JPH04139605A - Manufacture of magnetic head core - Google Patents

Manufacture of magnetic head core

Info

Publication number
JPH04139605A
JPH04139605A JP26089790A JP26089790A JPH04139605A JP H04139605 A JPH04139605 A JP H04139605A JP 26089790 A JP26089790 A JP 26089790A JP 26089790 A JP26089790 A JP 26089790A JP H04139605 A JPH04139605 A JP H04139605A
Authority
JP
Japan
Prior art keywords
magnetic
core
gap
magnetic field
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26089790A
Other languages
Japanese (ja)
Inventor
Shunsaku Muraoka
俊作 村岡
Terumasa Sawai
瑛昌 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26089790A priority Critical patent/JPH04139605A/en
Publication of JPH04139605A publication Critical patent/JPH04139605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magnetic head core with high isotropic initial permeability by arranging a magnetic material block on the tape sliding surface of a gapped bar so as to be in contact with a metallic magnetic body at the time of gap jointing in a magnetic field. CONSTITUTION:After the magnetic material block 21 is arranged on the tape sliding surface 22 of the gapped bar 15 so as to be in contact with an amolphous alloy film 5 or 9, and in addition, the magnetic field is impressed to both the inside directions of the amolphous alloy film 5 or 9, the gapped bar 15 is cut at prescribed core width, and the tape sliding surface 22 is lapped down to a prescribed gap depth, and the magnetic head core is obtained. Since the magnetic material block 21 is arranged so as to be in contact with the amolphous alloy film 5 or 9 in this way, even if heat reatment is performed in a rotating magnetic field at the time of the gap joining, anisotropy is never caused in the magnetic core, and a good head characteristic can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品位VTRやデジタルVTRなどの高密度
磁気記録システムに適した磁気ヘッドのコアの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a core of a magnetic head suitable for high-density magnetic recording systems such as high-quality VTRs and digital VTRs.

従来の技術 近年、高品位VTRやデジタルVTRなどの高密度磁気
記録システムの開発が盛んになってきており、磁気記録
媒体もこのような大量の情報を記録するために、酸化鉄
系から合金粉末媒体や金属蒸着媒体等の高抗磁力媒体へ
と変わりつつある。
Conventional technology In recent years, the development of high-density magnetic recording systems such as high-quality VTRs and digital VTRs has become active, and in order to record such large amounts of information, magnetic recording media have changed from iron oxide to alloy powder. There is a shift towards high coercive force media such as media and metal evaporated media.

そこで磁気ヘッドとしても、これらの高抗磁力媒体に対
応するような高飽和磁束密度を有し周波数特性の優れた
磁気ヘッドの開発が望まれている。
Therefore, it is desired to develop a magnetic head that has a high saturation magnetic flux density and excellent frequency characteristics that can be used with these high coercive force media.

そこで、現在飽和磁束密度の高いセンダストやアモルフ
ァス合金等よりなる金属磁性体を磁気ギャップの近傍に
配した磁気ヘッドの開発が行なわれている。
Therefore, a magnetic head is currently being developed in which a magnetic metal material made of sendust, amorphous alloy, or the like having a high saturation magnetic flux density is disposed near the magnetic gap.

以下、金属磁性体としてアモルファス合金を用い、アモ
ルファス合金薄膜で主磁気回路を構成したリング型の磁
気ヘッドコアの製造方法について図面を用いて説明する
Hereinafter, a method for manufacturing a ring-shaped magnetic head core in which an amorphous alloy is used as the metal magnetic material and the main magnetic circuit is constituted by an amorphous alloy thin film will be described with reference to the drawings.

