JPH0413966A - Quartz glass capillary column - Google Patents

Quartz glass capillary column

Info

Publication number
JPH0413966A
JPH0413966A JP2117987A JP11798790A JPH0413966A JP H0413966 A JPH0413966 A JP H0413966A JP 2117987 A JP2117987 A JP 2117987A JP 11798790 A JP11798790 A JP 11798790A JP H0413966 A JPH0413966 A JP H0413966A
Authority
JP
Japan
Prior art keywords
quartz glass
capillary column
glass capillary
solid phase
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2117987A
Other languages
Japanese (ja)
Inventor
Hiroaki Okano
広明 岡野
Toshihide Tokunaga
徳永 利秀
Nobutaka Suzuki
伸孝 鈴木
Ryoichi Ito
伊東 亮一
Hisaaki Nagai
永井 久晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Naka Seiki Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Naka Seiki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Naka Seiki Ltd filed Critical Hitachi Cable Ltd
Priority to JP2117987A priority Critical patent/JPH0413966A/en
Publication of JPH0413966A publication Critical patent/JPH0413966A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To prevent increase in cost as caused by consumption of a capillary column by providing a solid phase on an internal surface of a part except for near both ends of a quartz glass capillary column. CONSTITUTION:In order to form a solid phase 3 except for a terminal 24 of a quartz glass capillary 1, for example, the quartz glass capillary 1 is filled with a solution of a solid phase 3 forming material over the entire length thereof and a solvent is evaporated at a relatively low temperature by a static method to form a layer of the solid phase 3 forming material over the entire length of the quartz glass capillary 1. Then, the solid phase 3 forming material is crosslinked by heating a part alone to form the solid phase 3 or by irradiating it with an electron beam, gamma rays or the like and the solid phase 3 forming material yet to be crosslinked is eluted by a proper solvent. In the crosslinking by heating, an isolated group forming agent to the solution of the solid phase 3 forming material is added beforehand and heated above a temperature at which the isolated group is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石英ガラスキャピラリカラムに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to fused silica capillary columns.

特に、高沸点化合物の分析およびリテンションギャップ
法に適する石英ガラスキャピラリカラムに関する。
In particular, it relates to a quartz glass capillary column suitable for the analysis of high-boiling compounds and retention gap methods.

〔従来の技術〕[Conventional technology]

石英ガラスキャピラリカラムはガスクロマトグラフィ、
液体クロマトグラフィ、超臨界流体クロマトグラフィ、
イオンクロマトグラフィ、電気泳動分析等に分離カラム
として有用である。石英ガラスキャピラリを用いたカラ
ムは、従来の充填カラム、SUSステンレス鋼等の金属
や多成分ガラスのキャピラリを用いたカラムに比べて優
れた性質をもち、今後さらに発展が期待される。石英ガ
ラスキャピラリカラムは例えば充填カラムに比し分離性
能においてすぐれ、また不純物が少ないため、金属や多
成分ガラスのキャピラリを用いたカラムより吸着による
テーリングが少ないという長所がある。
Quartz glass capillary columns are used in gas chromatography,
liquid chromatography, supercritical fluid chromatography,
It is useful as a separation column for ion chromatography, electrophoretic analysis, etc. Columns using silica glass capillaries have superior properties compared to conventional packed columns and columns using metals such as SUS stainless steel or multi-component glass capillaries, and further development is expected in the future. A silica glass capillary column has superior separation performance compared to, for example, a packed column, and has fewer impurities, so it has the advantage of less tailing due to adsorption than a column using a capillary made of metal or multi-component glass.

石英ガラスキャピラリは通常、外径0.2ないし1.0
mm、厚さ0.05ないし0.2mm程度の細いもので
あり、ガスクロマトグラフィにおいては250°C以上
、目的によって350°C以上の高温で使用されるので
、保護膜は通常耐熱性材料により構成される。
Fused silica capillaries usually have an outer diameter of 0.2 to 1.0
It is a thin film with a thickness of about 0.05 to 0.2 mm, and is used at high temperatures of 250°C or higher in gas chromatography, or 350°C or higher depending on the purpose, so the protective film is usually made of a heat-resistant material. be done.

石英ガラスキャピラリカラムを製造するには、無水合成
された石英ガラス母材から線引炉により延伸された石英
ガラスキャピラリに、延伸後直ちに外面にポリイミド樹
脂等の耐熱性樹脂あるいはアルミニウム等の金属から成
る耐熱性保護層の被覆を施した後、キャピラリ内面に、
シリル化あるいはシランカプリング剤による表面処理を
施し、さらにポリジメチルシロキサン、ポリエチレング
リコール等から成る固定相を形成させる。表面処理は、
ガラス表面に存在する水酸基を不活性化するためである
To manufacture a quartz glass capillary column, a quartz glass capillary is drawn from an anhydrous synthesized quartz glass base material in a drawing furnace, and immediately after drawing, the outer surface is made of a heat-resistant resin such as polyimide resin or a metal such as aluminum. After coating with a heat-resistant protective layer, the inner surface of the capillary is
A surface treatment is performed using silylation or a silane coupling agent, and a stationary phase made of polydimethylsiloxane, polyethylene glycol, etc. is formed. The surface treatment is
This is to inactivate the hydroxyl groups present on the glass surface.

