32の出力側に接続され
た増幅回路、36は保護ケースである。
FIG. 3 shows a cross section of the temperature sensor 20 in the AA direction (horizontal direction). In the figure, a part of the pipe 30 through which the solvent flows is provided with a hole through which light passes from a light emitting element 31 and a color sensor 32 as a light receiving element. The hole part is sealed and Si glass 33 is attached to it, and the light emitting element 31 and S
i glass 33 and Si glass 33 and color sensor 32
A hood 34 whose inner surface is painted black is attached between the two. 35 is an amplifier circuit connected to the output side of the color sensor 32, and 36 is a protective case.

この実施例では、3色カラーセンサのフィルタ特性(第
11図参照)の波長に対応した発光特性を有する発光素
子を用いる。具体的には、Yellow。
In this embodiment, a light emitting element having light emission characteristics corresponding to the wavelengths of the filter characteristics (see FIG. 11) of a three-color color sensor is used. Specifically, Yellow.

Green、 Blueの各LEDや、LED以外の発
光素子として、カラーセンサの受光スペクトル特性に合
致した冷陰極型蛍光ランプ等を設置する。受光素子であ
るカラーセンサ32の出力信号は、第9図に示す対数増
幅を施した後、Greenの出力信号を基準に、Blu
e/ Green、 Yellow/ Greenの比
率、およびGreenの出力信号を、制m部であるマイ
コンへ送る。第4図はマイコンを備えたシステムブロッ
ク図である。同図においてマイコン40は、A/D変換
部41および色識別部42を有し、カラーセンサ32か
らの出力信号を受けて、濁度の度合い、色をそれぞれ識
別する。マイコン40は、スタート釦43、各種設定釦
44、外部表示装置45、溶剤充填ぼ1こん46、EE
PROM47、濁度検出回路48との間で信号を授受を
行う。
Green and Blue LEDs and cold cathode fluorescent lamps that match the light receiving spectrum characteristics of the color sensor are installed as light emitting elements other than LEDs. The output signal of the color sensor 32, which is a light receiving element, is logarithmically amplified as shown in FIG.
The ratio of e/Green, Yellow/Green, and the output signal of Green are sent to the microcomputer which is the controller. FIG. 4 is a system block diagram including a microcomputer. In the figure, a microcomputer 40 includes an A/D conversion section 41 and a color identification section 42, and receives an output signal from a color sensor 32 to identify the degree and color of turbidity, respectively. The microcomputer 40 includes a start button 43, various setting buttons 44, an external display device 45, a solvent filling button 46, and an EE button 44.
Signals are exchanged between the PROM 47 and the turbidity detection circuit 48.

3色カラーセンサ信号処理回路は、石油溶剤の汚れ要素
を、緑色成分(G)の照度を基準にして、青色/緑色、
黄色/緑色の各照度出力比から判別する回路であり(第
8図参照)、そして基準発光源(例えば昼白光を呈する
蛍光灯)の出力か弱まっ1このを判断する照度計として
緑色成分(G)の照度出力を利用するようにした回路で
ある。
The three-color color sensor signal processing circuit detects petroleum solvent contamination by blue/green, based on the illuminance of the green component (G).
This is a circuit that discriminates based on the yellow/green illuminance output ratio (see Figure 8), and is used as an illuminance meter to judge whether the output of a reference light source (for example, a fluorescent lamp exhibiting daylight white light) is weak or weak. ) is a circuit that utilizes the illuminance output.

また、第6図は石油溶剤の汚れ要素を、青色成分、緑色
成分、黄色成分の各照度特性から判別する基本回路であ
る。第5図は2色カラーセンサ信号処理回路であり、石
油溶剤の汚れ要素を青色成分と黄色成分だけで判別する
回路である。第7図は石油溶剤の汚れ要素を、青色成分
(Cy)と黄色成分(Ye)の照度出力比から判別する
回路である。
Further, FIG. 6 shows a basic circuit for determining the dirt factor of petroleum solvent from the illuminance characteristics of blue component, green component, and yellow component. FIG. 5 shows a two-color color sensor signal processing circuit, which distinguishes petroleum solvent contamination elements using only blue and yellow components. FIG. 7 shows a circuit for determining the dirt factor of petroleum solvent from the illuminance output ratio of the blue component (Cy) and the yellow component (Ye).