まず、第3図(a)〜(e)は磁気ヘッドコアの製造工
程の概略を示すものであり、第1の非磁性基板1の片面
に第1の接着ガラス膜2をスパッタリングにより形成し
た第1基板3と、第2の非磁性基板4の片面に磁気コア
となる第1のアモルファス合金膜等よりなる金y:m性
体5と、その反対面に第2の接着ガラス膜6とをスパッ
タリングにより形成した第2基板7と、第3の非磁性基
板8の片面に磁気コアとなる第2のアモルファス合金膜
等よりなる金属磁性体9をスパッタリングにより形成し
た第3基板10を作成する(a)。次に、第1基板3と
第3基板10で、第2基板7を多数積み重ねたものを挟
み、加圧加熱処理を行い積層ブロック11を形成するら
)。次にその積層ブロック11から一対の磁気コア半体
12a、12bを切り出し、一方の磁気コア半体12a
に巻線溝13を設け(C)、磁気ギャップ面14を平滑
に研磨し、磁気ギャップ材を形成する。その後、一対の
磁気コア半体12a、12bを磁気ギャップ面14を突
き合わせて、加圧加熱処理を行いギャップドパ−15を
形成する(均。このギャップドパ−15を適当なコア幅
16で切断し、テープ摺動面17を所定のギャップ深さ
までラップして磁気−・ノドコア18を完成させる(e
)。
First, FIGS. 3(a) to 3(e) schematically show the manufacturing process of the magnetic head core. Sputtering a gold y:m material 5 made of a first amorphous alloy film or the like to serve as a magnetic core on one side of the substrate 3 and a second non-magnetic substrate 4, and a second adhesive glass film 6 on the opposite side. A third substrate 10 is created by sputtering a second substrate 7 formed by the method described above and a metal magnetic material 9 made of a second amorphous alloy film or the like which will become a magnetic core on one side of the third non-magnetic substrate 8 (a). ). Next, a stack of a large number of second substrates 7 is sandwiched between the first substrate 3 and the third substrate 10, and a pressure and heat treatment is performed to form a laminated block 11). Next, a pair of magnetic core halves 12a and 12b are cut out from the laminated block 11, and one magnetic core half 12a is cut out.
A winding groove 13 is provided in (C), and the magnetic gap surface 14 is polished smooth to form a magnetic gap material. Thereafter, the pair of magnetic core halves 12a and 12b are brought into contact with their magnetic gap surfaces 14, and subjected to pressure and heat treatment to form a gap doper 15 (evenly. This gap doper 15 is cut at an appropriate core width 16, and a tape The sliding surface 17 is wrapped to a predetermined gap depth to complete the magnetic throat core 18 (e
).

この製造方法における熱処理工程はすべてアモルファス
合金の結晶化温度以下で行われている。
All heat treatment steps in this manufacturing method are performed at a temperature below the crystallization temperature of the amorphous alloy.

しかし、後述するヘッドコアに使用しているアモルファ
ス合金膜5および9の場合、飽和磁束密度が高くなると
、結晶化温度Tχとキュリー温度Tcとの関係はTx<
Tcとなる。したがって、Tx以下の温度で熱処理を行
い、異方性を分散させて等方的に高い初i3磁率を得る
ためには、熱処理時にアモルファス合金膜5および9の
膜面内方向に回転磁界を印加する必要がある。
However, in the case of the amorphous alloy films 5 and 9 used in the head core described later, when the saturation magnetic flux density increases, the relationship between the crystallization temperature Tχ and the Curie temperature Tc becomes Tx<
It becomes Tc. Therefore, in order to perform heat treatment at a temperature below Tx and to disperse anisotropy and obtain a high isotropic initial i3 magnetic field, a rotating magnetic field is applied in the in-plane direction of the amorphous alloy films 5 and 9 during heat treatment. There is a need to.

またTx>Tcであるアモルファス合金の場合でも、異
方性をより分散させるためには回転磁界中での熱処理が
有効である。
Further, even in the case of an amorphous alloy where Tx>Tc, heat treatment in a rotating magnetic field is effective in order to further disperse the anisotropy.

発明が解決しようとする課題 しかしながら上記従来の製造方法では、回転磁界中で熱
処理を行なっても、ヘッドコアの形状の影響で、ヘッド
コア内の各領域で反磁界係数が異なり、ヘッドコア内の
各領域に−様な磁界が等方的に印加されず、ヘッドコア
に異方性が生しるという課題があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional manufacturing method, even if heat treatment is performed in a rotating magnetic field, the demagnetizing field coefficient differs in each region within the head core due to the influence of the shape of the head core. There was a problem that a magnetic field of - type was not applied isotropically, resulting in anisotropy in the head core.

