JPH0414004B2 - - Google Patents

Info

Publication number
JPH0414004B2
JPH0414004B2 JP58061011A JP6101183A JPH0414004B2 JP H0414004 B2 JPH0414004 B2 JP H0414004B2 JP 58061011 A JP58061011 A JP 58061011A JP 6101183 A JP6101183 A JP 6101183A JP H0414004 B2 JPH0414004 B2 JP H0414004B2
Authority
JP
Japan
Prior art keywords
electrocardiogram
abnormal
wave
lead
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58061011A
Other languages
Japanese (ja)
Other versions
JPS59186543A (en
Inventor
Minoru Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance KK
Original Assignee
Advance KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance KK filed Critical Advance KK
Priority to JP58061011A priority Critical patent/JPS59186543A/en
Publication of JPS59186543A publication Critical patent/JPS59186543A/en
Publication of JPH0414004B2 publication Critical patent/JPH0414004B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は心電図波形の異常を認識する異常心電
図認識装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an abnormal electrocardiogram recognition device that recognizes abnormal electrocardiogram waveforms.

一般に心電図波形の異常の認識においてP,
Q,R,S,T及びJポイント等の区分点を認識
するには、心電図信号が心臓の3次元空間を伝搬
されて検出されるものであることから、フランク
誘導等の3次元ベクトル信号を用いて行なうのが
好ましいとされている。しかし、現実には、標準
12誘導の心電図波形を用いて心電図の診断を通常
行なつている。そのため、異常心電図を自動的に
認識しようとする従来装置は、実用上の観点から
標準12誘導の心電図波形からR波を検出し、R波
及びその前後の波形やR−R間隔等の解析を行な
うことによつて心電図波形の異常を認識するのが
一般的であつた。
In general, in recognizing abnormalities in electrocardiogram waveforms, P,
To recognize the segmentation points such as Q, R, S, T, and J points, since the electrocardiogram signal is detected after being propagated through the three-dimensional space of the heart, three-dimensional vector signals such as Frank's leads must be used. It is said that it is preferable to use However, in reality, the standard
Electrocardiogram diagnosis is usually performed using a 12-lead electrocardiogram waveform. Therefore, from a practical point of view, conventional devices that attempt to automatically recognize abnormal electrocardiograms detect the R wave from the standard 12-lead electrocardiogram waveform and analyze the R wave, the waveforms before and after it, the R-R interval, etc. It was common to recognize abnormalities in electrocardiogram waveforms by performing

従来、このようにR波を中心とした解析により
心電図波形の異常を認識していたのは、1誘導の
みの心電図波形からではR波以外の区分点を識別
するのが困難であつたことによる。その結果、P
波,T波及びSTセグメント等の異常は、異常心
電図が認識されないまま見過され易いという欠点
があつた。
The reason why electrocardiogram waveform abnormalities have traditionally been recognized through analysis centered on R waves is that it was difficult to identify division points other than R waves from an electrocardiogram waveform of only one lead. . As a result, P
Abnormal electrocardiogram waves, T waves, ST segments, etc., have the disadvantage that they are easily overlooked without being recognized as an abnormal electrocardiogram.

本発明は係る欠点に鑑み、標準12誘導の中から
空間的に異なるベクトルの少なくとも2誘導以上
の心電図信号を用いて異常心電図を確実に認識で
きるようにした異常心電図を提供することを目的
としたものである。
In view of the above drawbacks, the present invention aims to provide an abnormal electrocardiogram in which an abnormal electrocardiogram can be reliably recognized by using electrocardiogram signals of at least two leads of spatially different vectors from among the standard 12 leads. It is something.

即ち、本発明は、 (i) 空間的に異なるベクトルの各心電図信号を差
分波に変換し、これを相互作用させることによ
り、単一の誘導では認識し難い区分点を認識す
るものである。差分波を各誘導で相互作用させ
ることにより次の効果が得られる。
That is, the present invention (i) converts each electrocardiogram signal of a spatially different vector into a difference wave, and allows these to interact, thereby recognizing a division point that is difficult to recognize with a single lead. The following effects can be obtained by allowing the differential waves to interact with each other in each guidance.

・ ドリフトの影響を受けない ・ 波形のピーク点であるP,Q,R,S,T
の各区分点が明確になる。
- Not affected by drift - P, Q, R, S, T, which are the peak points of the waveform
Each division point becomes clear.