この実施例は、以下の制御を有する。すなわち、洗濯槽
の溶剤交換時における汚れのない溶剤の色を、濁度検出
器20によって濁度の度合い、色を識別し、汚れのない
溶剤の濁度の度合い、色、具体的にはBlue/Gre
en、 Yellow/Greenの比率、Green
の出力値を、EEPROMに数値にて記憶させ、洗濯運
転中の濁度検出器20からの出力値と記憶させた値とを
比較し、溶剤の濁度の変合い、色をより高精度で識別す
る制御を有する。
This example has the following controls. That is, when replacing the solvent in the washing tub, the turbidity detector 20 identifies the degree of turbidity and color of the clean solvent, and detects the degree of turbidity and color of the clean solvent, specifically, Blue. /Gre
en, Yellow/Green ratio, Green
The output value is stored in EEPROM as a numerical value, and the output value from the turbidity detector 20 during washing operation is compared with the stored value, and the change in turbidity of the solvent and the color can be determined with higher precision. Has control to identify.

第12図に示す特性図は、溶剤交換時の汚れの少ない各
色出力を基準にして、溶剤中に多くのソープか含まれる
場合、多くの水分が含まれる場合、洗濯時の衣類からの
汚れによる場合の3種類の濁度特性を示す。すなわち、
新液時は透明度が高い溶剤にソープが多く含まれること
により、緑めるいは黄色に変色する1こめに、カラーセ
ンサ32にはGreen以外のBlue、 Yello
wの出力が低くなる特徴を示す。溶剤中に水分が多く含
まれると、全体に白く変色するために、Green、 
Blue、 Yellowの出力が一律に低くなる特徴
を示す。また、洗濯時の衣類からの汚れは、溶剤中に多
くの異物が混入して全体に灰色に近い色となる。そのた
めに、水分が多く含まれたときのGreen、 Blu
e、 Yellowの出力よりもさらに低くなる特徴を
示す。
The characteristic diagram shown in Figure 12 is based on the output of each color with minimal stains when the solvent is replaced, when the solvent contains a lot of soap, when it contains a lot of water, and when it is caused by stains from clothes during washing. The turbidity characteristics of three types of cases are shown below. That is,
When a new liquid is used, the highly transparent solvent contains a large amount of soap, causing the color to change from green to yellow.
This shows the characteristic that the output of w becomes low. Green,
This shows the characteristic that the output of Blue and Yellow is uniformly low. In addition, stains from clothes during washing cause a lot of foreign matter to be mixed into the solvent, resulting in an overall color close to gray. Therefore, Green and Blue when a lot of water is contained.
e, shows a characteristic that the output is even lower than that of Yellow.

また、この実施例は以下の機構と制御を有する。Additionally, this embodiment has the following mechanism and control.

すなわち、溶剤中に気泡が混入した場合、濁度検出器2
0の発光素子31からの光がその気泡に当たって乱反射
を生じ、その結果、カラーセッサ32へ正常に光を伝達
することができなくなるという不都合を著しく低減する
機構と制御方法を有する。
In other words, if air bubbles are mixed into the solvent, the turbidity detector 2
The color sensor 32 has a mechanism and a control method that significantly reduce the inconvenience that the light from the light emitting element 31 of 0 hits the bubble and causes diffuse reflection, resulting in the inability to normally transmit the light to the color processor 32.