石英キャピラリカラムを用いてガスクロマトグラフィ分
析を行うには、第3図に示すように、試料注入口31と
検出部32の間にキャピラリカラム33を接続する。高
沸点化合物を分析するときには、試料注入口31、キャ
ピラリカラム33、検出部32のいずれも温度を高くす
る。特に試料注入口31と検出部32の温度は、キャピ
ラリカラム33の温度より30ないし100°C高く保
つ必要があり、350ないし400°Cになる場合もあ
る。
To perform gas chromatography analysis using a quartz capillary column, a capillary column 33 is connected between a sample injection port 31 and a detection section 32, as shown in FIG. When analyzing a high boiling point compound, the temperatures of the sample injection port 31, capillary column 33, and detection section 32 are all raised. In particular, the temperature of the sample injection port 31 and the detection section 32 must be kept 30 to 100°C higher than the temperature of the capillary column 33, and may reach 350 to 400°C.

石英キャピラリカラムに比較的多量の試料を注入して分
析を行う場合には、溶媒ピークのテーリングや溶質ピー
クの異常拡散を防くため、第4図に示すように、試料注
入口31と分離カラム43の間に固定相を有しない空力
ラム44をコネクタ45を介して接続することが行われ
ており、リテンションギャップ法と呼ばれている。分離
カラム43と空力ラム44を接続するコネクタ45には
次のようなことが要求される。
When performing analysis by injecting a relatively large amount of sample into a quartz capillary column, in order to prevent tailing of solvent peaks and abnormal diffusion of solute peaks, it is necessary to 43, an aerodynamic ram 44 having no stationary phase is connected via a connector 45, which is called a retention gap method. The following requirements are required for the connector 45 that connects the separation column 43 and the aerodynamic ram 44.

(1)極性化合物の吸着を防くため完全な不活性化処理
がなされていること (2)機械的強度 (3)耐熱性 (4)接続が容易なこと (5)低価格 通常、ガラス製または金属製のコネクタが用いられてい
る。
(1) Completely inactivated to prevent adsorption of polar compounds (2) Mechanical strength (3) Heat resistance (4) Easy to connect (5) Low price Usually made of glass Or a metal connector is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし従来のガスクロマトグラフィの構成では、高沸点
化合物の分析の際に試料注入口および検出部に挿入され
るキャピラリカラムの末端部およびその付近の温度が3
50ないし400°Cにもなり、この部分の内面の固定
相の分離性能の劣化が生じ易い。この劣化は、キャリア
ガス中に微量の酸素が含まれている場合顕著である。石
英キャピラリカラムが一度このような熱劣化または酸化
劣化を受けると、もはや回復することはない。そこで、
従来は劣化した両末端部を数mはど切り落とし、残りの
部分を用いていたので、この切り落としによりキャピラ
リカラムの条長がその度に短くなり、キャピラリカラム
の分離能力が次第に低下するという問題があった。末端
部では分離能力だけでなく、高温のため機械的強度も低
下する。ある条長以下になると分離能力の低下のため使
用不能になり、新たなキャピラリカラムに交換しなけれ
ばならないので、分析のコストを増大させていた。
However, in the configuration of conventional gas chromatography, when analyzing high-boiling compounds, the temperature at and around the end of the capillary column inserted into the sample injection port and detection section is 3.
The temperature can reach as high as 50 to 400°C, and the separation performance of the stationary phase on the inner surface of this portion is likely to deteriorate. This deterioration is significant when the carrier gas contains a trace amount of oxygen. Once a quartz capillary column undergoes such thermal or oxidative degradation, it can no longer recover. Therefore,
Conventionally, several meters of both degraded end portions were cut off and the remaining portion was used, which caused the problem that the length of the capillary column became shorter each time the length of the capillary column was cut off, resulting in a gradual decline in the separation capacity of the capillary column. there were. At the end, not only the separation ability but also the mechanical strength decreases due to the high temperature. When the column length is less than a certain value, the capillary column becomes unusable due to a drop in separation ability and must be replaced with a new capillary column, increasing the cost of analysis.