・ 一誘導では出現していない心電図波形も相
互作用により検出可能となる。
- Electrocardiogram waveforms that do not appear in one lead can also be detected through interaction.

(ii) 更に認識された区分点情報から異常波をミネ
ソタコードなどの評価基準を用いることにより
検出するものである。
(ii) Furthermore, abnormal waves are detected from the recognized segmentation point information by using evaluation criteria such as the Minnesota code.

以下、図面に基づいて本発明を詳述する。 Hereinafter, the present invention will be explained in detail based on the drawings.

第1図及び第2図は本発明の概要説明用の模式
図であり、第1図は標準12誘導におけるaVF,V1
の2誘導の心電図信号を用いた場合、第2図は
aVF,V1,V6の3誘導の心電図信号を用いた場
合である。
Figures 1 and 2 are schematic diagrams for explaining the outline of the present invention, and Figure 1 shows aV F and V 1 in standard 12 leads.
When using a 2-lead electrocardiogram signal, Figure 2 is
This is a case where electrocardiogram signals of three leads aV F , V 1 , and V 6 are used.

第1図においてECG1はaVF誘導,ECG2は
V1誘導である。この2誘導の心電図信号を、そ
れぞれ差分波に変換し、各差分波を相互作用させ
るべく演算処理し、P,Q,R,S,T及びJポ
イント等の各区分点を検出し、これをプロツトし
て描いたのが波形X1である。
In Figure 1, ECG1 is aV F lead, ECG2 is
It is lead V1 . These two-lead electrocardiogram signals are each converted into differential waves, and arithmetic processing is performed to make each differential wave interact with each other, and each division point such as P, Q, R, S, T, and J points is detected, and this is The plotted waveform is the waveform X1.

第2図において、ECG1はaVF誘導、ECG2は
V1誘導、ECG3はV6誘導である。この3誘導の
心電図信号を上記同様に差分波に変換し、各差分
波を相互作用させるべく演算処理して区分点を検
出し、これをプロツトして描いたのが波形X2で
ある。
In Figure 2, ECG1 is aV F lead, ECG2 is
Lead V1 , ECG3 is lead V6 . The three-lead electrocardiogram signal is converted into a differential wave in the same manner as described above, and arithmetic processing is performed to cause each differential wave to interact with each other to detect a division point, and this is plotted as waveform X2.

上述に従つて、3誘導の心電図信号を用いて差
分波とその相互作用を求めた例を以下に示す。
An example in which the difference waves and their interactions are determined using three-lead electrocardiogram signals as described above will be shown below.

<差分波変換> (2) x(t)′=〔x(t+5)−x(t−5)〕/10 (1) y(t)′=〔y(t+5)−y(t−5)〕/10 (2) z(t)′=〔z(t+5)−z(t−5)〕/10 (3) ここで、x(t),y(t),z(t)は、x,y,
z誘導の時系列におけるデータ値を表わし、x
(t)′,y(t)′,z(t)′はそれぞれの差分値
を示す。
<Differential wave conversion> (2) x(t)'=[x(t+5)-x(t-5)]/10 (1) y(t)'=[y(t+5)-y(t-5) ]/10 (2) z(t)'=[z(t+5)-z(t-5)]/10 (3) Here, x(t), y(t), z(t) are x ,y,
represents the data values in the z-leading time series, x
(t)', y(t)', and z(t)' indicate the respective difference values.

<差分波の相互作用> E1=|x(t)′|+|y(t)′|+|z
(t)′| (4) E2=(x(t)′)2+(y(t)′)2+(z(t)′
2
(5) E3=√(()′)2+(()′)2+(()′)2(
6) E4=x(t)′・y(t)′・z(t)′ (7) ここで、E1,E2,E3,E4は、差分値x(t)′,
y(t)′,z(t)′を用いてそれぞれの式から得
られた相互作用値を表わす。
<Interaction of differential waves> E 1 = |x(t)′|+|y(t)′|+|z
(t)′ | (4) E 2 = (x(t)′) 2 + (y(t)′) 2 + (z(t)′
) 2
(5) E 3 =√(()′) 2 +(()′) 2 +(()′) 2 (
6) E 4 = x(t)′・y(t)′・z(t)′ (7) Here, E 1 , E 2 , E 3 , E 4 are the difference values x(t)′,
The interaction values obtained from each equation are expressed using y(t)' and z(t)'.

