JPH04140127A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPH04140127A
JPH04140127A JP2263173A JP26317390A JPH04140127A JP H04140127 A JPH04140127 A JP H04140127A JP 2263173 A JP2263173 A JP 2263173A JP 26317390 A JP26317390 A JP 26317390A JP H04140127 A JPH04140127 A JP H04140127A
Authority
JP
Japan
Prior art keywords
thermal expansion
fiber
prepreg
raw material
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263173A
Other languages
Japanese (ja)
Inventor
Mikine Yoshida
吉田 幹根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2263173A priority Critical patent/JPH04140127A/en
Publication of JPH04140127A publication Critical patent/JPH04140127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a composite material in the nature of high elasticity, low thermal expansion and having strength in its right angle direction by laminating a thin prepreg raw material used of pitch carbon fiber having a specific elasticity modulus and thermal expansion coefficient such that the fiber comes to be a specific angle, and molding it thereafter. CONSTITUTION:A thin prepreg raw material of 0.03-0.1mm/sheet used of pitch carbon fiber having an elasticity modulus E:70 tom/mm<2> or above and thermal expansion coefficient alpha:-1.4X10<-6>/ deg.C or below is laminated at the wall thickness of 1mm or below in order that the fiber direction of the prepreg raw material becomes 0 and 90, and molded thereafter. By employing the pitch carbon fiber, a mold material can be obtained that has high elasticity and low thermal expansion. Through allowing the prepreg raw material to be thin wall thickness, the mold material can be reduced in its wall thickness and weight, so that the number of lamination thereof can be increased and the lamination arrangement thereof can also be improved in its degree of freedom. Furthermore, by lamination-arranging the fiber in the direction of 0 and 90 deg., a mold material can be obtained which has an ability of high elasticity and low thermal expansion and strength even in the 90 deg..

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高弾性、低熱膨張で直角方向にも強度のある複
合材の製造方法に関し、高弾性炭素繊維強化複合材料を
用いる製品、特に、航空宇宙機器の構造部材の型材、輸
送機器、電気電子部品、スポーツ・レジャー用品等の製
造に有利に適用できる複合材の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a composite material with high elasticity, low thermal expansion, and strength in the perpendicular direction. The present invention relates to a method for producing composite materials that can be advantageously applied to the production of shapes for structural members of aerospace equipment, transportation equipment, electrical and electronic parts, sports and leisure goods, etc.

〔従来の技術〕[Conventional technology]

従来では、高弾性低熱膨張型材に、高弾性PAN (ポ
リアクリロニトリル)系炭素繊維(弾性率E≦50 t
on/mm2、熱膨張率α≧−0,7×10−’/l)
を用いたプリプレグ素材(肉厚的0、14 mm/枚)
を使用して、0°主体の積層で弾性率E  20 to
n/mm”以上、熱膨張率 1×10−’/を以下のア
ングル、チューブ型材をオートクレーブ成形で得ていた
Conventionally, high modulus PAN (polyacrylonitrile) carbon fiber (modulus of elasticity E≦50 t
on/mm2, thermal expansion coefficient α≧-0,7×10-'/l)
prepreg material using (thickness: 0, 14 mm/piece)
The elastic modulus E 20 to
Angle and tube shapes having a thermal expansion coefficient of 1×10 −′/ or more and a thermal expansion coefficient of 1×10 −′/ or more were obtained by autoclave molding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術による高性能複合材製型材では、(1)PAN
系炭素繊維では、弾性率EがMax。
Among high-performance composite molding materials using conventional technology, (1) PAN
For carbon fibers, the elastic modulus E is Max.

50 ton/mm” 、熱膨張率αがmin、−〇、
 7 X10−’/l’であり、高弾性、低熱膨張に限
界がある。
50 ton/mm", thermal expansion coefficient α is min, -〇,
7 X10-'/l', and there is a limit to high elasticity and low thermal expansion.

(2)  プリプレグ素材は、従来肉厚〜0.14 m
m/枚が標準で薄肉型材をつくるには厚く、積層の自由
度が少ない。
(2) Prepreg material has a conventional wall thickness of ~0.14 m
m/sheet is standard, which is too thick to make thin-walled shapes, and there is little lamination flexibility.