またリテンションギャップ法では、分離カラムと空力ラ
ムを接続するために用いるコネクタに問題があった。即
ち、ガラス製のコネクタは機械的強度(前述の要求条件
(2))が劣り、金属製コネクタは、機械的強度は優れ
るが、内面の完全な不活性化処理(前述の要求条件(1
))が困難で、極性化合物のピークのテーリングを起こ
す。
The retention gap method also had problems with the connectors used to connect the separation column and the aerodynamic ram. In other words, glass connectors have poor mechanical strength (requirement (2) above), and metal connectors have excellent mechanical strength, but complete inertization treatment on the inner surface (requirement (1))
)) is difficult and causes peak tailing of polar compounds.

従って本発明の目的は、高沸点化合物のガスクロマトグ
ラフィ分析の際に、キャピラリカラムの末端部およびそ
の付近の固定相の分離性能の劣化と機械的強度の低下を
回避し、末端部分の切り落としによる分離能力の低下と
、キャピラリカラムの消耗によるコストの増大を防ぐこ
とである。
Therefore, an object of the present invention is to avoid deterioration of the separation performance and mechanical strength of the stationary phase at and around the ends of a capillary column during gas chromatography analysis of high-boiling compounds, and to perform separation by cutting off the ends of the capillary column. The objective is to prevent a decrease in capacity and an increase in costs due to capillary column consumption.

本発明の他の目的は、リテンションギャップ法で分離カ
ラムと空力ラムの接続に用いるコネクタに起因して生ず
る極性化合物のピークのテーリング、あるいはコネクタ
部の破損を回避することである。
Another object of the present invention is to avoid tailing of polar compound peaks or damage to the connector portion caused by the connector used to connect the separation column and the pneumatic ram in the retention gap method.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記目的を達成するために本発明では、石英ガラスキャ
ピラリカラムの両端付近を除く部分にのみ、内面に固定
相を設けるようにした。
In order to achieve the above object, in the present invention, a stationary phase is provided on the inner surface of a silica glass capillary column only in a portion excluding the vicinity of both ends.

本発明の石英ガラスキャピラリカラムは下記諸要件から
成る。
The quartz glass capillary column of the present invention has the following requirements.

(1)石英ガラスキャピラリ (2)石英ガラスキャピラリ両端付近を除く部分にのみ
内面に形成された固定相。
(1) Quartz glass capillary (2) A stationary phase formed on the inner surface of the quartz glass capillary except for the areas near both ends.

以下に各要素について詳しく説明する。Each element will be explained in detail below.

(1)石英ガラスキャピラリ 通常、外径0.2ないし1.0mm、厚さ0.05ない
し0.2mm程度のものを用いる。通常のように、無水
合成された比較的太い石英ガラス管母材を、温度約20
00°Cの線引炉により細く延伸して作ることができる
(1) Quartz glass capillary Usually, a capillary with an outer diameter of 0.2 to 1.0 mm and a thickness of about 0.05 to 0.2 mm is used. As usual, a relatively thick quartz glass tube base material produced by anhydrous synthesis is heated at a temperature of approximately 20°C.
It can be made by thinly drawing it in a drawing furnace at 00°C.

石英ガラスキャピラリカラムは、固定相を形成する前に
、石英ガラスキャピラリ内面にシリル化あるいはシラン
カプリング剤による表面処理を施す。この表面処理はガ
ラス表面に存在する水酸基を不活性化するためである。
In a quartz glass capillary column, the inner surface of the quartz glass capillary is subjected to silylation or surface treatment with a silane coupling agent before forming the stationary phase. This surface treatment is to inactivate the hydroxyl groups present on the glass surface.

表面処理は、石英ガラスキャピラリの少なくとも固定相
を形成させる部分に施す必要があるが、全長にわたり施
すことが好ましい。
Although it is necessary to perform the surface treatment on at least the portion of the silica glass capillary where the stationary phase is to be formed, it is preferable to perform the surface treatment over the entire length.

(2)石英ガラスキャピラリ内面に形成された固定相本
発明の石英ガラスキャピラリカラムは、末端付近を除き
石英ガラスキャピラリ内面に、ガスクロマトグラフィに
おける成分分離の機能をもつ固定相を設ける。固定相を
設けるには、石英ガラスキャピラリ内に固定相形成物質
の溶液を通過させた後適当な不活性気体を通して溶媒を
蒸発させるか(ダイナミック法)、石英キャピラリ内に
固定相形成物質の溶液を充填した後一端から順次溶媒を
加熱蒸発させる(スタチック法)。
(2) Stationary phase formed on the inner surface of the quartz glass capillary In the quartz glass capillary column of the present invention, a stationary phase having a function of component separation in gas chromatography is provided on the inner surface of the silica glass capillary except near the ends. To provide a stationary phase, either pass a solution of a stationary phase forming substance through a quartz glass capillary and then evaporate the solvent by passing a suitable inert gas (dynamic method), or pass a solution of a stationary phase forming substance into a quartz capillary. After filling, the solvent is sequentially heated and evaporated from one end (static method).