第1図及び第2図における波形X1およびX2
は(5)式を用いて得られたものである。ここで(5)式
は、各誘導の差分波をそれぞれ2乗して加えたも
のなので、心電図波形の変曲点あるいはピーク点
である各区分点は、3誘導により強調された下向
きのピークとなる。
Waveforms X1 and X2 in Figures 1 and 2
is obtained using equation (5). Here, equation (5) is obtained by squaring and adding the difference waves of each lead, so each division point that is an inflection point or peak point of the electrocardiogram waveform is the downward peak emphasized by the third lead. Become.

本発明は、このようにして得られた波形X1及
びX2の心電図信号から区分点を認識し、ミネソ
タコードやこれに準じた基準から異常波を認識す
るものである。
The present invention recognizes division points from the electrocardiogram signals of waveforms X1 and X2 obtained in this manner, and recognizes abnormal waves from the Minnesota code or a standard similar thereto.

第3図は本発明の構成を明示したブロツク図で
あり、誘導ECG1〜ECG3等の心電図信号を受
取る入力手段1と、入力手段1からの各心電図信
号をそれぞれ差分波信号に変換する差分波変換手
段2と、差分波変換手段2の各変換出力を相互作
用させるべく演算処理する演算手段3と、この演
算手段3の演算処理結果からR波検出手段6の出
力を基準にP,Q,R,S,T及びJポイント等
の各区分点を検出する区分点検出手段4と、区分
点検出手段4より得られる各区分点の情報から異
常波を認識する異常波認識手段5とを具備してお
り、これ等各手段が有機的に作用して心電図波形
の異常を認識するものである。
FIG. 3 is a block diagram clearly showing the configuration of the present invention, which includes an input means 1 for receiving electrocardiogram signals such as leads ECG1 to ECG3, and a differential wave conversion for converting each electrocardiogram signal from the input means 1 into a differential wave signal. means 2, a calculation means 3 for performing calculation processing to interact each conversion output of the differential wave conversion means 2, and P, Q, R based on the output of the R wave detection means 6 from the calculation processing result of the calculation means 3; , S, T, and J points, and an abnormal wave recognition means 5 that recognizes an abnormal wave from the information of each dividing point obtained from the dividing point detecting means 4. Each of these means works organically to recognize abnormalities in the electrocardiogram waveform.

第4図は本発明の一実施例のブロツク図であ
り、11,12,13はアンプ、14はアナログ
マルチプレクサ、15はA/D変換器、16は
CPU(セントラルプロセシングユニツト)、17
はROM(リードオンメモリ)、18はRAM(ラン
ダムアクセスメモリ)、19は表示手段、20は
クロツク発振器である。また、第5図は第4図の
ブロツク図に示した本発明装置の動作を説明する
フローチヤートである。
FIG. 4 is a block diagram of an embodiment of the present invention, in which 11, 12, 13 are amplifiers, 14 is an analog multiplexer, 15 is an A/D converter, and 16 is an analog multiplexer.
CPU (Central Processing Unit), 17
18 is a RAM (random access memory), 19 is a display means, and 20 is a clock oscillator. Further, FIG. 5 is a flowchart illustrating the operation of the apparatus of the present invention shown in the block diagram of FIG. 4.

第4図に示した本発明の異常心電認識装置は、
ROM17にプログラムされた命令がCPU16に
読み込まれることにより実行する。
The abnormal electrocardiogram recognition device of the present invention shown in FIG.
The instructions programmed in the ROM 17 are read into the CPU 16 and executed.

始めに、CPU16はアナログマルチプレクサ
14に対して入力データ選択制御指令を実行し、
また、A/D変換器15に対してA/D変換指令
を実行する。
First, the CPU 16 executes an input data selection control command to the analog multiplexer 14,
It also issues an A/D conversion command to the A/D converter 15.