濁度の初期設定 1’19図は溶剤測度の初期設定を示すフローチャート
である。このフローチャートにおいては、ドライクリー
ナ1の溶剤交換時(溶剤充填時)における濁度初期値設
定の制御方法と、濁度検出時における溶剤中の気泡混入
を低減する制御方法を示す。
Initial setting of turbidity 1' Figure 19 is a flowchart showing the initial setting of the solvent measurement. This flowchart shows a control method for setting an initial value of turbidity during solvent replacement (solvent filling) in the dry cleaner 1, and a control method for reducing air bubbles in the solvent during turbidity detection.

ドライクリーナlにおける溶剤交換は、溶剤充填釦46
を押すことにより、タンク3への溶剤供給が開始される
(ステップ190)。すなわち、濁度検出器20下部の
流路切換弁V12を開としくステップ191) 、タン
ク3への流路を弁V13.Vllにて開き、循環ポンプ
を作動させる(ステップ192)。
To change the solvent in the dry cleaner l, press the solvent filling button 46.
By pressing , solvent supply to tank 3 is started (step 190). That is, the flow path switching valve V12 at the bottom of the turbidity detector 20 is opened (Step 191), and the flow path to the tank 3 is opened with the valve V13. Vll is opened and the circulation pump is activated (step 192).

充填開始から2分後、流路切換弁V12を閉じ(ステッ
プ193−194) 、濁度検出器20内に溶剤を溜め
、タンク3への溶剤供給はバイパス流路21を通じて行
う。開始してからの2分間という設定は、配管流量の安
定を図る以外に、濁度検出部のS+ガラス33表面を洗
浄する役目も含んている。流路切換弁V12が閉動作に
なってから30秒後、濁度検出器20内の溶剤の濁度検
出を行う。濁度検出部内の溶剤は、上記した流路切換え
動作により循環ポンプの影響を受けないので、沈静化さ
れ、溶剤中の気泡は除去されL状態となる。濁度検出器
20の出力である、Blue、 Green、 Yel
lowの各フィルタ160を通した各波長の出力電圧、
すなわちカラーセッサ32の出力は、対数増幅器LA6
600により増幅され、Greenの出力を基準にBl
ue/Green、 Yellow/Greenの比率
に応じた出力値に変換される(ステップ195→196
)。まfこ、カラーセンサ32への照度(LL[X)の
大きさを計測するために、Green単体の出力値を検
出する。この実施例で対数増幅器LAB600を活用し
たのは、照変(lux)の大小に関係なく広い範囲の計
測を実現するためである。
Two minutes after the start of filling, the flow path switching valve V12 is closed (steps 193-194), the solvent is stored in the turbidity detector 20, and the solvent is supplied to the tank 3 through the bypass flow path 21. The setting of 2 minutes from the start includes the role of cleaning the surface of the S+ glass 33 of the turbidity detection section, in addition to stabilizing the flow rate of the pipe. Thirty seconds after the flow path switching valve V12 is closed, the turbidity of the solvent in the turbidity detector 20 is detected. Since the solvent in the turbidity detection section is not affected by the circulation pump due to the above-described flow path switching operation, it is calmed down, air bubbles in the solvent are removed, and the solvent is in the L state. The output of the turbidity detector 20 is Blue, Green, and Yellow.
The output voltage of each wavelength through each low filter 160,
That is, the output of the color processor 32 is sent to the logarithmic amplifier LA6.
600, and Bl based on the output of Green.
It is converted into an output value according to the ratio of ue/Green and Yellow/Green (step 195→196
). In order to measure the magnitude of illuminance (LL[X) to the color sensor 32, the output value of Green alone is detected. The reason why the logarithmic amplifier LAB600 is utilized in this embodiment is to realize measurement over a wide range regardless of the magnitude of lux.

