JPH04140687A - Ultrasonic object recognition device - Google Patents

Ultrasonic object recognition device

Info

Publication number
JPH04140687A
JPH04140687A JP2263313A JP26331390A JPH04140687A JP H04140687 A JPH04140687 A JP H04140687A JP 2263313 A JP2263313 A JP 2263313A JP 26331390 A JP26331390 A JP 26331390A JP H04140687 A JPH04140687 A JP H04140687A
Authority
JP
Japan
Prior art keywords
initial value
temperature
address
memory
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263313A
Other languages
Japanese (ja)
Inventor
Hideyuki Watanabe
英行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2263313A priority Critical patent/JPH04140687A/en
Publication of JPH04140687A publication Critical patent/JPH04140687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To improve recognition speed by correcting the initial value of address arithmetic circuit in accordance with the temperature change and memorizing reflecting wave data at roughly determined position in a memory. CONSTITUTION:Ultrasonic sound is emitted from an ultrasonic sensor 2 to an object 14 and the reflected sound is received by the sensor 2. The received signal is converted with an A/D converter circuit 5 into digital signal 8 and is memorized in a memory 6 following the address 12 calculated with an address arithmetic circuit. On the other hand, a temperature sensor 13 detects temperature and inputs in an initial value correction means 10. The means 10 does a correction calculation to decrease an initial value 11 when the temperature is high and to increase it when the temperature is low so as to keep it constant. Then the initial value 11 is input in the arithmetic circuit 9, and the address of the reflected sound data in the memory 6 is calculated to output to the memory 6. And the reflected sound data is memorized at a roughly determined position in the memory 6. Therefore, searching of reflected sound data in the memory device is not necessary even in the case of temperature change, and thus the speed of object recognition is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、超音波ホログラフィ−像再生等のシステム
における超音波素子を用いた超音波物体認識装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an ultrasonic object recognition device using an ultrasonic element in a system such as ultrasonic holography and image reproduction.

[従来の技術] 超音波を対象物体に照射して反射波を測定することによ
り対象物体像を再生する音響ホログラフィ−システムに
おいては、超音波素子を用いて物体を認識する超音波物
体認識装置が配備されている。
[Prior Art] In an acoustic holography system that reproduces a target object image by irradiating the target object with ultrasonic waves and measuring the reflected waves, an ultrasonic object recognition device that recognizes the object using an ultrasonic element is used. It is deployed.

従来、この超音波物体認識装置には、超音波センサと対
象物体の距離に応じて送波器若しくは受波器の増幅器の
利得を制御する方式のものがある。
Conventionally, some ultrasonic object recognition devices employ a method of controlling the gain of an amplifier of a transmitter or a receiver depending on the distance between an ultrasonic sensor and a target object.

[発明が解決しようとする課題] しかしながら、上記従来の超音波物体認識装置において
は、気温が変化すると超音波の速度も変化するので、記
憶装置に記憶しである物体からの反射波データは気温が
変化すると共にその記憶場所が移動する。このため、気
温が変化する度に記憶装置内の反射波データを検索しな
ければならず、物体認識の速度が低下するという欠点が
あった。
[Problems to be Solved by the Invention] However, in the conventional ultrasonic object recognition device described above, the speed of ultrasonic waves also changes when the temperature changes, so the reflected wave data from an object stored in the storage device is based on the temperature. As the value changes, its memory location also moves. Therefore, it is necessary to search the reflected wave data in the storage device every time the temperature changes, resulting in a disadvantage that the speed of object recognition decreases.

また、対象物体の波形が常に同じタイミングで得られな
いという欠点もあった。
Another drawback is that the waveform of the target object cannot always be obtained at the same timing.

そこで、この発明は、上述した従来の問題点を解消し、
気温が変化しても、記憶装置内の反射波データの検索を
する必要がなく、その分だけ物体認識の速度を向上させ
ることのできる超音波物体認識装置を提供することを課
題としている。
Therefore, this invention solves the above-mentioned conventional problems, and
An object of the present invention is to provide an ultrasonic object recognition device that does not require searching for reflected wave data in a storage device even when the temperature changes, and can improve object recognition speed accordingly.