第4図(a)〜(C)は回転磁界を印加した時のギャッ
プデプス領域の磁化の変化を示したものであり、膜厚4
0μmのアモルファス合金膜5および9からなるヘッド
コア19(a)に5000eの回転磁界Hextを印加
した時(b)の巻線溝13の近傍にあるギャップデプス
領域20の磁化の大きさおよび方向を1真により求め、
ベクトル表示したものである(C)、1夏方法としては
、第4図[有1)に示すように、印加磁界Hextの大
きさを5000eと一定にし、磁界印加角度θをOoか
ら360°まで10°おきに変化させてヘッドコア19
に印加した時の、各磁界印加角度θにおけるギャップデ
プス領域20の磁化を磁気モーメント法で求めた。
Figures 4(a) to (C) show the change in magnetization in the gap depth region when a rotating magnetic field is applied, and the film thickness is 4.
When a rotating magnetic field Hext of 5000 e is applied to the head core 19 (a) consisting of the amorphous alloy films 5 and 9 of 0 μm, the magnitude and direction of magnetization in the gap depth region 20 near the winding groove 13 in (b) are 1. seek by truth,
The vector representation is (C). As shown in Figure 4 [1], the 1 summer method is to keep the magnitude of the applied magnetic field Hext constant at 5000e, and change the magnetic field application angle θ from Oo to 360°. Head core 19 by changing every 10 degrees
The magnetization of the gap depth region 20 at each magnetic field application angle θ was determined by the magnetic moment method.

第4図(C)かられかるように、等方的に均一な磁界を
印加しているにもかかわらず、磁化の方向は反磁界係数
の小さなX方向に向き易くなっていることがわかる。特
にギャップデプス領域20では、その形状の影響でY方
向の反磁界係数が大きいため、印加磁界が等方的に加わ
らずに1巻線溝13の斜面に沿った方向が容易軸となる
ような異方性が付き、磁路に沿った方向の初透磁率が低
下するという課題を有していた。また印加磁界を極めて
大きくすれば反磁界の影響は軽減されるが、実際に磁気
ヘット′を製造する場合、実用的な方法とは言い難い。
As can be seen from FIG. 4(C), even though a uniform magnetic field is applied isotropically, the direction of magnetization tends to be directed toward the X direction where the demagnetizing field coefficient is small. In particular, in the gap depth region 20, the demagnetizing field coefficient in the Y direction is large due to its shape, so that the applied magnetic field is not applied isotropically and the direction along the slope of the first winding groove 13 becomes the easy axis. The problem was that it became anisotropic and the initial magnetic permeability in the direction along the magnetic path decreased. Furthermore, although the influence of the demagnetizing field can be reduced by making the applied magnetic field extremely large, this is hardly a practical method when actually manufacturing a magnetic head'.

本発明は上記従来の課題を解決するものであり、ヘッド
コア19の形状に起因するベンドコア19内の各領域で
の印加磁界の不均一性をなくすことによって、磁路方向
の初透磁率の低下をなくし、等方的に高い初透磁率を有
する磁気へノドコアの製造方法を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems, and by eliminating the non-uniformity of the applied magnetic field in each region within the bend core 19 due to the shape of the head core 19, the decrease in the initial magnetic permeability in the magnetic path direction is suppressed. It is an object of the present invention to provide a method for manufacturing a magnetic core having high isotropic initial magnetic permeability without any magnetic flux.

課題を解決するための手段 本発明は上記目的を達成するために磁気ギャップ面近傍
が金属磁性体よりなる一対の磁気コア半体の少なくとも
一方に巻線溝を形成し、前記一対の磁気コア半体を磁気
ギャップ面で接合させる際に、前記一対の磁気コア半体
のテープ摺動面上に金属磁性体に接するように磁性体ブ
ロックを配置し、その後磁界中で熱処理をしながら前記
一対の磁気コア半体を接合させることを特徴とするもの
である。
Means for Solving the Problems In order to achieve the above object, the present invention forms a winding groove in at least one of a pair of magnetic core halves in which the vicinity of the magnetic gap surface is made of a metal magnetic material, and When joining the bodies at the magnetic gap plane, a magnetic block is placed on the tape sliding surface of the pair of magnetic core halves so as to be in contact with the metal magnetic body, and then the pair of magnetic core halves are bonded while being heat-treated in a magnetic field. It is characterized by joining the magnetic core halves.