各誘導ECG1〜ECG3の心電図信号はそれぞ
れアンプ11〜13により増幅された後、アナロ
グマルチプレクサ14により順次切換えられなが
ら次々にA/D変換器15へ送られる。A/D変
換器15は送られてきた各誘導の心電図信号をデ
イジタル信号に変換してCPU16へ送る。
The electrocardiogram signals of each lead ECG1 to ECG3 are amplified by amplifiers 11 to 13, respectively, and then sent to an A/D converter 15 one after another while being sequentially switched by an analog multiplexer 14. The A/D converter 15 converts the sent electrocardiogram signals of each lead into digital signals and sends them to the CPU 16.

CPU16はA/D変換された各誘導の心電図
信号をそれぞれのデータバツケアメモリに格納
し、その心電図信号を第1図及び第2図を説明す
るのに用いた式に従つて差分波信号に変換し、更
にその差分波信号を相互に作用させるべく演算処
理を行ないP,Q,R,S,T及びJポイント等
の各区分点を点情報として明確にする。
The CPU 16 stores the A/D converted electrocardiogram signal of each lead in its respective data storage memory, and converts the electrocardiogram signal into a differential wave signal according to the formula used to explain FIGS. 1 and 2. Then, arithmetic processing is performed to cause the differential wave signals to interact with each other, and each division point such as P, Q, R, S, T, and J points is clarified as point information.

次に、演算処理により明確になつた各区分点
を、R波検出手段6によつて検出されたR波を基
準に認識して心電図信号の波形情報を得る。そし
て、この波形情報をROM17に書き込まれてい
るミネソタコード等の基準と比較し、異常心電図
の認識を行なう。
Next, each division point clarified by the calculation process is recognized based on the R wave detected by the R wave detecting means 6 to obtain waveform information of the electrocardiogram signal. This waveform information is then compared with a standard such as the Minnesota code written in the ROM 17 to recognize an abnormal electrocardiogram.

そして、異常心電図を認識したとき、RAM1
8及び表示手段20等へ異常認識情報を転送す
る。
When an abnormal electrocardiogram is recognized, RAM1
The abnormality recognition information is transferred to 8, display means 20, etc.

上述から判るようにアンプ11〜13、アナロ
グマルチプレクサ14及びA/D変換器15は入
力手段の各部を形成しており、またCPU16は
差分波変換手段,演算手段,区分点認識手段及び
異常波認識手段として機能している。更にRAM
18及び表示手段19等を有しているため、記録
及び/又は表示ができる異常波認識手段が構成さ
れているものである。なお、R波検出手段6はR
波を検出できるものであればいかなるものも適用
することができ、CPU16によつて検出しても
よいものである。
As can be seen from the above, the amplifiers 11 to 13, the analog multiplexer 14, and the A/D converter 15 form each part of the input means, and the CPU 16 functions as a differential wave conversion means, an arithmetic means, a segmentation point recognition means, and an abnormal wave recognition means. It functions as a means. More RAM
18, display means 19, and the like, constitutes an abnormal wave recognition means capable of recording and/or displaying. Note that the R wave detection means 6
Any device that can detect waves can be used, and the detection may be performed by the CPU 16.

今、心電図信号として例えば第2図にて説明し
たように、aVF,V1,V6の3誘導を適用した場
合、各誘導が空間的に疑次3次元ベクトルとな
る。これ等各誘導の心電図信号がそれぞれ差分波
に変換されると、心電図信号と共に誘導されるア
ーチフアクトによるドリフトの影響を除去するこ
とができる。更に、上記の如く疑次3次元ベクト
ルの各誘導の差分波を相互作用させることによ
り、1誘導のみでは認識し難い各区分点が強調さ
れて現われるので、確実に各区分点を検出するこ
とができる。そして、各区分点の情報は例えば第
1表に示すような基準値と比較し、実時間で異常
心電図を認識するものである。
Now, when three leads aV F , V 1 , and V 6 are applied as the electrocardiogram signal, as explained in FIG. 2, each lead spatially becomes a quasi-dimensional three-dimensional vector. When the electrocardiogram signals of these respective leads are converted into differential waves, it is possible to eliminate the influence of drift due to artifacts induced together with the electrocardiogram signals. Furthermore, by interacting the difference waves of each lead of the quasi-dimensional three-dimensional vector as described above, each division point that is difficult to recognize with only one lead appears in an emphasized manner, so it is possible to reliably detect each division point. can. The information on each division point is then compared with reference values as shown in Table 1, for example, to recognize abnormal electrocardiograms in real time.