[課題を解決するための手段] この発明の要旨とするところは、少なくとも、バースト
波を生成する発信回路と、対象物体へ超音波を送波し且
つ該対象物体から反射してくる超音波の受波を行なう超
音波センサと、該超音波センサからの出力を増幅する増
幅回路と、該増幅回路の出力から反射波データを生成す
るためのA/D変換回路、該A/D変換回路からの反射
波データを記憶する記憶装置と、該記憶装置に前記反射
波データを記憶する際のアドレスを演算するアドレス演
算器と、前記記憶装置の反射波データを演算処理して前
記対象物体を認識するデータ処理手段とを備えた超音波
物体認識装置において、気温。
[Means for Solving the Problems] The gist of the present invention is at least to include a transmitting circuit that generates a burst wave, and a transmitting circuit that transmits ultrasonic waves to a target object and transmits ultrasonic waves that are reflected from the target object. An ultrasonic sensor that receives waves, an amplifier circuit that amplifies the output from the ultrasonic sensor, an A/D conversion circuit that generates reflected wave data from the output of the amplifier circuit, and from the A/D conversion circuit. a storage device that stores reflected wave data of the storage device; an address calculator that calculates an address for storing the reflected wave data in the storage device; and a computer that processes the reflected wave data of the storage device to recognize the target object. An ultrasonic object recognition device comprising a data processing means that determines the temperature.

を検知する温度検知手段と、前記反射波データの記憶位
置が変動しないように、前記温度検知手段の検知結果に
基づいて前記アドレス演算器の初期値を補正演算する初
期値補正手段とを具備したことにある。
and an initial value correcting means for correcting the initial value of the address calculator based on the detection result of the temperature detecting means so that the storage position of the reflected wave data does not change. There is a particular thing.

[作  用] したがって、温度検知手段が温度を検知してその信号が
初期値補正手段へ入力される。この初期値補正手段では
、記憶装置に記憶される反射波データのアドレスの初期
値(開始番地)を前記入力された温度に応じて補正し、
アドレス演算器へ出力する。このアドレス演算器は補正
された初期値を基にして前述したアドレスを演算し、前
記記憶装置へ出力するので、該記憶装置では前記反射波
データが常に略定位置に記憶される。
[Operation] Therefore, the temperature detection means detects the temperature and the signal thereof is input to the initial value correction means. The initial value correction means corrects the initial value (start address) of the address of the reflected wave data stored in the storage device according to the input temperature,
Output to address calculator. This address calculator calculates the above-mentioned address based on the corrected initial value and outputs it to the storage device, so that the reflected wave data is always stored at a substantially fixed position in the storage device.

[実施例] 以下、この発明の実施例を図面を参照して説明する。第
1図の機能ブロック図において、1はバースト波を生成
する発信回路、2は超音波を対象物体14へ送波及び受
波する超音波センサ、3は送波時の超音波センサ2の振
動を抑制する共振抑制回路、4は受波時の超音波センサ
からの出力を増幅する増幅回路であるアンプとフィルタ
、5はA/D変換回路、6はA/D変換回路5でデジタ
ル変換された反射波データを記憶するメモリ(記憶装置
)、7はメモリ6内の反射波データから対象物体14を
認識するデータ処理手段、9はメモリ6の反射波データ
のアドレスを演算するアドレス演算器、10はアドレス
演算器9のアドレスの初期値(開始番地)を補正する初
期値補正回路、13は周囲の温度を検知するための温度
センサ(温度検知手段)である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. In the functional block diagram of FIG. 1, 1 is a transmission circuit that generates a burst wave, 2 is an ultrasonic sensor that transmits and receives ultrasonic waves to a target object 14, and 3 is a vibration of the ultrasonic sensor 2 when transmitting waves. 4 is an amplifier and filter that is an amplification circuit that amplifies the output from the ultrasonic sensor during reception, 5 is an A/D conversion circuit, and 6 is digitally converted by the A/D conversion circuit 5. 7 is a data processing means for recognizing the target object 14 from the reflected wave data in the memory 6; 9 is an address calculator for calculating the address of the reflected wave data in the memory 6; 10 is an initial value correction circuit for correcting the initial value (starting address) of the address of the address calculator 9, and 13 is a temperature sensor (temperature detection means) for detecting the ambient temperature.

上記構成の超音波物体認識装置において、発信回路1で
バースト波が生成され、超音波センサ2から対象物体1
4に超音波が照射(送波)される。
In the ultrasonic object recognition device having the above configuration, a burst wave is generated in the transmitting circuit 1 and transmitted from the ultrasonic sensor 2 to the target object 1.
4, ultrasonic waves are irradiated (transmitted).

この超音波の照射後、共振抑制回路3が動作して超音波
センサ2の振動が抑制され、その振動が充分に減衰した
後、対象物体14からの反射波を同じ超音波センサ2で
受波する。この受波された信号は微小であるからアンプ
4で増幅された後、A/D変換回路5に入力されてデジ
タル信号8に変換される。変換されたデジタル信号8は
アドレス演算器9で演算されるアドレス12にしたがっ
てメモリ6に記憶される。
After this ultrasonic irradiation, the resonance suppression circuit 3 operates to suppress the vibration of the ultrasonic sensor 2, and after the vibration is sufficiently attenuated, the reflected wave from the target object 14 is received by the same ultrasonic sensor 2. do. Since this received signal is minute, it is amplified by an amplifier 4 and then input to an A/D conversion circuit 5 where it is converted into a digital signal 8. The converted digital signal 8 is stored in the memory 6 according to the address 12 calculated by the address calculator 9.

