JPH0413918A - Detecting device of position of light beam - Google Patents

Detecting device of position of light beam

Info

Publication number
JPH0413918A
JPH0413918A JP2117385A JP11738590A JPH0413918A JP H0413918 A JPH0413918 A JP H0413918A JP 2117385 A JP2117385 A JP 2117385A JP 11738590 A JP11738590 A JP 11738590A JP H0413918 A JPH0413918 A JP H0413918A
Authority
JP
Japan
Prior art keywords
light
light beam
wedge
shaped
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2117385A
Other languages
Japanese (ja)
Other versions
JP2946629B2 (en
Inventor
Eiichi Kitajima
北島 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11738590A priority Critical patent/JP2946629B2/en
Publication of JPH0413918A publication Critical patent/JPH0413918A/en
Application granted granted Critical
Publication of JP2946629B2 publication Critical patent/JP2946629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To read accurately the position of the center of a light beam by a method wherein two wedge-shaped light-sensing elements in prescribed shapes are juxtaposed in combination in reverse directions to each other and disposed in a plurality in straight lines in the direction of measurement, while they are likened to the dimensions of a wedge-shaped light-sensing device having an enlarged scope of measurement. CONSTITUTION:An obliquely hatched part of a mask 31 is a light-intercepting part, while wedge-shaped patterns A to J thereof are light-transmitting parts. Light-sensing elements A to J of a light-sensing element array 32 are aligned in positions with the wedge-shaped patterns A to J of the mask 31 respectively and an increase or decrease of light in the wedge-shaped patterns A to J of the mask 31 caused by application of a light beam is transmitted to the light- sensing elements A to J.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ビームの位置検出装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a light beam position detection device.

〔従来の技術〕[Conventional technology]

従来、この装置に近いものに例えば電子レベル等から水
平、垂直にスキャンされたレーザービームを受光するレ
ベルセンサーがある。この装置は、光ビームの中心のみ
を検出するものでレベルセンサーを光ビームの走査方向
と直交する。方向(以下測定方向と称する)に動かすこ
とにより1.光ビ−ムの中心位置をさがすものである。
Conventionally, there is a level sensor that receives horizontally and vertically scanned laser beams from, for example, an electronic level. This device detects only the center of the light beam, and the level sensor is placed perpendicular to the scanning direction of the light beam. By moving in the direction (hereinafter referred to as the measurement direction): 1. This is to find the center position of the light beam.

光ビームの中心位置がみつかったらレベルセンサーは表
示装置やブザー音で、それを知らせるものになっている
Once the center position of the light beam has been found, the level sensor notifies you with a display or buzzer.

この装置の原理の一つとしてクサビ形の受光素子を2つ
互いにクサビ形状が反対になるように測定方向に配置し
たものがある。
One of the principles of this device is that two wedge-shaped light receiving elements are arranged in the measurement direction so that the wedge shapes are opposite to each other.

それらの2つのクサビ形の受光素子の出力が等しくなっ
たとき光ビームの中心として検出し、その他の所ではビ
ーム位置が上又は下という大まかな表示をするものであ
る。
When the outputs of these two wedge-shaped light receiving elements become equal, it is detected as the center of the light beam, and at other points, the beam position is roughly indicated as above or below.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如き従来の技術に於いては、光ビームの中心のみ
を検知することにとどまり、測定物の相対変化量が検出
できないという欠点がある。
The above-mentioned conventional techniques have the disadvantage that only the center of the light beam is detected, and the relative amount of change in the object to be measured cannot be detected.