得られ?:Blue、 Green、 Yellowの
各出力はマイコンのA/D変換部41にてA/D変換を
施し、検出した値をEEROM47に書き込む。これら
の数値は、溶剤交換時における汚れの少ない濁度に対応
する。洗濯動作にお:する溶剤の濁度検出時に、汚れの
進行度合いを高い精度で識別するために、この初期値を
活用する。
Did you get it? : Each output of Blue, Green, and Yellow is subjected to A/D conversion by the A/D conversion section 41 of the microcomputer, and the detected values are written into the EEROM 47. These values correspond to turbidity with less fouling during solvent exchange. When detecting the turbidity of the solvent used in the washing operation, this initial value is used to identify the degree of stain progression with high accuracy.

さらに、タンク3の液位の上限を検出しくステップ+9
8) 、液位が上限にくれば、流路切換弁v12を開き
、循環ポンプを停止させ、弁V3.Vllを閉じ(ステ
ップ199) 、溶剤充填を完了する。
Furthermore, step +9 to detect the upper limit of the liquid level in tank 3.
8) When the liquid level reaches the upper limit, open the flow path switching valve v12, stop the circulation pump, and close the valve V3. Close the Vll (step 199) and complete the solvent filling.

ソープ含有過多の検出 第20図はソープ含有過多を検出する1こめの処理を示
すフローチャートである。このフローチャートにおいて
は、濁度検出器20を活用して、溶剤中のソープ含有が
多い場合のソープ投入制御の中止、ソープ含有か多いこ
とを外部に報知する制御を示す。
Detection of excessive soap content FIG. 20 is a flowchart showing the first step of detecting excessive soap content. This flowchart shows a control that utilizes the turbidity detector 20 to stop the soap injection control when the soap content in the solvent is high, and to notify the outside that the soap content is high.

まず、ドライクリーナの操作パネルにて、ソープ投入の
設定、洗濯時間、ドラム液位の設定操作を行った後(ス
テップ200−201) 、スタート釦43を押し、洗
濯運転を開始する。これにより、タンク3内の溶剤を、
弁Vl、V6.V12を開き循環ポンプを作動させるこ
とによってドラム3内へ供給する(ステップ202→2
03)。このとき、濁度検出部は、溶剤の通過によりS
iガラス表面か洗浄される。次いで30秒経過後、濁度
検出器20の下部の流路制御弁V12を閉にしくステッ
プ204→205)、検出器20に溶剤を溜めた状態に
して溶剤中に含まれる気泡を低減させる。
First, after setting soap injection, washing time, and drum liquid level on the operation panel of the dry cleaner (steps 200-201), the start button 43 is pressed to start the washing operation. As a result, the solvent in tank 3 is
Valve Vl, V6. Supply into the drum 3 by opening V12 and operating the circulation pump (step 202→2
03). At this time, the turbidity detection section detects S due to the passage of the solvent.
i The glass surface is cleaned. After 30 seconds have elapsed, the flow path control valve V12 at the bottom of the turbidity detector 20 is closed (steps 204→205), and the solvent is stored in the detector 20 to reduce bubbles contained in the solvent.

流路制御弁V 1.2を閉じてから30秒経過後、濁度
を計測する。すなわち、Blue/ Green (B
/ G)Yellow/Green(Y/G)、 Gr
een(G)の計測を行う。
Thirty seconds after closing the flow path control valve V1.2, measure the turbidity. That is, Blue/Green (B
/ G)Yellow/Green(Y/G), Gr
Measure een(G).

次いでEEPROM47から、溶剤交換時に計測した濁
度、すなわち、Bo/GoSYo/’GoSGoの値を
読み出す(ステップ208)。溶剤中にソープが多く含
まれると、青色、黄色の波長出力が緑色の波長出力より
低下してくるために、全体として緑の波長出力が目立っ
てくる傾向がある。特に、ソープの劣化が進むと、その
特徴が明確に現れる。それゆえ、この実施例では、初期
の検出値との比較が下記の条件を満たせば、ソープ含有
量が多いと識別する。
Next, the turbidity measured at the time of solvent exchange, that is, the value of Bo/GoSYo/'GoSGo is read from the EEPROM 47 (step 208). When a large amount of soap is contained in the solvent, the blue and yellow wavelength outputs are lower than the green wavelength outputs, so the green wavelength outputs tend to become more noticeable as a whole. In particular, as the soap deteriorates, its characteristics become clearer. Therefore, in this embodiment, if the comparison with the initial detection value satisfies the following conditions, it is determined that the soap content is high.