一方、初期値補正回路10はメモリ6に記憶される反射
波データのアドレスが温度によって変動しないような、
そのアドレスの初期値11を演算するものである。例え
ば、第2図に示すように、気温が比較的高い時にはメモ
リ6に記憶される反射波データのアドレスの初期値はa
工であり(同図(a))、又気温が比較的低い時の反射
波データのアドレスの初期値はaa(同図(b)、al
(a、)であって、このように、反射波データのメモリ
6におけるアドレスは気温の違いによって変動してしま
う。
On the other hand, the initial value correction circuit 10 is configured such that the address of the reflected wave data stored in the memory 6 does not change depending on the temperature.
The initial value 11 of that address is calculated. For example, as shown in FIG. 2, when the temperature is relatively high, the initial value of the address of the reflected wave data stored in the memory 6 is a.
((a) in the same figure), and the initial value of the address of the reflected wave data when the temperature is relatively low is aa ((b) in the same figure, al
(a,) In this way, the address of the reflected wave data in the memory 6 changes depending on the temperature.

そこで、温度センサ13によって気温を検出して初期値
補正回路10に入力し、この入力された気温が高ければ
反射波データのアドレスの初期値11を小さく、その気
温が低ければ初期値11が大きくなるように該初期値1
1を初期値補正回路10で補正演算して初期値11が一
定となるようにする。例えば、気温をt、初期値11を
a。とすると、 a。=αを十β     ・・・・(1)の演算式にお
いて、定数α、βを予め適宜選定しておくことにより初
期値11を算出する。
Therefore, the temperature is detected by the temperature sensor 13 and inputted to the initial value correction circuit 10. If the input temperature is high, the initial value 11 of the address of the reflected wave data is decreased, and if the temperature is low, the initial value 11 is increased. The initial value 1 so that
1 is corrected by an initial value correction circuit 10 so that the initial value 11 becomes constant. For example, the temperature is t, and the initial value 11 is a. Then, a. = α to 10 β In the arithmetic expression (1), the initial value 11 is calculated by appropriately selecting constants α and β in advance.

この初期値11はアドレス演算器9に入力されてメモリ
6における反射波データのアドレスが算出され、メモリ
6に出力されるが、該初期値11は前述した気温の変化
によるアドレスの変動に応じてその大きさが変化する(
(1)式参照)ため、反射波データは常にメモリ6の略
定位置、例えば第2図(c)に示すように、初期値a2
(a、〈a2〈a、)の位置に記憶される。そして、メ
モリ6の反射波データからデータ処理手段7により、対
象物体14が電気的に認識される。
This initial value 11 is input to the address calculator 9 to calculate the address of the reflected wave data in the memory 6, and is output to the memory 6. However, the initial value 11 is changed depending on the address fluctuation due to the temperature change mentioned above. Its size changes (
(1)) Therefore, the reflected wave data is always at a substantially fixed position in the memory 6, for example, as shown in FIG. 2(c), the initial value a2
It is stored at the position (a, <a2<a,). Then, the target object 14 is electrically recognized by the data processing means 7 from the reflected wave data in the memory 6.

このように、気温が比較的高ければ反射波データの初期
値は小さくなる(例えばa工)ので、補正される初期値
a0は太き目にされ((1)式参照)、気温が比較的低
ければ、反射波データの初期値は大きくなる(例えばa
3)ので、補正される初期値a。は小さくされることに
より、反射波データはメモリ6の略定位置(例えば初期
値a2の位置)に記憶される。
In this way, if the temperature is relatively high, the initial value of the reflected wave data will be small (for example, a), so the initial value a0 to be corrected is made thicker (see equation (1)), If it is low, the initial value of the reflected wave data will be large (for example, a
3), the initial value a to be corrected. By reducing , the reflected wave data is stored at a substantially fixed position in the memory 6 (for example, at the position of the initial value a2).