又、クサビ形受光装置の製作にあたり、例えばフォトダ
イオードの場合大面積が必要なため高価なものとなって
しまう。更に光ビームの検出範囲を拡げようとしても、
受光素子の原板であるウニへの大きさに限度があるため
大面積のクサビ形受光素子は製造不可能という問題点も
あった。本発明は従来装置の問題点に鑑みてなされたも
ので、光ビームの位置を任意に検知することができ、し
かも広範囲で測定可能な光ビーム位置検出装置を提供す
ることを目的とする。
Further, when manufacturing a wedge-shaped light receiving device, for example, in the case of a photodiode, a large area is required, resulting in an expensive device. Even if we try to further expand the detection range of the light beam,
There was also a problem in that it was impossible to manufacture large-area wedge-shaped light-receiving elements because there was a limit to the size of the sea urchin, which was the original plate of the light-receiving element. The present invention was made in view of the problems of conventional devices, and an object of the present invention is to provide a light beam position detection device that can arbitrarily detect the position of a light beam and can measure over a wide range.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的のために本発明においては、測定装置本体から
走査される光ビームを受光して被測定物の絶対位置及び
相対移動量を検出する光ビーム位置検出装置において、 前記光ビームの走査方向と直交する方向の一方向に面積
がリニアに増大するクサビ形の第1受光素子と該第1受
光素子と同一形状で他方向に面積がリニアに増大する第
2受光素子とを前記光ビームの走査方向に並置して成る
受光部材を前記走査方向と直交する方向に所定数等間隔
に配置した受光手段(A、B、C,D、E、FXG、H
1■、J)と、該受光手段からの出力信号を検出すると
共にアナログ信号に変換して出力する検出手段(11)
と、 該検出手段(11)からのアナログ信号を受け、前記光
ビームの走査された前記受光素子に対応させてあらかじ
め定められた係数を乗じその積の総和から光ビームの位
置を演算する手段(12)を有することを課題解決の手
段とするものである。
For the above purpose, the present invention provides a light beam position detection device that detects the absolute position and relative movement of an object to be measured by receiving a light beam scanned from a main body of a measuring device. The light beam scans a wedge-shaped first light receiving element whose area linearly increases in one orthogonal direction and a second light receiving element which has the same shape as the first light receiving element and whose area linearly increases in the other direction. light receiving means (A, B, C, D, E, FXG, H
1), J), and a detection means (11) that detects the output signal from the light receiving means and converts it into an analog signal and outputs it.
and means for receiving an analog signal from the detection means (11), multiplying it by a predetermined coefficient corresponding to the light receiving element scanned by the light beam, and calculating the position of the light beam from the sum of the products. 12) is a means of solving the problem.

〔作用〕[Effect]

本発明では一定の形状の2個のクサビ形受光素子を逆方
向に並べて組み合わせ測定方向に直線状に複数配置させ
ると共に測定範囲の拡大されたクサビ形受光装置の大き
さに見立てるように成したので、測定範囲において、2
つの大きな見かけ上のクサビ形状によって、あらかじめ
想定できる面積比を演算することが出来るので、光ビー
ムの中心の位置を正確に読みとることが出来る。
In the present invention, two wedge-shaped light-receiving elements of a certain shape are arranged in opposite directions, and a plurality of them are arranged in a straight line in the measurement direction, and the size is likened to a wedge-shaped light-receiving device with an expanded measurement range. , in the measurement range, 2
Since the area ratio that can be assumed in advance can be calculated from the two large apparent wedge shapes, it is possible to accurately read the position of the center of the light beam.

又、クサビ形受光素子は製造容易な形状なので、これを
複数用いることにより測定範囲を拡大することが出来る
Further, since the wedge-shaped light receiving element has a shape that is easy to manufacture, the measuring range can be expanded by using a plurality of wedge-shaped light receiving elements.