固定相形成物質には、例えばポリジメチルシロキサン、
フェニルメチルポリシロキサン等のシロキサン、ポリエ
チレングリコール等を用いることができる。
Stationary phase forming substances include, for example, polydimethylsiloxane,
Siloxanes such as phenylmethylpolysiloxane, polyethylene glycol, etc. can be used.

前記溶媒には例えばジクロロメタン、n−ペンタン、ジ
エチルエーテル等を用いることができる。
For example, dichloromethane, n-pentane, diethyl ether, etc. can be used as the solvent.

スタチック法において石英キャピラリ中の溶媒を加熱す
るには、石英キャピラリの外側に前記溶媒の蒸発温度よ
り所定の温度、例えば20°C以上高い温度の液体を接
触させて加熱する方法や、マイクロ波の照射により誘電
加熱する方法がある。
In order to heat the solvent in the quartz capillary in the static method, there are two methods: heating the outside of the quartz capillary by contacting a liquid with a temperature higher than the evaporation temperature of the solvent by a predetermined temperature, for example, 20°C or more, There is a method of dielectric heating using irradiation.

石英ガラスキャピラリの固定相を設けない末端部は、両
端合わせて、全長の1%から20%ま−での範囲が適当
である。
The end portion of the quartz glass capillary without a stationary phase is suitably in the range of 1% to 20% of the total length, including both ends.

石英ガラスキャピラリの末端部を除いて固定相を形成さ
せるには、石英ガラスキャピラリ内に全長にわたり固定
相形成物質の溶液を充填し、スタティック法により比較
的低温で溶媒を蒸発させ、−旦石英ガラスキャピラリの
全長にわたり固定相形成物質の層を゛形成させた後、固
定相を形成させるべき部分のみを加熱するか、電子線、
ガンマ線等を照射することにより、固定相形成物質を架
橋させ、適当な溶媒で未架橋の固定相形成物質を溶出さ
せる方法がある。加熱により架橋させる場合には、固定
相形成物質の溶液に遊離基形成剤を添加しておき、遊離
基発生温度以上に加熱する。
In order to form a stationary phase except for the end of the quartz glass capillary, fill the entire length of the quartz glass capillary with a solution of a stationary phase forming substance, evaporate the solvent at a relatively low temperature using a static method, and then remove the quartz glass capillary. After forming a layer of stationary phase-forming substance along the entire length of the capillary, only the portion where the stationary phase is to be formed is heated or heated with an electron beam,
There is a method in which a stationary phase forming substance is crosslinked by irradiation with gamma rays or the like, and the uncrosslinked stationary phase forming substance is eluted with an appropriate solvent. When crosslinking is carried out by heating, a free radical forming agent is added to the solution of the stationary phase forming substance, and the solution is heated to a temperature above the free radical generation temperature.

本発明の石英ガラスキャピラリカラムは、必要に応じさ
らに次の要件を有してもよい。
The silica glass capillary column of the present invention may further have the following requirements as necessary.

(3)石英ガラスキャピラリ外面に設けられた耐熱性保
護層 本発明の石英ガラスキャピラリカラムは、高温での繰り
返し使用しても機械的強度を保つことができるよう、外
面に1層または2層以上の耐熱性保護層を有してもよい
。本発明で用いる好ましい耐熱性保護層は、 (1)ポリイミド樹脂、例えば芳香族ポリイミド、例え
ばトリメリット酸無水物と4,4゛−ジアミノジフェニ
ルエーテルの重縮合物(例えばデュポン社製P y r
 e  ML)、 (2)シリコーン変性ポリイミド、即ち主鎖または側鎖
にシロキサン構造を有するポリイミド、特に主鎖にポリ
アミック酸から形成されたイミド環とシロキサン構造と
を有する重合体、 (3)オルガノポリシル−セスキ−オキサンである。
(3) Heat-resistant protective layer provided on the outer surface of the quartz glass capillary The quartz glass capillary column of the present invention has one or more layers on the outer surface so that it can maintain mechanical strength even after repeated use at high temperatures. It may have a heat-resistant protective layer. Preferable heat-resistant protective layers used in the present invention include: (1) polyimide resins, such as aromatic polyimides, such as polycondensates of trimellitic anhydride and 4,4'-diaminodiphenyl ether (for example, DuPont's Pyr
e ML), (2) silicone-modified polyimide, that is, a polyimide having a siloxane structure in the main chain or side chain, particularly a polymer having an imide ring formed from polyamic acid and a siloxane structure in the main chain, (3) organopolysil Ruseski-oxane.

保護層の厚さは約3μmから約50μmが好ましい。耐
熱性保護層は2層以上でもよい。
The thickness of the protective layer is preferably about 3 μm to about 50 μm. The heat-resistant protective layer may have two or more layers.