B/ G< B0/ Go  a n d  Y/ G
< Yo/ G。
B/ G< B0/ Go and Y/ G
<Yo/G.

ソープ含有量が多いと識別したとき、ソープ投入設定を
解除しくステップ209−211) 、溶剤中のソープ
含有が増加しないようにする。そして制御パネルに設け
た“ソープ過多”の表示ランプ45を点灯してユーザー
に報知する(ステップ212)。濁度検出が終了すると
、流路制御弁V12を開に戻す(ステップ213)。ド
ラム3内の液位が設定液位に到達すれば、タンク3から
の溶剤供給を停止する。すなわち、循環ポンプの停止と
各制御弁Vl、V6、V12の閉操作を実施して(ステ
ップ216) 、ソープ投入の設定有無を判断した後、
設定がなければドラム反転制御に移る(ステップ217
−218)。所定時間洗濯運転を実行した後、洗濯運転
制御を終了する(ステップ219)。なお、ステップ2
17においてソープ投入の設定があれば投入を行い(ス
テップ220)、ステップ218に移る。
When it is determined that the soap content is high, the soap injection setting is canceled (steps 209-211) to prevent the soap content in the solvent from increasing. Then, the "too much soap" indicator lamp 45 provided on the control panel is turned on to notify the user (step 212). When the turbidity detection is completed, the flow path control valve V12 is returned to open (step 213). When the liquid level in the drum 3 reaches the set liquid level, the supply of solvent from the tank 3 is stopped. That is, after stopping the circulation pump and closing each of the control valves Vl, V6, and V12 (step 216), and determining whether soap injection is set or not,
If there is no setting, the process moves to drum reversal control (step 217).
-218). After executing the washing operation for a predetermined time, the washing operation control is ended (step 219). In addition, step 2
If there is a setting for soap injection in step 17, the soap injection is performed (step 220), and the process moves to step 218.

(ト)発明の効果 この発明によれば、(1)溶剤の濁度検出を、色の変化
で識別することにより、濁度がソープ含有量の過多であ
るか、水分含有量の過多であるか、または衣類かろの汚
れによるものであるかを高い精度で識別することができ
る。
(G) Effects of the Invention According to this invention, (1) By detecting the turbidity of a solvent and identifying it by a change in color, it is possible to determine whether the turbidity is due to excessive soap content or excessive water content. It is possible to identify with high accuracy whether it is caused by soiling or stains on clothes.

(2)流路切換弁とその制御方法により、濁度検出中に
おいて溶剤中に含まれる気泡を著しく低減させることが
でき、その結果、光の乱反射による濁度検出の誤りを防
ぎ、高精度の識別結果を得ることができる。
(2) The flow path switching valve and its control method can significantly reduce air bubbles contained in the solvent during turbidity detection.As a result, errors in turbidity detection due to diffused reflection of light can be prevented, and high accuracy can be achieved. Identification results can be obtained.

(3)溶剤交換時の濁度検出値を記憶させることにより
、洗濯中の濁度変化が初期の状態と比較してどのように
変化したかを正確に把握することができる。また、ユー
ザー溶剤の種類を変更しても、制御側にて溶剤交換時に
濁度検出が自動的に行われるため、濁度検出か溶剤の種
類に関係なく高精度にて識別される。
(3) By storing the turbidity detection value at the time of solvent exchange, it is possible to accurately grasp how the turbidity changes during washing compared to the initial state. Furthermore, even if the user changes the type of solvent, turbidity detection is automatically performed on the control side when replacing the solvent, so identification is performed with high accuracy regardless of whether the turbidity is detected or the type of solvent.