〔実施例〕〔Example〕

第4図は本発明の基本原理を示す図で、第1のクサビ形
受光素子1と第2のクサビ形受光素子2は同面積、同タ
サビ形状であり、測定方向に対して、それぞれ面積が増
減するよう反対に配置されている。光ビームが前記第1
、第2のクサビ形受光素子1.2の任意の位置を横切っ
たとき、斜線部で示したIA、2Bの面積比に順じた出
力が得られる。これらの2つの出力(面積)LA、2B
より、光ビームの中心を求めるもので、例えば求める絶
対値をXとし、クサビ形受光素子の高さをXが算出され
る。
FIG. 4 is a diagram showing the basic principle of the present invention. The first wedge-shaped light receiving element 1 and the second wedge-shaped light receiving element 2 have the same area and the same wedge shape, and their respective areas are smaller in the measurement direction. They are arranged oppositely so that they increase and decrease. The light beam is
, when crossing any arbitrary position of the second wedge-shaped light receiving element 1.2, an output is obtained according to the area ratio of IA and 2B shown in the shaded area. These two outputs (area) LA, 2B
Accordingly, the center of the light beam is determined. For example, if the absolute value to be determined is set to X, then X is calculated as the height of the wedge-shaped light receiving element.

第1図は本発明の実施例であり、装置の構成を表わした
ものである。クサビ形受光素子A−Jは測定方向に直線
状に並んでいる。光ビームがクサビ形受光素子A−Jに
照射されたときにその光量に伴なうクサビ形受光素子か
らのアナログ出力を検出する検出回路11がそれぞれに
接続されている。検出回路11によって検出された各出
力はCPU12に入力し、CPU12で処理された光ビ
ーム位置情報を表示器13によって表示される構成にな
っている。
FIG. 1 shows an embodiment of the present invention and shows the configuration of the device. The wedge-shaped light receiving elements A-J are arranged in a straight line in the measurement direction. A detection circuit 11 is connected to each of the wedge-shaped light-receiving elements A-J for detecting an analog output from the wedge-shaped light-receiving elements according to the amount of light when the light beam is irradiated onto the wedge-shaped light-receiving elements A-J. Each output detected by the detection circuit 11 is input to the CPU 12, and the light beam position information processed by the CPU 12 is displayed on the display 13.

第1図の動作について説明する。The operation shown in FIG. 1 will be explained.

まず、第2図、(A、)の受光素子群A−Jは、aXb
の長方形を対角線で2分割し、クサビ形受光素子AとB
(Cとり、EとF、GとH,IとJ)である。今、この
クサビ形受光素子ESF、G、Hに光ビーム(斜線部)
が照射されたとき、それぞれの光量は第1図に示す、ピ
ークホールド回路を有するアナログ回路11によりアナ
ログ電気量に変換される。各々のアナログ量はCPUI
2により処理される。ここで第4図に示したクサビ形の
原理に則って光ビームの位置を検出するため、第2図(
B)に示すようにW×Lαの拡大されたクサビ形受光素
子21.22(クサビ形受光素子A、Bの相似形)にみ
たてるのである。第2図(B)において斜線部で示した
受光素子群A〜Jは、実在するものを意味し、その他の
受光素子群A〜Jはみかけ上のものである。このように
拡大されたクサビ形受光素子21.22をみかけ上つ(
る手段として、実在するクサビ形受光素子A〜Jにそれ
ぞれ2種類の倍率をかけ加算するのである。
First, the light receiving element groups A-J in FIG. 2 (A,) are aXb
Divide the rectangle into two along the diagonal line, and add wedge-shaped photodetectors A and B.
(C, E and F, G and H, I and J). Now, a light beam (shaded area) is directed to these wedge-shaped photodetectors ESF, G, and H.
When the light is irradiated, each amount of light is converted into an analog quantity of electricity by an analog circuit 11 having a peak hold circuit shown in FIG. Each analog quantity is CPUI
Processed by 2. Here, in order to detect the position of the light beam according to the wedge-shaped principle shown in FIG.
As shown in B), the wedge-shaped light-receiving elements 21 and 22 (similar to the wedge-shaped light-receiving elements A and B) are enlarged and have a size of W×Lα. The light-receiving element groups A to J indicated by diagonal lines in FIG. 2(B) are those that actually exist, and the other light-receiving element groups A to J are apparent ones. You can see the wedge-shaped light receiving elements 21 and 22 enlarged in this way (
As a means to do this, the existing wedge-shaped light receiving elements A to J are each multiplied by two different magnifications and added.