〔作用〕[Effect]

本発明の石英ガラスキャピラリカラムは末端部が350
°Cまたはそれ以上の温度になるような条外下で繰り返
し使用した後でも、キャピラリカラムの末端部およびそ
の付近にある固定相が劣化することによる分離性能の低
下がない。従って劣化した末端部分を切り落とす必要が
ないから、キャピラリカラムの条長が短かくなることに
よる分離能力の低下が避けられる。末端部分の切り落と
しにより次第に切り詰められて短くなったキャピラリカ
ラムを交換する必要が生じないので、キャピラリカラム
の寿命が長くなり、キャピラリカラムの頻繁な交換によ
るコストが顕著に低減される。
The quartz glass capillary column of the present invention has a distal end of 350 mm.
Even after repeated use at temperatures of °C or higher, separation performance does not deteriorate due to deterioration of the stationary phase at the end of the capillary column and its vicinity. Therefore, there is no need to cut off the deteriorated end portion, so that a decrease in separation ability due to a shortening of the length of the capillary column can be avoided. Since there is no need to replace a capillary column that has been truncated and shortened due to end trimming, the lifetime of the capillary column is increased and the costs associated with frequent replacement of the capillary column are significantly reduced.

本発明の石英ガラスキャピラリカラムは、リテンション
ギャップ法を利用するとき、空力ラムを分離カラムにコ
ネクタを用いて接続する必要がないので、金属コネクタ
の場合に不十分な不活性化に起因して生ずる極性化合物
のピークのテーリング、あるいはガラスコネクタの場合
のコネクタ部の破損を回避することができる。
The fused silica capillary column of the present invention eliminates the need to connect the aerodynamic ram to the separation column with a connector when utilizing the retention gap method, which would otherwise occur due to insufficient passivation in the case of metal connectors. Tailing of peaks of polar compounds or damage to the connector part in the case of glass connectors can be avoided.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 本発明による石英ガラスキャピラリカラムを以下図面に
従い説明する。第1図は石英ガラスキャピラリカラムの
長さ方向に沿った断面を示す。第1図で1は石英キャピ
ラリ、2は耐熱性保護膜、3は固定相である。固定相3
は、キャピラリの末端付近を除いて設けられている。
[Example 1] A quartz glass capillary column according to the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section along the length of a fused silica capillary column. In FIG. 1, 1 is a quartz capillary, 2 is a heat-resistant protective film, and 3 is a stationary phase. Stationary phase 3
are provided except near the end of the capillary.

石英ガラスキャピラリカラムは次のようにして製作した
。まず、無水合成石英ガラス管母材を温度的2000°
Cの線引炉により軟化させ、外径320μm1内径25
0μm(管の厚さ35μm)の石英キャピラリに延伸し
た。延伸後直ちに、下記のように外面を耐熱性樹脂で被
覆し、さらに内面に固定相を形成させた。
A quartz glass capillary column was manufactured as follows. First, the anhydrous synthetic quartz glass tube base material was heated to a temperature of 200°
Soften it in a drawing furnace of
It was drawn into a quartz capillary of 0 μm (tube thickness 35 μm). Immediately after stretching, the outer surface was coated with a heat-resistant resin as described below, and a stationary phase was further formed on the inner surface.

ポリイミド樹脂溶液を乾燥後の厚さが108mになるよ
う石英キャピラリ1の外面に塗布し、温度400°Cの
電気炉を通して、乾燥、硬化させ、耐熱性保護膜2を形
成させた。
A polyimide resin solution was applied to the outer surface of the quartz capillary 1 so as to have a dry thickness of 108 m, and was dried and cured in an electric furnace at a temperature of 400°C to form a heat-resistant protective film 2.

耐熱性保護膜2で被覆された石英キャピラリ1を長さ5
0mに切断し、石英キャピラリ1内面にシリル化剤とし
てヘキサメチルジシラザンをダイナジック法により塗布
し、400°Cで16時間の熱処理を行い、ガラス表面
を不活性化させた。その後、石英キャピラリ1の全長に
わたり中空部にポリエチレングリコール(分子量2万)
100重量部、ジクミルパーオキシド3重量部をジクロ
ロメタンで希釈した溶液を充填した(ジクミルパーオキ
シドは遊離基発生剤)。スタティック法により、約70
°Cに加熱して溶剤を蒸発させ、厚さ約0.2μmのポ
リエチレングリコール層を形成させた。
A quartz capillary 1 coated with a heat-resistant protective film 2 has a length of 5
The quartz capillary 1 was cut to a length of 0 m, and hexamethyldisilazane was applied as a silylating agent to the inner surface of the quartz capillary 1 by the dynamic method, and heat treatment was performed at 400° C. for 16 hours to inactivate the glass surface. After that, polyethylene glycol (molecular weight 20,000) was added to the hollow part along the entire length of the quartz capillary 1.
A solution of 100 parts by weight and 3 parts by weight of dicumyl peroxide diluted with dichloromethane was charged (dicumyl peroxide is a free radical generator). Approximately 70 by static method
The solvent was evaporated by heating to 0.degree. C., forming a polyethylene glycol layer with a thickness of about 0.2 .mu.m.