作用 したがって本発明によれば、ギャップ形成時に、ギャッ
プドパ−のテープ摺動面上に、磁気コアとなる金属磁性
体に接するように磁性体ブロックを配置し、巻線溝の先
端から磁性体ブロックの端までの距離を大きくすること
によって、ギャンプデブスH域におけるY方向の反磁界
係数が低減し、ヘッドコアの全体に−様な回転磁界が印
加されて異方性が分散されることになり、等方的に高い
初透磁率を得ることができる。
Effect Therefore, according to the present invention, when forming a gap, a magnetic block is arranged on the tape sliding surface of the gap doper so as to be in contact with the metal magnetic material that becomes the magnetic core, and the magnetic block is inserted from the tip of the winding groove. By increasing the distance to the end, the demagnetizing field coefficient in the Y direction in the gap fat H region is reduced, a -like rotating magnetic field is applied to the entire head core, and the anisotropy is dispersed, resulting in isotropic A high initial permeability can be obtained.

実施例 以下、本発明の一実施例における磁気ヘッドの製造方法
について第1図〜第3図(a)、 (b)、 (C)、
 (e)とともに従来例と同一部分については同一番号
を用い、従来例と同し工程については詳しい説明を省略
し、相違する点について説明する。第1図は本発明にお
ける磁気ヘッドの製造方法の一工程における斜視図であ
り、第3図((1)に示す一対のコア半体12a、12
bを磁気ギャップ面14で突き合わせて加圧加熱処理を
行い、ギャップドパー15を作成する工程に相当するも
のである。第1図に示すようにセンダストからなる磁性
体ブロック21をギャップドパ−15のテープ摺動面2
2上にアモルファス合金膜5または9に接するように配
置し、かつ1kOeの磁界を12Orpmの回転数で回
転させながら、アモルファス合金膜5または9の面内方
向に印加する。本実施例における磁性体ブロック21の
厚みは2II11である。その後、このギャンプドバー
15を所定のコア幅16で切断し、テープ摺動面22を
所定のギャップデプスまでランプして第3図(e)に示
すような磁気ヘッドコア18が完成する。
EXAMPLE Below, a method for manufacturing a magnetic head according to an example of the present invention is shown in FIGS. 1 to 3 (a), (b), (C),
As with (e), the same numbers are used for the same parts as in the conventional example, detailed explanations of the same steps as in the conventional example are omitted, and differences will be explained. FIG. 1 is a perspective view in one step of the method for manufacturing a magnetic head according to the present invention, and FIG.
This process corresponds to the step of creating the gap doper 15 by abutting the magnetic gap surfaces 14 and applying pressure and heat treatment. As shown in FIG.
A magnetic field of 1 kOe is applied in the in-plane direction of the amorphous alloy film 5 or 9 while rotating at a rotation speed of 12 Orpm. The thickness of the magnetic block 21 in this example is 2II11. Thereafter, this gapped bar 15 is cut to have a predetermined core width 16, and the tape sliding surface 22 is ramped to a predetermined gap depth to complete a magnetic head core 18 as shown in FIG. 3(e).

第2図は、膜厚30μmのアモルファス合金膜を正方形
に切断し、中心に0.4φの穴を開けたサンプルを1k
Oeの回転磁界中で熱処理した時の、疑偵リング形状で
の1MHzの初透磁率μiを測定した結果である。熱処
理は480°Cで30m1n行い、またサンプルの中心
の穴の端から正方形の一辺までの距離dを4種類変えて
実験を行った。
Figure 2 shows a 1k sample of an amorphous alloy film with a thickness of 30 μm cut into squares and a hole of 0.4φ in the center.
These are the results of measuring the initial magnetic permeability μi at 1 MHz in a ring shape when heat treated in a rotating magnetic field of Oe. The heat treatment was performed at 480° C. for 30 ml, and the experiment was conducted with four different distances d from the edge of the hole at the center of the sample to one side of the square.

その結果、d≧1,3閣では等方的に高い初透磁率が得
られているが、dが小さくなるに従い初透磁率μIは低
下する傾向にあることがわかる。これはdが小さくなる
に従い、穴の円周と直交する方向の反磁界係数が大きく
なり、−様な回転磁界を加えているにもかかわらず、穴
の円周方向に有効に磁界が印加され、円周方向が磁化容
易軸となるような異方性が生しているためと考えられる
As a result, it can be seen that a high initial magnetic permeability is obtained isotropically when d≧1 and 3, but as d becomes smaller, the initial magnetic permeability μI tends to decrease. This is because as d becomes smaller, the demagnetizing field coefficient in the direction perpendicular to the circumference of the hole increases, and even though a −-like rotating magnetic field is applied, a magnetic field is not effectively applied in the circumferential direction of the hole. This is thought to be due to the anisotropy in which the circumferential direction is the axis of easy magnetization.