(4)濁度検出器からの出力により、ソープ含有量が高
いにもかかわらずソープをさらに追加するといった誤操
作を防ぐことができ、洗濯中の衣類の損傷を未然に防ぐ
ことができる。
(4) The output from the turbidity detector can prevent erroneous operations such as adding more soap even though the soap content is high, and can prevent damage to clothes during washing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるドライクリーナの構
成図、第2図は第1図に示す濁度検出部の拡大図、第3
図は濁度検出器の断面図、第4図はマイコンのシステム
ブロック図、第5図は2色カラーセンサ信号処理回路、
第6図は3色カラーセンサ信号処理回路、第7図は照度
比による2色カラーセンサ信号処理回路、第8図は照度
比による3色カラーセンサ信号処理回路、第9図は照度
比による第2の3色カラーセンサ信号処理回路、第10
図は2色カラーセンサによる分光感度を示す説明図、第
11図は3色カラーセンサにより分光感度を示す説明図
、第12図は色比力値特性を示す説明図、第13図はカ
ラーセンサの外観図、第14図は第13図の等価回路図
、第15図は可視光センサの構造を示す断面図、第16
図はアモルファスカラーセンサの構造を示す断面図、第
17図はアモルファス光センサのバンド構造を示す説明
図、第18図は照度−出力電圧特性図、第19図は溶剤
濁度の初期設定を示すフローチャート、第20図はソー
ブ含宵過多を検出する処理を示すフローチャートである
。 】・・・・・・トライクリーナ、  2・・・・・ドラ
ム、3・・・・・タンク、4・・・・・給液路、5  
・・排液路、6 ・・・ 蒸気回路、7・・・・・・冷
却水回路、20・ ・濁度検出器、21・・・・・バイ
パス胤路、22・・・・・流路切換弁、31・・・・・
・発光素子、32・・・・・カラーセンサ。 12図 3g 斉す マ タ略〆 斉す 13図 36:イ呆謹り”−ス 第6図 ↓ 工 A6600 第10図 500(nm) 555(nm) 波 甚 111図 470</ITI) 540(/rrl) 600()m) 清 吾 第12図 第14図 第15図 館16図
Fig. 1 is a block diagram of a dry cleaner that is an embodiment of the present invention, Fig. 2 is an enlarged view of the turbidity detection section shown in Fig. 1, and Fig. 3 is an enlarged view of the turbidity detection section shown in Fig. 1.
The figure is a cross-sectional view of the turbidity detector, Figure 4 is a system block diagram of the microcomputer, Figure 5 is a two-color color sensor signal processing circuit,
Figure 6 shows a three-color color sensor signal processing circuit, Figure 7 shows a two-color color sensor signal processing circuit based on illumination ratio, Figure 8 shows a three-color color sensor signal processing circuit based on illumination ratio, and Figure 9 shows a three-color color sensor signal processing circuit based on illuminance ratio. 2.3 color sensor signal processing circuit, 10th
Figure 11 is an explanatory diagram showing spectral sensitivity using a two-color color sensor, Figure 11 is an explanatory diagram showing spectral sensitivity using a three-color color sensor, Figure 12 is an explanatory diagram showing color specific power value characteristics, and Figure 13 is an explanatory diagram showing spectral sensitivity using a three-color color sensor. 14 is an equivalent circuit diagram of FIG. 13, FIG. 15 is a sectional view showing the structure of the visible light sensor, and FIG. 16 is an equivalent circuit diagram of FIG.
The figure is a cross-sectional view showing the structure of an amorphous color sensor, Figure 17 is an explanatory diagram showing the band structure of an amorphous optical sensor, Figure 18 is an illuminance-output voltage characteristic diagram, and Figure 19 is an initial setting of solvent turbidity. Flowchart FIG. 20 is a flowchart showing a process for detecting excessive sorb content. ]...Try cleaner, 2...Drum, 3...Tank, 4...Liquid supply path, 5
...Drainage path, 6... Steam circuit, 7... Cooling water circuit, 20... Turbidity detector, 21... Bypass line, 22... Channel Switching valve, 31...
- Light emitting element, 32...color sensor. 12 Fig. 3g 13 Fig. 36: I'm sorry - Fig. 6 rrl) 600()m) Seigo Figure 12 Figure 14 Figure 15 Museum Figure 16