(3)限られた積層枚数内で、高弾性で低熱膨張の性能
を出すために、積層が0°主体となり直角方向の強度が
弱い。
(3) In order to achieve high elasticity and low thermal expansion performance within a limited number of laminated layers, the laminated layers are mainly 0° and the strength in the right angle direction is weak.

(4)高性能複合材をつくるために高品質な成形品を得
やすいオートクレーブ成形を行い時間と費用がかかる。
(4) In order to produce high-performance composite materials, autoclave molding is used to easily obtain high-quality molded products, which is time-consuming and costly.

等の問題がある。There are other problems.

本発明は上記技術水準に鑑み、上述の問題点を解消させ
、高弾性、低熱膨張で、しかも直角方向に強度がある複
合材の製造方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention aims to solve the above-mentioned problems and provide a method for manufacturing a composite material having high elasticity, low thermal expansion, and strength in the right angle direction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は弾性率E : 70 ton/mm2以上、熱
膨張率αニー1.4 X 10−6/l:以下のピッチ
系炭素繊維を使用した0、03〜0.1 mm/枚の薄
肉プリプレグ素材を、肉厚l mm以下で該プリプレグ
素材の繊維方向が0°と90°になるように適宜積層し
た後、成形することを特徴とする高弾性、低熱膨張で直
角方向にも強度のある複合材の製造方法である。
The present invention is a thin prepreg of 0.03 to 0.1 mm/sheet using pitch-based carbon fiber having an elastic modulus E: 70 ton/mm2 or more and a thermal expansion coefficient α knee 1.4 x 10-6/l: or less. The material is laminated appropriately so that the fiber direction of the prepreg material is 0° and 90° with a wall thickness of 1 mm or less, and then molded.It has high elasticity, low thermal expansion, and strength in the right angle direction. This is a method for manufacturing composite materials.

本発明において、薄肉プリプレグ素材をその繊維方向が
Ooと90°になるように適宜積層した後、成形する手
段としては、オートクレーブ成形のほかに、ラッピング
テープを利用した成形方法を採用しつる。
In the present invention, the thin prepreg materials are suitably laminated so that the fiber direction thereof is 90° with respect to Oo, and then a molding method using a wrapping tape is employed in addition to autoclave molding.

〔作用〕[Effect]

弾性率E : 70 ton/mm2以上、熱膨張率α
:1.4 X 10−6/℃以下のピッチ系炭素繊維を
用いることにより、PAN系炭素炭素繊維用した成形型
材より高弾性で低熱膨張の型材が可能となる。また、プ
リプレグ素材の薄肉化により成形型材の薄肉化、軽量化
が図れる。さらに、限られた成形型材の肉厚でプリプレ
グ素材の積層枚数が増やせ積層配列の自由度が上がり、
弾性率と熱膨張のバランスを考慮して0°と90゛方向
に繊維の積層配列を最適化することで、高弾性で低熱膨
張の性能をもち、しかも90°方向にも強度がある成形
型材が得られる。
Elastic modulus E: 70 ton/mm2 or more, thermal expansion coefficient α
By using pitch-based carbon fibers with a particle diameter of 1.4 x 10-6/°C or less, it is possible to create a molding material with higher elasticity and lower thermal expansion than a molding material using PAN-based carbon fibers. Furthermore, by making the prepreg material thinner, the mold material can be made thinner and lighter. Furthermore, the number of layers of prepreg material can be increased with the limited wall thickness of the molding material, increasing the degree of freedom in layer arrangement.
By optimizing the laminated arrangement of fibers in the 0° and 90° directions, taking into consideration the balance between elastic modulus and thermal expansion, we have created a molding material that has high elasticity and low thermal expansion performance, and is also strong in the 90° direction. is obtained.