このように上記実施例によれば、ギャップドパ−15の
テープ摺動面22上にアモルファス合金膜5または9に
接するように磁性体ブロック21を配置しているため、
ギャップ接合時に回転磁界中で熱処理を施しているにも
かかわらず、磁気コア内に異方性が生じることなく良好
なヘッド特性を得ることができる。
As described above, according to the above embodiment, since the magnetic block 21 is arranged on the tape sliding surface 22 of the gap doper 15 so as to be in contact with the amorphous alloy film 5 or 9,
Even though heat treatment is performed in a rotating magnetic field during gap bonding, good head characteristics can be obtained without anisotropy occurring in the magnetic core.

また本実施例では金属磁性体として、 CoNbZrアモルファス合金でTx<Tcであるもの
を用いたが、そのほか組成変調窒化アモルファス合金膜
を用いることもでき、また磁界中で熱処理を行う工程を
必要とする磁性膜の磁気ヘッドコアの製造にも有効であ
る。また広帯域特性の向上のため、磁気コアとして金属
磁性膜とS iO2等の絶縁膜を交互に積み重ねた積層
膜を用いた磁気ヘッドコアの製造においても同様の効果
が得られる。さらに、本実施例では磁性体ブロック21
としてセンダストを用いたが、その他、フェライトブロ
ックや軟鉄などを用いても同様の効果が得られる。
Further, in this example, a CoNbZr amorphous alloy with Tx<Tc was used as the metal magnetic material, but a composition-modified nitride amorphous alloy film may also be used, and a heat treatment process in a magnetic field is required. It is also effective in manufacturing magnetic head cores made of magnetic films. Further, in order to improve broadband characteristics, a similar effect can be obtained in the manufacture of a magnetic head core using a laminated film in which metal magnetic films and insulating films such as SiO2 are alternately stacked as the magnetic core. Furthermore, in this embodiment, the magnetic block 21
Sendust was used as the material, but the same effect can be obtained by using other materials such as ferrite blocks or soft iron.

また、同様の効果を得る方法としては、ギャップ接合す
る一対の磁気コア半体12a、12bの巻線溝13の先
端からテープ摺動面までの距1lldをあらかじめ大き
くする方法も考えられるが、生産性の点やヘッドを所定
のギャップデプスまでラップした後のトラックずれが大
きいなどの問題点があり、本発明による製造方法の方が
優れていることがわかった。
In addition, as a method to obtain the same effect, it is possible to increase the distance 1lld from the tip of the winding groove 13 of the pair of magnetic core halves 12a, 12b to be gap-joined to the tape sliding surface in advance. It has been found that the manufacturing method according to the present invention is superior to other problems, such as poor performance and large track deviations after the head is wrapped to a predetermined gap depth.

発明の効果 上記実施例より明らかなように本発明は、磁界中熱処理
を必要とする磁気ヘッドコアにおいて、磁界中における
ギャップ接合時にギャップドパ−のテープ摺動面上に磁
性体ブロックを金属磁性体に接するように配置すること
により、ギャップデプス方向の反磁界係数を低減させ、
ヘッドコア全体に−様な磁界を印加することができ、異
方性を分散して等方的に高い初i3磁率を有する優れた
磁気ヘッドコアを製造することができる。
Effects of the Invention As is clear from the above embodiments, the present invention provides a magnetic head core that requires heat treatment in a magnetic field, in which a magnetic block is brought into contact with a metal magnetic material on the tape sliding surface of a gap doper during gap bonding in a magnetic field. By arranging it like this, the demagnetizing field coefficient in the gap depth direction is reduced,
It is possible to apply a -like magnetic field to the entire head core, disperse anisotropy, and manufacture an excellent magnetic head core having isotropically high initial i3 magnetic coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気ヘッドコアの製
造方法の一工程における斜視図、第2図は本実施例の効
果を説明する特性図、第3図(a)〜(e)は従来の磁
気ヘッドの製造方法の概略を示す工程図、第4図(al
〜(C)は従来の磁気ヘッドの製造方法において回転磁
界を印加した時の巻線溝近傍のギャップデプス領域の磁
化の変化を説明する概念図である。 5.9・・・・・・金If性体(アモルファス合金WI
)、12a、12b・・・・・・磁気コア半体、13・
・・・・・巻線溝、14・・・・・・磁気ギャップ面、
21・・・・・・磁性体ブロック、 22・・・・・・テープ摺動面。
FIG. 1 is a perspective view of one step in a method for manufacturing a magnetic head core according to an embodiment of the present invention, FIG. 2 is a characteristic diagram illustrating the effects of this embodiment, and FIGS. 3(a) to (e) are conventional FIG. 4 (al.
to (C) are conceptual diagrams illustrating changes in magnetization in a gap depth region near a winding groove when a rotating magnetic field is applied in a conventional method for manufacturing a magnetic head. 5.9... Gold If material (amorphous alloy WI
), 12a, 12b...Magnetic core half, 13.
...Winding groove, 14...Magnetic gap surface,
21... Magnetic block, 22... Tape sliding surface.