つまり、クサビ形受素子21の総面積SlはSl = 
(AX5) +(BX4) + (CX4) +(Dx
3) +(Ex3) +(Fx2) ±(Cx2)+(
HXI)+ (IXI)+ (JXD)となり、同じよ
うにクサビ形受光素子22の総面積S2はS2 = (
JX5) + (I X4) +(HX4) + (C
x3) +(Fx3)+(Ex2)+(Dx2)+(C
xl) +(BXI) +(AXO)となる。このよう
に、クサビ形受光素子A−Jに特定の倍率を2種類に分
けて乗じ加算することにより、クサビ形受光素子A、B
の面積の25倍拡大された、みかけ上のクサビ形受光素
子21.22が構成されることになる。
In other words, the total area Sl of the wedge-shaped receiving element 21 is Sl =
(AX5) + (BX4) + (CX4) + (Dx
3) +(Ex3) +(Fx2) ±(Cx2)+(
HXI) + (IXI) + (JXD), and similarly, the total area S2 of the wedge-shaped photodetector 22 is S2 = (
JX5) + (I X4) + (HX4) + (C
x3) + (Fx3) + (Ex2) + (Dx2) + (C
xl) + (BXI) + (AXO). In this way, by multiplying and adding two types of specific magnification to the wedge-shaped light-receiving elements A-J, the wedge-shaped light-receiving elements A and B
An apparent wedge-shaped light-receiving element 21, 22 is constructed whose area is 25 times larger than that of .

第2図(A)において、a=9mm、b=30mm、L
=150mm、光ビームの径28胴(実際にはわからな
くても良い)とすると、受光素子E、F、G、Hのアナ
ログ量はB=21.6、F = 86.4、G=105
.6、H= 38.4となり、第1図、アナログ回路1
1により検出される。
In Figure 2 (A), a=9mm, b=30mm, L
= 150 mm, and the diameter of the light beam is 28 cylinders (it is not necessary to actually know this), then the analog quantities of the light receiving elements E, F, G, and H are B = 21.6, F = 86.4, and G = 105.
.. 6, H = 38.4, Figure 1, analog circuit 1
1 is detected.

次にCPU12によりそれぞれのアナログ量より、21
A= (EX3) +(FX2)+ (CX2)+(H
XI)、22B=(HX4) +(CX3)+ (FX
3) +(EX2)で算出される。
Next, the CPU 12 calculates 21 from each analog amount.
A= (EX3) +(FX2)+ (CX2)+(H
XI), 22B=(HX4) +(CX3)+ (FX
3) Calculated as +(EX2).

その結果21A=487.2mn?、22 B=772
.8mボとなりこの値をX= 22 B /21 A −1−1 の式に入れると、X=58mmが求められる。第3図は
受光部のみの他の実施例の斜視図である。クサビ形状パ
ターン有したマスク31と受光素子アレイ32で構成さ
れている。マスク31の斜線部は遮光部でありクサビ形
パターンA〜Jは光透過部である。受光素子アレイ32
の受光素子A−Jはマスク31のクサビ形パターンA−
Jとそれぞれ位置合わせがしてあり、マスク31のクサ
ビ形パターンA−Jの光ビーム、照射による光の増減を
受光素子A−Jに伝えるものである。以上の構成なので
第1図の実施例と同様にして、光ビームの位置を検出す
ることができる。
The result is 21A=487.2mn? , 22 B=772
.. When this value is entered into the formula X=22B/21A-1-1, X=58mm is obtained. FIG. 3 is a perspective view of another embodiment including only the light receiving section. It is composed of a mask 31 having a wedge-shaped pattern and a light receiving element array 32. The shaded areas of the mask 31 are light blocking areas, and the wedge-shaped patterns A to J are light transmitting areas. Light receiving element array 32
The light receiving element A-J corresponds to the wedge-shaped pattern A- of the mask 31.
The light beams of the wedge-shaped patterns A-J of the mask 31 and the increase and decrease in light due to irradiation are transmitted to the light-receiving elements A-J. With the above configuration, the position of the light beam can be detected in the same manner as the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によればクサビ形状の面積比を利用
して、簡単に任意の光ビーム位置を読みとることができ
る効果がある。
As described above, according to the present invention, an arbitrary light beam position can be easily read using the wedge-shaped area ratio.