また、本発明によればピッチ系炭素繊維強化複合材製チ
ューブはオートクレーブ成形のほかに、成形が容易なラ
ッピングテープを利用した成形を行うことで高性能な型
材が得られる。例えば、チューブ成形型へ、プリプレグ
を2層重ねで繊維配列を乱さず積層できて、ラッピング
テープをその上へ巻いてオーブン中で硬化させることに
よって薄肉チューブを得ることができる。
Further, according to the present invention, a high-performance mold material can be obtained by molding the pitch-based carbon fiber reinforced composite tube using a wrapping tape, which is easy to mold, in addition to autoclave molding. For example, a thin-walled tube can be obtained by laminating two layers of prepreg into a tube mold without disturbing the fiber arrangement, wrapping a wrapping tape thereon and curing it in an oven.

以下、本発明の実施例を図面を参照しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕 第1図はアングル型材の製造例を示すもので、高弾性ピ
ッチ系炭素繊維lにエボ牛シ樹脂を含浸した硬化厚0.
06mm/枚の薄肉プリプレグ2を使用した。実際に用
いた2種のプリプレグ材料の特性を第1表に示す。
[Example 1] Fig. 1 shows an example of manufacturing an angle-shaped material, in which highly elastic pitch-based carbon fiber l is impregnated with ebo beef resin and has a hardened thickness of 0.
Thin prepreg 2 with a thickness of 0.06 mm/sheet was used. Table 1 shows the properties of the two types of prepreg materials actually used.

高弾性ピッチ系炭素繊維でしかも薄肉のため、プリプレ
グ2は比較的硬くてばらけやすく成形作業性に劣るが、
0°方方向列プリプレグ3と90°方向配列プリプレグ
4を2層重ねして繊維配列を乱さず積層を行った。
Since Prepreg 2 is made of highly elastic pitch-based carbon fiber and has a thin wall, it is relatively hard and tends to come apart easily, resulting in poor molding workability.
Two layers of prepreg 3 arranged in the 0° direction and prepreg 4 arranged in the 90° direction were laminated without disturbing the fiber arrangement.

1mm板厚の型材に対して、プリプレグ厚さ0.06m
/枚の積層枚数は16層になり、この16層でO°°向
配列と90°方向配列を最適化〔弾性率Eをできるだけ
高<  (E≧25 ton/ff1m’ ) 、熱膨
張率を零に近<  (−1,Ox 10−’/℃≦α〈
0)する配列組合せ(一方向積層板の0°方向の弾性率
E : 47 X 103kgf/mm”熱膨張率αニ
ー1.5X10−6/l、90°方向の弾性率: 68
0 kgf/mm” 、熱膨張率α:47X 10−6
/ t”を基本データとして)を計算〕して、0°方方
向列が10層と90°方向配列が6層と配分できるので
、90°方向配列の割合は37.5%となる。このよう
にアングル成形型5に2層重ねしたプリプレグを90°
方向配列の割合を弾性率と熱膨張の最適な37.5%に
して[0/9 010/90102/9 010〕 、
  (0:0°方方向列、90:90°方向配列、02
:0°方方向列2層、Sニシンメトリー)の16層とな
るように積層した。積層品6にコーナが緻密になるよう
にシリコンゴムなどのコーナペッド7を置いてオートク
レーブ成形を行った。
Prepreg thickness is 0.06m for a 1mm plate thickness
The number of laminated sheets is 16 layers, and these 16 layers are used to optimize the 0°° direction alignment and 90° direction alignment [elastic modulus E as high as possible < (E≧25 ton/ff1m'), thermal expansion coefficient Close to zero < (-1, Ox 10-'/℃≦α〈
0) Arrangement combination (Modulus of elasticity in 0° direction of unidirectional laminate E: 47
0 kgf/mm", thermal expansion coefficient α: 47X 10-6
/t” as the basic data), the 0° direction array can be distributed to 10 layers and the 90° direction array to 6 layers, so the ratio of 90° direction array is 37.5%. As shown, two layers of prepreg are placed in the angle mold 5 at a 90° angle.
The ratio of directional alignment is set to 37.5%, which is optimal for elastic modulus and thermal expansion [0/9 010/90102/9 010],
(0: 0° direction array, 90: 90° direction array, 02
: Two layers in the 0° direction, 16 layers (S hernimetry) were laminated. A corner pad 7 made of silicone rubber or the like was placed on the laminate 6 so that the corners would be dense, and autoclave molding was performed.