Claims (2)

【特許請求の範囲】[Claims] (1)磁気ギャップ面近傍が金属磁性体よりなる一対の
磁気コア半体の少なくとも一方に巻線溝を形成し、前記
一対の磁気コア半体を磁気ギャップ面で接合させる際に
、前記一対の磁気コア半体のテープ摺動面上に金属磁性
体に接するように磁性体ブロックを配置し、その後磁界
中で熱処理をしながら前記一対の磁気コア半体を接合す
ることを特徴とする磁気ヘッドコアの製造方法。
(1) A winding groove is formed in at least one of a pair of magnetic core halves in which the vicinity of the magnetic gap surface is made of a metal magnetic material, and when the pair of magnetic core halves are joined at the magnetic gap surface, A magnetic head core characterized in that a magnetic material block is arranged on the tape sliding surface of the magnetic core halves so as to be in contact with a metal magnetic material, and then the pair of magnetic core halves are joined while being heat-treated in a magnetic field. manufacturing method.
(2)磁界中での熱処理が、回転磁界中における熱処理
であることを特徴とする請求項1記載の磁気ヘッドコア
の製造方法。
(2) The method for manufacturing a magnetic head core according to claim 1, wherein the heat treatment in a magnetic field is heat treatment in a rotating magnetic field.
JP26089790A 1990-09-28 1990-09-28 Manufacture of magnetic head core Pending JPH04139605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26089790A JPH04139605A (en) 1990-09-28 1990-09-28 Manufacture of magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26089790A JPH04139605A (en) 1990-09-28 1990-09-28 Manufacture of magnetic head core

Publications (1)

Publication Number Publication Date
JPH04139605A true JPH04139605A (en) 1992-05-13

Family

ID=17354278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26089790A Pending JPH04139605A (en) 1990-09-28 1990-09-28 Manufacture of magnetic head core

Country Status (1)

Country Link
JP (1) JPH04139605A (en)

Similar Documents

Publication Publication Date Title
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPH04139605A (en) Manufacture of magnetic head core
JP3772458B2 (en) Magnetic head and manufacturing method thereof
JPH0668815B2 (en) Method of manufacturing magnetic head
JP3036020B2 (en) Manufacturing method of magnetic head
JPH04195809A (en) Thin film magnetic head
JPH0519762B2 (en)
JP2933638B2 (en) Manufacturing method of magnetic head
JPH0869609A (en) Magnetic head and its production
JPS59116918A (en) Magnetic head and production of magnetic head
JPH01140405A (en) Magnetic head and its manufacture
JPS61289507A (en) Magnetic head
JPH02193306A (en) Magnetic head
JPS61294618A (en) Production of magnetic head
JPH05282619A (en) Magnetic head
JPS63193312A (en) Production of magnetic head
JPH0664699B2 (en) Magnetic head
JPH0325708A (en) Production of magnetic head
JPH0346108A (en) Magnetic head
JPH0660315A (en) Production of magnetic head
JPH0887711A (en) Magnetic head and its production
JPH025206A (en) Production of magnetic head
JPH04360003A (en) Magnetic head
JPS63300412A (en) Production of magnetic head
JPH03295009A (en) Magnetic head