又、クサビ形受光素子の形状が単純なので、測定範囲拡
大のためにあまり制限することなく容易に多数個用いる
ことができる利点もある。
Further, since the shape of the wedge-shaped light receiving element is simple, there is an advantage that a large number of the wedge-shaped light receiving elements can be easily used without much restriction in order to expand the measurement range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の実施例の構成図、第2図は
第1図の受光部の検出原理の説明図であり、第2図(A
)はクサビ形受光素子の配列を示す図、第2図(B)は
拡大された受光素子にみたてた図、第3図は本発明によ
る他の実施例の受光部の斜視図、第4図は本発明による
クサビ形状の面積比検出の基本原理を説明する図である
。 〔主要部分の符号の説明〕 A−J・・・・・・クサビ形受光素子、11・・・・・
・検出回路、12・・・・・・CPU、13・・・・・
・表示器
FIG. 1 is a block diagram of an embodiment of the device according to the present invention, FIG. 2 is an explanatory diagram of the detection principle of the light receiving section in FIG. 1, and FIG.
) is a diagram showing the arrangement of the wedge-shaped light-receiving elements, FIG. 2(B) is an enlarged view of the light-receiving element, FIG. The figure is a diagram explaining the basic principle of wedge-shaped area ratio detection according to the present invention. [Explanation of symbols of main parts] A-J...Wedge-shaped light receiving element, 11...
・Detection circuit, 12...CPU, 13...
·display

Claims (1)

【特許請求の範囲】 1、測定装置本体から走査される光ビームを受光して、
被測定物の絶対位置及び相対移動量を検出する光ビーム
位置検出装置において、 前記光ビームの走査方向と直交する方向の一方向に面積
がリニアに増大するクサビ形の第1受光素子と該第1受
光素子と同一形状で他方向に面積がリニアに増大する第
2受光素子とを前記光ビームの走査方向に並置して成る
受光部材を前記走査方向と直交する方向に所定数等間隔
に配置した受光手段と、 該受光手段からの出力信号を検出すると共にアナログ信
号に変換して出力する検出手段と、該検出手段からのア
ナログ信号を受け、前記光ビームの走査された前記受光
素子に対応させてあらかじめ定められた係数を乗じその
積の総和から光ビームの位置を演算する手段と、 を有することを特徴とする光ビーム位置検出装置。 2、前記演算する手段は、前記受光装置を前記光ビーム
の走査方向に前記所定数倍並置したとみなすことにより
、前記受光部材を前記所定数の2乗倍に拡大し、拡大さ
れた受光部材の並置された拡大受光素子によって光ビー
ムの位置を演算することを特徴とする特許請求の範囲第
1項記載の位置検出装置。
[Claims] 1. Receiving a light beam scanned from the measuring device main body,
A light beam position detection device for detecting the absolute position and relative movement of an object to be measured includes: a wedge-shaped first light receiving element whose area linearly increases in one direction perpendicular to the scanning direction of the light beam; A predetermined number of light-receiving members are arranged at equal intervals in a direction perpendicular to the scanning direction of the light beam, and a second light-receiving element having the same shape as the first light-receiving element and whose area increases linearly in the other direction is juxtaposed in the scanning direction of the light beam. a detecting means for detecting an output signal from the light receiving means, converting it into an analog signal and outputting it, and receiving an analog signal from the detecting means and corresponding to the light receiving element scanned by the light beam. 1. A light beam position detection device comprising: means for calculating the position of the light beam from the sum of the products by multiplying the multiplied by a predetermined coefficient; 2. The calculating means enlarges the light receiving member to the square of the predetermined number by considering that the light receiving devices are arranged side by side in the scanning direction of the light beam by the predetermined number of times, and the enlarged light receiving member 2. The position detection device according to claim 1, wherein the position of the light beam is calculated by magnifying light receiving elements arranged in parallel.
JP11738590A 1990-05-07 1990-05-07 Light beam position detector Expired - Lifetime JP2946629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11738590A JP2946629B2 (en) 1990-05-07 1990-05-07 Light beam position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11738590A JP2946629B2 (en) 1990-05-07 1990-05-07 Light beam position detector