第1表 正常値基準 (時間幅) (高さ) P:0.1秒以内 2.5mm以下 PQ:0.12〜0.2秒 基線に一致 QRS:0.1秒以内
肢誘導5mm以上、胸部誘導10mm以上 Q:0.04秒以内 1mm以下 ST: 基準より±1mm以内 T: Rの1/6〜1/10以上 QT:0.39×√R−R間隔±0.04秒以内 R−R間隔差:±10%以下 以上の説明で明らかなように、本発明は少なく
とも2誘導以上の心電図信号をそれぞれ差分波に
変換し、各差分波を相互に作用させるべく演算処
理し、この演算処理結果から各区分点を検出し、
各区分点の情報から異常波を認識するようにした
異常心電認識装置であることから、一般に異常心
電図とされるほとんどの異常心電図を確実に認識
できるものである。
Table 1 Normal value standards (time width) (height) P: within 0.1 seconds 2.5 mm or less PQ: 0.12 to 0.2 seconds Match baseline QRS: within 0.1 seconds
Limb lead 5 mm or more, chest lead 10 mm or more Q: within 0.04 seconds 1 mm or less ST: within ±1 mm from standard T: 1/6 to 1/10 or more of R QT: 0.39×√R-R interval within ±0.04 seconds R- R interval difference: ±10% or less As is clear from the above explanation, the present invention converts electrocardiogram signals of at least two or more leads into differential waves, performs arithmetic processing to cause each differential wave to interact with each other, and calculates Detect each division point from the processing results,
Since this is an abnormal electrocardiogram recognition device that recognizes abnormal waves from the information of each division point, it can reliably recognize most abnormal electrocardiograms that are generally considered abnormal electrocardiograms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の概要説明用の模式
図、第3図は本発明の構成を明示したブロツク
図、第4図は本発明の一実施例のブロツク図であ
り、第5図は第4図に示した本発明装置の動作説
明用のフローチヤートである。 1……入力手段、2……差分波変換手段、3…
…演算手段、4……区分点検出手段、5……異常
波認識手段、6……R波検出手段、11,12,
13……アンプ、14……アナログマルチプレク
サ、15……A/D変換器、16……CPU(セン
トラルプロセシングユニツト)、17……ROM
(リードオンメモリ)、18……RAM(ランダム
アクセスメモリ)、19……表示手段、20……
クロツク発振器。
1 and 2 are schematic diagrams for explaining the outline of the present invention, FIG. 3 is a block diagram clearly showing the configuration of the present invention, FIG. 4 is a block diagram of one embodiment of the present invention, and FIG. This figure is a flowchart for explaining the operation of the apparatus of the present invention shown in FIG. 1... Input means, 2... Differential wave conversion means, 3...
...Calculating means, 4... Division point detection means, 5... Abnormal wave recognition means, 6... R wave detection means, 11, 12,
13...Amplifier, 14...Analog multiplexer, 15...A/D converter, 16...CPU (central processing unit), 17...ROM
(read-on memory), 18...RAM (random access memory), 19...display means, 20...
clock oscillator.

Claims (1)

【特許請求の範囲】 1 少なくとも2誘導以上の心電図信号を受取る
入力手段と、該入力手段からの各心電図信号をそ
れぞれ3次元ベクトル差分波信号に変換する差分
波信号変換手段と、該3次元ベクトル差分波信号
変換手段の各3次元ベクトル差分波変換出力値を
相互作用値に変換させる為の演算手段と、該演算
手段の演算処理結果からP,Q,R,S,T及び
Jポイント等の各区分点を検出する区分点検出手
段と該区分点検出により得られる各区分点の情報
から異常波を認識する異常波認識手段とを具備し
たことを特徴とする異常心電図認識装置。 2 前記異常波認識手段は、異常波を認識したと
き、同時に異常心電図又は異常心電図を含む前後
の心電図を表示及び/又は記録できるようにして
なることを特徴とする特許請求の範囲第1項に記
載の異常心電図認識装置。
[Scope of Claims] 1. Input means for receiving electrocardiogram signals of at least two leads, differential wave signal conversion means for converting each electrocardiogram signal from the input means into three-dimensional vector differential wave signals, and the three-dimensional vector A calculating means for converting each three-dimensional vector differential wave conversion output value of the differential wave signal converting means into an interaction value, and calculating P, Q, R, S, T, J points, etc. from the arithmetic processing result of the calculating means. 1. An abnormal electrocardiogram recognition device comprising: a segment point detection means for detecting each segment point; and an abnormal wave recognition means for recognizing an abnormal wave from information on each segment point obtained by detecting the segment point. 2. According to claim 1, the abnormal wave recognition means is capable of simultaneously displaying and/or recording an abnormal electrocardiogram or previous and subsequent electrocardiograms including the abnormal electrocardiogram when recognizing an abnormal wave. Abnormal electrocardiogram recognition device described.
JP58061011A 1983-04-08 1983-04-08 Abnormal cardiograph discriminating apparatus Granted JPS59186543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061011A JPS59186543A (en) 1983-04-08 1983-04-08 Abnormal cardiograph discriminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061011A JPS59186543A (en) 1983-04-08 1983-04-08 Abnormal cardiograph discriminating apparatus