成形したアングル型材8の品質を第2表に示す薄肉l−
でボイド等の欠陥がなく、弾性率25 ton/mm”
 、熱膨張率−IXIO−6/℃と高弾性低熱膨張のア
ングル型材を試作できた。
The quality of the formed angle profile 8 is shown in Table 2.
There are no defects such as voids, and the elastic modulus is 25 ton/mm.”
We were able to prototype an angle-shaped material with a thermal expansion coefficient of -IXIO-6/°C, high elasticity and low thermal expansion.

〔実施例2〕 第2図はチューブ型材の製造例を示すもので第1図と同
一プリプレグ材料を使用し、0°方方向列プリプレグ3
と90°方向配列プリプレグ4を2層重ねして第1図の
積層構成と同じ[0/9010/90102/9010
1 、の16層になるようチューブ成形型9に巻き積層
した。積層品6の上に、さらにポリエチレンテレフタレ
ート製のラッピングテープ10を全体に巻き付ける。オ
ーブン硬化により、ラッピングテープが熱収縮して積層
品を加圧成形する。
[Example 2] Figure 2 shows an example of manufacturing a tube shape material. The same prepreg material as in Figure 1 was used, and prepregs 3
The same lamination structure as shown in Fig. 1 is obtained by stacking two layers of prepregs 4 arranged in a 90° direction [0/9010/90102/9010
1, and were laminated by winding around a tube mold 9 to form 16 layers. A wrapping tape 10 made of polyethylene terephthalate is further wrapped around the entire laminate 6. Oven curing causes the wrapping tape to heat shrink and form a laminate under pressure.

成形したチューブ型材11の品質を前記第2表に併せて
示す。薄肉1 mmでボイドも0.3%とごくわずかで
、弾性率41 ton/mm2、熱膨張率0.9×10
−6/l:の高性能チューブ型材が試作できた。
The quality of the molded tube material 11 is also shown in Table 2 above. With a thin wall of 1 mm, there are very few voids of 0.3%, an elastic modulus of 41 ton/mm2, and a thermal expansion coefficient of 0.9 x 10
-6/l: We were able to prototype a high-performance tube material.

〔発明の効果〕〔Effect of the invention〕

本発明により、弾性率が70 ton/mm”以上、熱
膨張率が−1゜4X10−6/℃以下のピッチ系炭素繊
維を用いて、しかも従来プリプレグの肉厚の半分以下に
薄肉化した0、03〜0.1 mm /枚のプリプレグ
素材を使用して、炭素繊維の積層配列を0°と90°方
向に最適化することで、型材として高弾性(E≧25 
ton/mm2) 、低熱膨張(α≦−I X 10−
6/F)でしかも直角方向にも強度があり、薄肉軽量な
高性能複合材製型材が得られる。また、高価なオートク
レーブ成形を用いなくても、成形が容易で短時間にしか
も成形コストが安くできるラッピングテープを利用した
成形方法を応用し、繊維配列を乱さずに2層重ねで積層
しオーブン硬化することで高性能なチューブ型材が得ら
れる。
According to the present invention, pitch-based carbon fibers with a modulus of elasticity of 70 ton/mm" or more and a coefficient of thermal expansion of -1°4X10-6/°C or less are used, and the thickness of the prepreg is reduced to less than half of that of conventional prepregs. , 03~0.1 mm/sheet of prepreg material, and by optimizing the laminated arrangement of carbon fibers in the 0° and 90° directions, high elasticity (E≧25
ton/mm2), low thermal expansion (α≦-I X 10-
6/F), which also has strength in the right angle direction, and a thin, lightweight, high-performance composite molded material can be obtained. In addition, we applied a molding method using wrapping tape that can be easily molded in a short time and at low molding costs without using expensive autoclave molding, and we stacked two layers without disturbing the fiber arrangement and cured in an oven. By doing so, a high-performance tube material can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係るアングル型材の製造例
の説明図、第2図は本発明の実施例2に係るチューブ型
材の製造例の説明図である。
FIG. 1 is an explanatory diagram of an example of manufacturing an angle-shaped material according to a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of an example of manufacturing a tube-shaped material according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 弾性率E:70ton/mm^2以上、熱膨張率α:−
1.4×10^−^6/℃以下のピッチ系炭素繊維を使
用した0.03〜0.1mm/枚の薄肉プリプレグ素材
を、肉厚1mm以下で該プリプレグ素材の繊維方向が0
°と90°になるように適宜積層した後、成形すること
を特徴とする高弾性、低熱膨張で直角方向にも強度のあ
る複合材の製造方法。
Elastic modulus E: 70 ton/mm^2 or more, thermal expansion coefficient α: -
A thin prepreg material of 0.03 to 0.1 mm/sheet using pitch-based carbon fiber of 1.4 x 10^-^6/℃ or less is prepared with a wall thickness of 1 mm or less and the fiber direction of the prepreg material is 0.
A method for producing a composite material having high elasticity, low thermal expansion, and strength in the perpendicular direction, the method comprising laminating layers at an angle of 90° and then molding.
JP2263173A 1990-10-02 1990-10-02 Manufacture of composite material Pending JPH04140127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263173A JPH04140127A (en) 1990-10-02 1990-10-02 Manufacture of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263173A JPH04140127A (en) 1990-10-02 1990-10-02 Manufacture of composite material