[発明の効果コ 以上説明したように、この発明によれば、気温の変化に
応じてアドレス演算器の初期値の補正を行なって、反射
波データをメモリの略定位置に記憶する構成としたので
、従来のように、メモリ内の反射波データの検索を行な
う必要がなく、物体認識の速度を向上させることができ
る。
[Effects of the Invention] As explained above, according to the present invention, the initial value of the address calculator is corrected in accordance with changes in temperature, and the reflected wave data is stored in a substantially fixed position in the memory. Therefore, there is no need to search for reflected wave data in the memory as in the conventional method, and the speed of object recognition can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成を示す機能ブロック図、第2図
(a)、(bL (c)は反射波データのメモリ内にお
ける記憶位置を示す説明図である。 1・・・発信回路、2・・超音波センサ、4・・・増幅
回路、5・・A/D変換回路、6・・記憶装置(メモリ
)、7・・データ処理手段、9・・・アドレス演算器、
1゜・・初期値補正手段、13・・・温度検知手段(温
度センサ)。
FIG. 1 is a functional block diagram showing the configuration of the present invention, and FIGS. 2(a) and 2(c) are explanatory diagrams showing the storage location of reflected wave data in the memory. 1... Transmission circuit; 2...Ultrasonic sensor, 4...Amplification circuit, 5...A/D conversion circuit, 6...Storage device (memory), 7...Data processing means, 9...Address calculator,
1°...Initial value correction means, 13...Temperature detection means (temperature sensor).

Claims (1)

【特許請求の範囲】 少なくとも、バースト波を生成する発信回路と、対象物
体へ超音波を送波し且つ該対象物体から反射してくる超
音波の受波を行なう超音波センサと、該超音波センサか
らの出力を増幅する増幅回路と、該増幅回路の出力から
反射波データを生成するためのA/D変換回路、該A/
D変換回路からの反射波データを記憶する記憶装置と、
該記憶装置に前記反射波データを記憶する際のアドレス
を演算するアドレス演算器と、前記記憶装置の反射波デ
ータを演算処理して前記対象物体を認識するデータ処理
手段とを備えた超音波物体認識装置において、 気温を検知する温度検知手段と、 前記反射波データの記憶位置が変動しないように、前記
温度検知手段の検知結果に基づいて前記アドレス演算器
の初期値を補正演算する初期値補正手段とを具備したこ
とを特徴とする超音波物体認識装置。
[Claims] At least a transmitting circuit that generates a burst wave, an ultrasonic sensor that transmits ultrasonic waves to a target object and receives ultrasonic waves reflected from the target object, and an amplifier circuit that amplifies the output from the sensor; an A/D conversion circuit that generates reflected wave data from the output of the amplifier circuit;
a storage device that stores reflected wave data from the D conversion circuit;
An ultrasonic object comprising: an address calculator for calculating an address for storing the reflected wave data in the storage device; and a data processing means for processing the reflected wave data in the storage device to recognize the target object. The recognition device includes: temperature detection means for detecting air temperature; and initial value correction for correcting the initial value of the address calculator based on the detection result of the temperature detection means so that the storage position of the reflected wave data does not change. An ultrasonic object recognition device characterized by comprising means.
JP2263313A 1990-10-01 1990-10-01 Ultrasonic object recognition device Pending JPH04140687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263313A JPH04140687A (en) 1990-10-01 1990-10-01 Ultrasonic object recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263313A JPH04140687A (en) 1990-10-01 1990-10-01 Ultrasonic object recognition device

Publications (1)

Publication Number Publication Date
JPH04140687A true JPH04140687A (en) 1992-05-14

Family

ID=17387744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263313A Pending JPH04140687A (en) 1990-10-01 1990-10-01 Ultrasonic object recognition device

Country Status (1)

Country Link
JP (1) JPH04140687A (en)

Similar Documents

Publication Publication Date Title
CN107167808A (en) The circuit compensated for acoustics apart from the flight time
US7680667B2 (en) Interactive robot, speech recognition method and computer program product
JPS5952780A (en) Intrusion detector
CN106908777A (en) Ultrasonic signal optimizes device and method
US9921303B2 (en) Object detection apparatus and method
WO2021123758A2 (en) Systems and methods for on ear detection of headsets
JP2020085506A (en) Distance detector and object detector
JPH1054872A (en) Ultrasonic distance meter
JPH04140687A (en) Ultrasonic object recognition device
JP3296804B2 (en) Obstacle judgment method
JPH08202373A (en) Muffler for noise
JP2990249B2 (en) Wake detection method and wake detection device
US11719815B2 (en) Object detection device
JP3796869B2 (en) Active noise reduction apparatus and noise reduction method
JPH0772242A (en) Active sonar apparatus
JPH0449088B2 (en)
JP2996770B2 (en) Adaptive control device and adaptive active silencer
JPH0587911A (en) Ultrasonic sensor
JP2013057555A (en) Obstacle detector
JP2001355428A (en) Active muffler
JPS63144278A (en) Sonar receiver
CN113921038A (en) Remote warning sound source exploring device and method thereof
CN114387993A (en) Sound source searching device and method for driving warning
JP2001108738A (en) Sonar
JPH10147034A (en) Noise reducing device