さらに石英キャピラリ1の両末端部5mを除いた部分の
みを約150°Cに60分間加温し、固定相3を形成さ
せた。この後キャピラリカラム内部を塩化メチレンで洗
浄すると、石英キャピラリ1の両末端部では未架橋のポ
リエチレングリコール層が流出し、この部分では固定相
3が形成されていない状態となる。
Furthermore, only the portion of the quartz capillary 1 excluding 5 m of both ends was heated to about 150° C. for 60 minutes to form the stationary phase 3. After this, when the inside of the capillary column is washed with methylene chloride, uncrosslinked polyethylene glycol layers flow out from both ends of the quartz capillary 1, and the stationary phase 3 is not formed in these parts.

こうして製造された石英ガラスキャピラリカラムは、第
2図に示すような構成で昇温カラム法の分析に使用した
。キャピラリカラム23はマンドレル23aに巻いて両
端をガスクロマトグラフ装置の試料注入口21と検出部
22に接続した。キャピラリカラム23の末端部24は
内面に固定相が形成されていない部分である。最高温度
350°Cまで達する分析に100回使用した後でもキ
ャピラリカラムの分離性能の変化は全くなかった。
The quartz glass capillary column thus produced was used for analysis using the temperature-elevated column method with the configuration shown in FIG. The capillary column 23 was wound around a mandrel 23a, and both ends were connected to the sample injection port 21 and the detection section 22 of the gas chromatograph apparatus. The end portion 24 of the capillary column 23 is a portion where no stationary phase is formed on the inner surface. There was no change in the separation performance of the capillary column even after it was used 100 times for analyzes reaching a maximum temperature of 350°C.

このカラムを用いて高級アルコール混合液を分析したと
ころ、極性成分についてもテーリングはほとんど認めら
れず、成分間の高い分解能が得られた。
When a higher alcohol mixture was analyzed using this column, almost no tailing was observed even for polar components, and high resolution between the components was obtained.

〔実施例2〕 実施例1と同様にして石英ガラスキャピラリ1の外面を
耐熱性樹脂2で被覆し、内面を不活性化処理した後、石
英キャピラリ1の全長にわたり中空部にポリエチレング
リコール(分子量2万)をジクロロメタンで希釈した溶
液(遊離基発生剤を含まない)を充填した。スタティッ
ク法により、約70°Cに加熱して溶媒を蒸発させ、内
面に厚さ約0.2μmのポリエチレングリコール層を形
成させた後、石英ガラスキャピラリの両端末5mを除い
て電子線を照射してポリエチレングリコールを架橋させ
、固定相3を形成させた。この後キャピラリカラム内部
を塩化メチレンで洗浄し、石英キャピラリ1の両末端部
の未架橋のポリエチレングリコールを流出させた。こう
して、第1図に示す断面をもつキャピラリカラムを得た
[Example 2] In the same manner as in Example 1, the outer surface of the quartz glass capillary 1 was coated with a heat-resistant resin 2, and the inner surface was inactivated. Polyethylene glycol (molecular weight 2 A solution (containing no free radical generator) prepared by diluting 1,000 yen) with dichloromethane was filled. By the static method, the solvent was evaporated by heating to about 70°C to form a polyethylene glycol layer with a thickness of about 0.2 μm on the inner surface, and then the quartz glass capillary was irradiated with an electron beam except for 5 m at both ends. The polyethylene glycol was crosslinked to form the stationary phase 3. Thereafter, the inside of the capillary column was washed with methylene chloride, and uncrosslinked polyethylene glycol at both ends of the quartz capillary 1 was discharged. In this way, a capillary column having the cross section shown in FIG. 1 was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によると、高沸点化合物のガスクロマトグラフィ
分析の際に、350°Cまたはそれ以上の温度になるキ
ャピラリカラムの末端部およびその付近での固定相の劣
化による分離性能の低下を生ずることがなく、分離性能
を保つために末端部分を切り落とす必要がない。従って
、キャピラリカラムの全長の短縮による分離能力の低下
がなく、また次第に切り詰められて短くなったキャピラ
リカラムを交換する必要がないから、キャピラリカラム
の消耗によるコストが大幅に減少する。キャピラリカラ
ムの末端部に固定相が存在しないため、キャピラリカラ
ム末端部の高温による機械的強度の低下も回避される。
According to the present invention, during gas chromatography analysis of high-boiling compounds, there is no reduction in separation performance due to deterioration of the stationary phase at and around the end of the capillary column, which is exposed to temperatures of 350°C or higher. , there is no need to cut off the end portion to maintain separation performance. Therefore, there is no reduction in separation ability due to a shortening of the total length of the capillary column, and there is no need to replace a capillary column that has been gradually truncated and shortened, so costs due to capillary column wear are significantly reduced. Since there is no stationary phase at the end of the capillary column, a decrease in mechanical strength due to high temperatures at the end of the capillary column is also avoided.