Publications (1)

Publication Number Publication Date
JPH04140127A true JPH04140127A (en) 1992-05-14

Family

ID=17385789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263173A Pending JPH04140127A (en) 1990-10-02 1990-10-02 Manufacture of composite material

Country Status (1)

Country Link
JP (1) JPH04140127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064668A1 (en) * 1999-04-23 2000-11-02 Sakase Adtech Co., Ltd. Fiber-reinforced resin composite material having reduced coefficient of linear expansion
WO2019097969A1 (en) * 2017-11-17 2019-05-23 三菱重工業株式会社 Molding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064668A1 (en) * 1999-04-23 2000-11-02 Sakase Adtech Co., Ltd. Fiber-reinforced resin composite material having reduced coefficient of linear expansion
WO2019097969A1 (en) * 2017-11-17 2019-05-23 三菱重工業株式会社 Molding device
JP2019093562A (en) * 2017-11-17 2019-06-20 三菱重工業株式会社 Molding device

Similar Documents

Publication Publication Date Title
KR101500036B1 (en) Core for sandwich panel and method for manufacturing the same, the sandwich panel containing the same
KR101484371B1 (en) Laminate including thermoplastic resin impregnated continuous carbon fiber and method of preparing the same
US3649435A (en) High modulus graphite fiber reinforced hybrid laminates
US20180302719A1 (en) Carbon fiber dome and method for manufacturing the same
JP2009220478A (en) Fiber-reinforced sandwich structure composite and composite molding
CN105799246A (en) High-inflaming-retarding low-warping carbon fiber sheet and manufacturing process thereof
JPH04140127A (en) Manufacture of composite material
JPH0668594B2 (en) Carbon fiber reinforced thermosetting resin camera shutter blades
CN106751530A (en) A kind of composite material sandwich structure co-curable lightweight high rigidity core and its preparation method and application
JPH08224849A (en) Manufacture of laminated sheet
CN111452442A (en) Thermoplastic light composite material plate, manufacturing method and corresponding product thereof
CN212086475U (en) Composite layer of sound generating device and sound generating device
JPS62199439A (en) Extremely thin board made of carbon-fiber reinforced thermo-setting resin
WO2021157424A1 (en) Preform
JPS5827090B2 (en) Integral molding method for composite material structural parts
KR20230157552A (en) Sandwich composite and manufacturing method thereof
CN111590976A (en) Waterproof gas treatment method for honeycomb sandwich structure composite material
JP2528127B2 (en) Vibration plate for speaker
WO2021128191A1 (en) Carbon fiber dome manufacturing method
KR20210024821A (en) Isotropic Composites
TWM595038U (en) Composite material
JPS58185218A (en) Method of pressing and hardening prepreg laminate
CN116968392A (en) Sandwich sandwich structure with high-strength fiber wrapped light core body and preparation method thereof
JP2001260130A (en) Slate plate made of frp and manufacturing method for the same
JPS61220841A (en) Manufacture of copper lined laminated board