Publications (2)

Publication Number Publication Date
JPH0413918A true JPH0413918A (en) 1992-01-17
JP2946629B2 JP2946629B2 (en) 1999-09-06

Family

ID=14710342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11738590A Expired - Lifetime JP2946629B2 (en) 1990-05-07 1990-05-07 Light beam position detector

Country Status (1)

Country Link
JP (1) JP2946629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696449A2 (en) 1994-07-14 1996-02-14 Colgate-Palmolive Company Antimicrobial oral composition
JP2007298487A (en) * 2006-05-08 2007-11-15 Nippo Corporation:Kk Laser photodetector, and height measuring method by laser photodetector
JP2015160398A (en) * 2014-02-28 2015-09-07 セイコーエプソン株式会社 Liquid discharge device and deviation quantity detecting method for liquid discharge device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696449A2 (en) 1994-07-14 1996-02-14 Colgate-Palmolive Company Antimicrobial oral composition
JP2007298487A (en) * 2006-05-08 2007-11-15 Nippo Corporation:Kk Laser photodetector, and height measuring method by laser photodetector
JP2015160398A (en) * 2014-02-28 2015-09-07 セイコーエプソン株式会社 Liquid discharge device and deviation quantity detecting method for liquid discharge device

Also Published As

Publication number Publication date
JP2946629B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
JP3390440B2 (en) Device for detecting relative movement
JP2007218691A (en) Photoelectric encoder
JPH0640023B2 (en) Position and dispersion detection method and device for optical input
JPH0464004A (en) Image pickup device
US5003615A (en) Optoelectronic system for determining surface irregularities of a workpiece having a nominally plane reflective surface
CN101201548B (en) Measuring system and method for focusing and leveling
EP2615425A1 (en) Measurement system for optical touch trigger or scanning probe with a concave mirror
JPH0413918A (en) Detecting device of position of light beam
EP0694764A2 (en) Detector array for use in interferomic metrology systems
JP2644961B2 (en) 2-axis measurement sun sensor
EP0774645B1 (en) Apparatus for measuring dimension of article
JPH02107951A (en) Pinhole inspector
JPS57184918A (en) Measurement of fine displacement
JP2011203273A (en) Photoelectric incremental encoder
DE69535479D1 (en) METHOD AND DEVICE FOR POSITION AND MOTION MEASUREMENT
US6717662B2 (en) Arrangement for determining the position of a light source
JPS58150804A (en) Optical position detector
US4926042A (en) Method of and device for detecting light receiving position utilizing optical fibers
JP3256764B2 (en) Wide range position detector
JPH05149809A (en) Optical type tactile sensor
JPH0455705A (en) End-part detector
de Lima Monteiro et al. Integration of a Hartmann-Shack wavefront sensor
JP2581555B2 (en) Light receiving position detection method using optical fiber
JPS6333603A (en) Optical position detector
JP3461910B2 (en) Sign direction detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

EXPY Cancellation because of completion of term