Claims (2)

【特許請求の範囲】[Claims] 1.低速または高速で回転するドラムを洗濯槽内に備え
、この洗濯槽に、タンクに連なる溶剤循環路の給液路お
よび排液路が連結されたドライクリーナにおいて、 前記溶剤の循環路途中に光透過窓を設け、該光透過窓を
挟んだ状態で一方に複数色の発光を呈する発光素子を、
他方に、アモルファスシリコンの光起電力効果を有する
可視光センサと前記各発光色と対応するカラーフィルタ
とを組み合わせてなる受光素子を配置し、それにより管
路に流れる溶剤の濁度を検出しうる濁度検出器を構成し
、さらに該濁度検出器によって検出された濁度を報知す
る手段を設けたことを特徴とするドライクリーナの濁度
検出装置。
1. In a dry cleaner in which a drum rotating at low or high speed is provided in a washing tub, and a supply path and a drainage path of a solvent circulation path connected to a tank are connected to the washing tub, light is transmitted in the middle of the solvent circulation path. A window is provided, and a light-emitting element that emits light of multiple colors is placed on one side with the light-transmitting window sandwiched therebetween.
On the other hand, a light-receiving element formed by combining a visible light sensor made of amorphous silicon with a photovoltaic effect and a color filter corresponding to each of the emitted light colors is arranged, whereby the turbidity of the solvent flowing in the pipe can be detected. A turbidity detection device for a dry cleaner, comprising a turbidity detector and further comprising means for notifying the turbidity detected by the turbidity detector.
2.請求項1記載の濁度検出装置において、濁度検出装
置が設けられている濁度検出流路と並行してバイパス流
路を設け、濁度検出器に対して給液側となる流路に、濁
度検出流路をバイパス流路に切り換え、それにより濁度
検出器内の溶剤の流れを沈静化させるための切換弁を設
けてなるドライクリーナの濁度検出装置。
2. In the turbidity detection device according to claim 1, a bypass flow path is provided in parallel with the turbidity detection flow path in which the turbidity detection device is provided, and a bypass flow path is provided in the flow path on the liquid supply side with respect to the turbidity detector. A turbidity detection device for a dry cleaner comprising a switching valve for switching a turbidity detection flow path to a bypass flow path and thereby calming the flow of a solvent in the turbidity detector.
JP2262055A 1990-09-29 1990-09-29 Dry cleaner turbidity detector Expired - Lifetime JP2532988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262055A JP2532988B2 (en) 1990-09-29 1990-09-29 Dry cleaner turbidity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262055A JP2532988B2 (en) 1990-09-29 1990-09-29 Dry cleaner turbidity detector

Publications (2)

Publication Number Publication Date
JPH04141196A true JPH04141196A (en) 1992-05-14
JP2532988B2 JP2532988B2 (en) 1996-09-11

Family

ID=17370408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262055A Expired - Lifetime JP2532988B2 (en) 1990-09-29 1990-09-29 Dry cleaner turbidity detector

Country Status (1)