Publications (2)

Publication Number Publication Date
JPS59186543A JPS59186543A (en) 1984-10-23
JPH0414004B2 true JPH0414004B2 (en) 1992-03-11

Family

ID=13158959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061011A Granted JPS59186543A (en) 1983-04-08 1983-04-08 Abnormal cardiograph discriminating apparatus

Country Status (1)

Country Link
JP (1) JPS59186543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642874B2 (en) * 1988-10-06 1994-06-08 株式会社中日電子 Display method of small potential detection in electrocardiogram

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119790A (en) * 1978-03-10 1979-09-17 Tokyo Shibaura Electric Co Electrocardiograph
JPS57168640A (en) * 1981-03-31 1982-10-18 Fujitsu Ltd Automatic analyzing apparatus of cardiograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119790A (en) * 1978-03-10 1979-09-17 Tokyo Shibaura Electric Co Electrocardiograph
JPS57168640A (en) * 1981-03-31 1982-10-18 Fujitsu Ltd Automatic analyzing apparatus of cardiograph

Also Published As

Publication number Publication date
JPS59186543A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
US4893632A (en) Method and apparatus for comparing waveform shapes of time-varying signals
EP1808125A1 (en) Electrophysiological system for analysing an intracardiac electrocardiogram
Tayler et al. Signal distortion in the electrocardiogram due to inadequate phase response
JPH0322770B2 (en)
EP0760225A1 (en) Method and apparatus for correcting for non-physiological variations in ECG signals
Sharma et al. Novel T-wave detection technique with minimal processing and RR-interval based enhanced efficiency
Zhu et al. Feature extraction from a novel ECG model for arrhythmia diagnosis
Akselrod et al. Computerised analysis of ST segment changes in ambulatory electrocardiograms
Macfarlane ECG waveform identification by digital computer
Abboud et al. A spectral analysis of the high frequency QRS potentials observed during acute myocardial ischemia in dogs
JPH0414004B2 (en)
Gibbons et al. Real-time calculation of ultrasonic pulsatility index
US6979297B2 (en) Differentiating acute myocardial infarction from other ECG abnormalities
JPS59186544A (en) Abnormal cardiograph discriminating apparatus
JP3023731B2 (en) Heart sound analyzer
Khan et al. Performance analysis of modified zero crossing counts method for heart arrhythmias detection and implementation in HDL
Jiménez et al. Performance of a method to generate fetal cardiotachograms using fetal phonocardiography
Cashman A pattern-recognition program for continuous ECG processing in accelerated time
Fayn et al. False Alarm Reduction in Self-Care by Personalized Automatic Detection of ECG Electrode Cable Interchanges
Grøttum Real-time serial analysis of infarctional changes in the vectorcardiogram
Finlay et al. Overview of featurization techniques used in traditional versus emerging deep learning-based algorithms for automated interpretation of the 12-lead ECG
Revathi et al. Automatic Diagnosis of Myocardial Infarction with Left Bundle Branch Block
JP3129295B2 (en) Supraventricular extrasystole determination method and apparatus and storage medium storing program for supraventricular extrasystole determination
JPH074347B2 (en) Accelerometer
Manimekalai et al. Methodology of Filtering the Noise and Utilization of STEMI in the Myocardial Infarction