たとえ末端部を破損しても固定相が形成されている条長
は変わらないので、分離能力の変化はない。
Even if the terminal end is damaged, the length of the stationary phase remains unchanged, so there is no change in separation ability.

本発明による石英ガラスキャピラリカラムは、試料注入
口および検出部付近が350°Cまたはそれ以上の高温
になる使用条件でガスクロマトグラフィに繰り返し使用
しても、高分解能を保つ。高温での分析における寿命が
延びるだけでなく、従来より平均として高い分解能が、
安定して得られる。
The quartz glass capillary column according to the present invention maintains high resolution even if it is repeatedly used in gas chromatography under conditions where the sample injection port and detection area are at high temperatures of 350° C. or higher. Not only does it extend the lifetime of analysis at high temperatures, it also offers higher average resolution than before.
Obtained stably.

また本発明によると、リテンションギャップ法による分
析の際、分離カラムと空力ラム(固定相がないカラム)
の接続にコネクタを用いる必要がないから、空力ラムを
コネクタで接続する手間も要らず、金属製コネクタに起
因する極性化合物のピークのテーリング、あるいはガラ
ス製のコネクタを用いた場合に起き易い破損が避けられ
る。
In addition, according to the present invention, during analysis by the retention gap method, a separation column and an aerodynamic ram (a column without a stationary phase) are used.
Since there is no need to use a connector to connect the aerodynamic ram, there is no need to use a connector to connect the aerodynamic ram, and there is no need to worry about tailing of polar compound peaks caused by metal connectors or damage that can easily occur when using glass connectors. can avoid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による石英ガラスキャピラリカラムの一
実施例の断m1図、第2図は本発明による石英ガラスキ
ャピラリカラムの使用状態を示す説四回、第3図は石英
ガラスキャピラリカラムの使用状態を示す説明図、第4
図はリテンションギャップ法における石英ガラスキャピ
ラリカラムの使用状態を示す説明図である。 符号の説明 1−−−−−−−−−−一石英ガラスキャピラリ2−−
−−−−一耐熱性保護膜 3−−−−−−−−−一固定相 21−−−−−一試料注入口 22−−−一検出部 23−−−−−キャピラリカラム 23 a−−−−−−マンドレル 24−−−−−−一固定相のない末端部31−−−−−
−一試料注入口 32−−−−−一検出部 33−−−−−−キャピラリカラム 43−−−−−分離カラム 44−−−一・−空力ラム 45−−−コネクタ ベ 鰹    ロ    コ 自 縛 へ 晒   <   中 Δ e +   cy   (1つ  Oつ  で試料注入口 検出部 キャピラリカラム 44・ 試料注入口 検出部 分離カラム ・−空力ラム コネクタ 第3 第4
FIG. 1 is a cross-sectional view of one embodiment of the silica glass capillary column according to the present invention, FIG. 2 is a diagram showing how the silica glass capillary column according to the present invention is used four times, and FIG. Explanatory diagram showing the state, No. 4
The figure is an explanatory diagram showing how a silica glass capillary column is used in the retention gap method. Explanation of symbols 1------- Monosilica glass capillary 2---
-----1 Heat-resistant protective film 3----1 stationary phase 21---1 sample injection port 22---1 detecting section 23---Capillary column 23 a- ------- Mandrel 24 ------- End part 31 without stationary phase
-1 Sample injection port 32--1 Detection section 33--Capillary column 43--Separation column 44-1.-Aerodynamic ram 45--Connector bar Bonito Loco Self-binding To Exposure < Medium Δ e + cy (One O sample injection port detection part capillary column 44 sample injection port detection part separation column - aerodynamic ram connector 3rd 4th

Claims (3)