Country Link
JP (1) JP2532988B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045405A (en) * 2003-07-04 2004-02-12 Sanyo Electric Co Ltd Calibration method and filtration method using the same
EP1528137A1 (en) * 2003-10-29 2005-05-04 c/o Clean Sawa Kabushiki Kaisha Kohei Sawa Dry cleaning method and apparatus therefor
JP2005528585A (en) * 2001-12-12 2005-09-22 ザ プロクター アンド ギャンブル カンパニー Method for cleaning dirty items
WO2006104180A1 (en) * 2005-03-29 2006-10-05 Miura Co., Ltd. Optical measurement device
US7308808B2 (en) * 2002-04-22 2007-12-18 General Electric Company Apparatus and method for article cleaning
US7603878B2 (en) 2002-04-22 2009-10-20 General Electric Company System and method for improved solvent recovery in a dry cleaning device
JP2015513372A (en) * 2012-04-02 2015-05-11 エコラボ ユーエスエー インコーポレイティド Flow chamber for online fluorescence measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105312A1 (en) * 2006-03-14 2007-09-20 Gast Japan Co., Ltd Soil inspection system, soil inspection device, soil inspection program, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045470A (en) * 1973-08-29 1975-04-23
JPS5332971A (en) * 1976-09-09 1978-03-28 Nec Corp Washing method
JPS6223584U (en) * 1985-07-23 1987-02-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045470A (en) * 1973-08-29 1975-04-23
JPS5332971A (en) * 1976-09-09 1978-03-28 Nec Corp Washing method
JPS6223584U (en) * 1985-07-23 1987-02-13

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528585A (en) * 2001-12-12 2005-09-22 ザ プロクター アンド ギャンブル カンパニー Method for cleaning dirty items
US7308808B2 (en) * 2002-04-22 2007-12-18 General Electric Company Apparatus and method for article cleaning
US7603878B2 (en) 2002-04-22 2009-10-20 General Electric Company System and method for improved solvent recovery in a dry cleaning device
JP2004045405A (en) * 2003-07-04 2004-02-12 Sanyo Electric Co Ltd Calibration method and filtration method using the same
EP1528137A1 (en) * 2003-10-29 2005-05-04 c/o Clean Sawa Kabushiki Kaisha Kohei Sawa Dry cleaning method and apparatus therefor
WO2006104180A1 (en) * 2005-03-29 2006-10-05 Miura Co., Ltd. Optical measurement device
JP2015513372A (en) * 2012-04-02 2015-05-11 エコラボ ユーエスエー インコーポレイティド Flow chamber for online fluorescence measurement

Also Published As

Publication number Publication date
JP2532988B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
CN105369562B (en) Washing machine with clothes fading prevention reminding function
US4406028A (en) Method of detecting the release of dye from laundry during a washing operation in a washing machine and implementation of said method
US7400407B2 (en) Meter for measuring the turbidity of fluids using reflected light
JPH01145548A (en) Photoelectric apparatus for deciding material that absorbs light at spectrally different state in sample
JPH04141196A (en) Turbidity detector for dry cleaner
US6456375B1 (en) Focused laser light turbidity sensor apparatus and method for measuring very low concentrations of particles in fluids
US7113280B2 (en) Dye detection method and apparatus
US12060668B2 (en) Washing machine and method of controlling the same
CN107938260A (en) One kind washing real-time monitoring system
US2080613A (en) Light operated electric photometer
JPH0435684A (en) Washing machine
JPS6222689A (en) Washing machine
Taygun et al. Design of a smart sensor for dyebath concentration measurement in textile industry
JPS58178243A (en) Optical apparatus for measuring suspended substance concentration
CN112147101A (en) Portable water quality analyzer and method for soluble organic matters and nitrate nitrogen
JPH0323181Y2 (en)
JPS6222694A (en) Washing machine
JPH0350874Y2 (en)
CN214844785U (en) Water quality analyzer for soluble organic matter and nitrate nitrogen
TWI817195B (en) System and method for optical detection of turbid liquid
JPH0712726A (en) Optical device for measuring transmitted light
JPH01148943A (en) Concentration detector
JPS626476B2 (en)
JPH0426472Y2 (en)
JPH06167442A (en) Determining method for quality of cloth and cloth sensor