【特許請求の範囲】[Claims] (1)石英ガラスキャピラリの末端付近を除く部分にの
み内面に固定相が設けられていることを特徴とする石英
ガラスキャピラリカラム。
(1) A quartz glass capillary column characterized in that a stationary phase is provided on the inner surface only in a portion of the quartz glass capillary excluding the vicinity of the end.
(2)石英ガラスキャピラリの全長にわたって内面に不
活性化処理が施されている請求項第1項の石英ガラスキ
ャピラリカラム。
(2) The quartz glass capillary column according to claim 1, wherein the inner surface of the quartz glass capillary is subjected to an inactivation treatment over its entire length.
(3)固定相が設けられていない石英ガラスキャピラリ
の前記末端付近が全長の1ないし20%である請求項第
1項の石英ガラスキャピラリカラム。
(3) The quartz glass capillary column according to claim 1, wherein the vicinity of the end of the quartz glass capillary, which is not provided with a stationary phase, accounts for 1 to 20% of the total length.
JP2117987A 1990-05-07 1990-05-07 Quartz glass capillary column Pending JPH0413966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117987A JPH0413966A (en) 1990-05-07 1990-05-07 Quartz glass capillary column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117987A JPH0413966A (en) 1990-05-07 1990-05-07 Quartz glass capillary column

Publications (1)

Publication Number Publication Date
JPH0413966A true JPH0413966A (en) 1992-01-17

Family

ID=14725219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117987A Pending JPH0413966A (en) 1990-05-07 1990-05-07 Quartz glass capillary column

Country Status (1)

Country Link
JP (1) JPH0413966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1051727A1 (en) * 1997-12-31 2000-11-15 University Of Central Florida Discharge lamp sources apparatus and methods
JP2006516740A (en) * 2003-02-04 2006-07-06 ウオーターズ・インベストメンツ・リミテツド Capillary loop with built-in retention frit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1051727A1 (en) * 1997-12-31 2000-11-15 University Of Central Florida Discharge lamp sources apparatus and methods
JP2006516740A (en) * 2003-02-04 2006-07-06 ウオーターズ・インベストメンツ・リミテツド Capillary loop with built-in retention frit

Similar Documents

Publication Publication Date Title
US4509964A (en) Fused silica capillary column
Chambers et al. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules
US8685240B2 (en) High efficiency sol-gel gas chromatography column
Ryan et al. A review of developments in the methodology and application of microemulsion electrokinetic chromatography
Kang et al. A silica monolithic column prepared by the sol‐gel process for enantiomeric separation by capillary electrochromatography
Shen et al. High‐resolution capillary isoelectric focusing of proteins using highly hydrophilic‐substituted cellulose‐coated capillaries
JPS62228160A (en) Column
Zhou et al. Preparation of β‐cyclodextrin‐gold nanoparticles modified open tubular column for capillary electrochromatographic separation of chiral drugs
Kano et al. Ability of non-cyclic oligosaccharides to form molecular complexes and its use for chiral separation by capillary zone electrophoresis
Ghorbani et al. Preconcentration and determination of fluoxetine and norfluoxetine in biological and water samples with β-cyclodextrin multi-walled carbon nanotubes as a suitable hollow fiber solid phase microextraction sorbent and high performance liquid chromatography
Tsutsui et al. Chiral amines as reagents for HPLC–MS enantioseparation of chiral carboxylic acids
JPH0413966A (en) Quartz glass capillary column
Ramezani et al. Electrodeposition of poly‐ethylenedioxythiophene‐graphene oxide nanocomposite in a stainless steel tube for solid‐phase microextraction of letrozole in plasma samples
Khadka et al. Postpolymerization modification of a hydroxy monolith precursor. Part III. Activation of poly (hydroxyethyl methacrylate‐co‐pentaerythritol triacrylate) monolith with epoxy functionalities followed by bonding of glycerol, polyamines, and hydroxypropyl‐β‐cyclodextrin for hydrophilic interaction and chiral capillary electrochromatography
JP2004538482A5 (en)
Gu et al. β‐Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation
Blomberg et al. Glass capillary columns coated with non-soluble methyl silicone gums
Otin et al. Online large volume sample staking preconcentration and separation of enantiomeric GHRH analogs by capillary electrophoresis
Neequaye et al. Poly (carboxyethyl acrylate‐co‐ethylene glycol dimethacrylate) precursor monolith with bonded octadecyl ligands for use in reversed‐phase capillary electrochromatography
Dziomba et al. Investigation of selected parameters of capillary zone electrophoresis method for analysis of isolates of outer membrane vesicles
Luces et al. Achiral and chiral separations using MEKC, polyelectrolyte multilayer coatings, and mixed mode separation techniques with molecular micelles
Martin et al. Combination of sorption properties of polydimethylsiloxane and solid‐phase extraction sorbents in a single composite material for the passive sampling of polar and apolar pesticides in water
Bieri et al. Focused microwave-assisted extraction combined with solid-phase microextraction and gas chromatography–mass spectrometry for the selective analysis of cocaine from coca leaves
CN114686052B (en) Preparation and application of beta-cyclodextrin carbon nanotube two-component extraction coating
Shameli et al. Micellar affinity gradient focusing in a microfluidic chip with integrated bilinear temperature gradients