JPH04139045A - Fiber reinforced rolled concrete - Google Patents

Fiber reinforced rolled concrete

Info

Publication number
JPH04139045A
JPH04139045A JP26241790A JP26241790A JPH04139045A JP H04139045 A JPH04139045 A JP H04139045A JP 26241790 A JP26241790 A JP 26241790A JP 26241790 A JP26241790 A JP 26241790A JP H04139045 A JPH04139045 A JP H04139045A
Authority
JP
Japan
Prior art keywords
concrete
fibers
aspect ratio
fiber reinforced
monofilaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26241790A
Other languages
Japanese (ja)
Inventor
Kenji Nishiomote
西面 憲二
Kenji Matsumoto
健次 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26241790A priority Critical patent/JPH04139045A/en
Publication of JPH04139045A publication Critical patent/JPH04139045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To improve the durability of rolled concrete over a long period of time by incorporating a prescribed amt. of org. monofilaments having a prescribed size and a prescribed aspect ratio as a reinforcing material into the concrete used for paving a road. CONSTITUTION:This fiber reinforced rolled concrete contains 0.3-3vol.% org. monofilaments such as polyvinyl alcohol fibers or polyacrylo-nitrile fibers. The monofilaments have 1,000-8,000 denier size and >=40 aspect ratio (length/ diameter).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は道路舗装工法に用いられる転圧コンクリートの
補強材として有機繊維を添加する事により乾燥ひび割れ
の防止、物性値の向上を図り長期耐久性を有するコンク
リート舗装に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention aims to prevent dry cracking, improve physical properties, and increase long-term durability by adding organic fibers as a reinforcing material to compacted concrete used in road paving methods. This relates to concrete pavement that has properties.

〈従来の技術〉 道路舗装はアスファルトコンクリート舗装とセメントコ
ンクリート舗装に大別されそれぞれの長所を生して使い
分けされている。
<Conventional Technology> Road pavements are broadly divided into asphalt concrete pavements and cement concrete pavements, and each is used depending on its advantages.

前者は建設時の経済性や施工性、走行性、補修の安易さ
等、セメントコンクリート舗装に比べて優れた点も多い
がその反面長期耐久性、流動性、耐摩耗性に乏しく、特
に重交通路線に見られる轍掘れは表層以下の層にまで影
響が及びその修養が交通渋滞を引き起す要因になるばか
りか走行安全上問題となる事も多い。
The former has many advantages over cement concrete pavement, such as economic efficiency during construction, workability, runnability, and ease of repair, but on the other hand, it lacks long-term durability, fluidity, and abrasion resistance, and is especially suitable for heavy traffic. The ruts seen on the route affect the layers below the surface, and their repair not only causes traffic congestion, but also often poses problems for driving safety.

後者のコンクリート舗装は、その耐摩耗性、耐久性が認
められつつも施工性、経済性の問題で施工実績は年々減
少し、その比率としては高速道路の場合、アスファルト
舗装93%に対して、コンクリート舗装7%となってい
る。
Although the latter type of concrete pavement is recognized for its abrasion resistance and durability, its construction performance is decreasing year by year due to problems in workability and economy, and the ratio is 93% for expressways compared to asphalt pavement. Concrete pavement accounts for 7%.

これらの問題点の解決のため両者の優れた点を併用した
工法「転圧コンクリート工法」 (以下RCCP工法と
略)が考案された。
In order to solve these problems, a construction method called ``Roll Concrete Method'' (hereinafter abbreviated as RCCP method) was devised that combines the advantages of both methods.

RCCP工法の利点としては 1)アスファルト施工機械が使用出来経済的である。The advantages of the RCCP method are 1) Asphalt construction machines can be used and are economical.

2)初期機令時の耐荷力に優れ早期交通開放が可能。2) Excellent load-carrying capacity at the time of initial order, allowing for early opening to traffic.

3)単位セメント量が少ないため乾燥収縮が小さく目地
の間隔拡大が図れる。
3) Since the amount of cement per unit is small, drying shrinkage is small and the spacing between joints can be expanded.

等があり、その設計理論・施工性・長期安定性の面より
RCCP工法が普及しつつある。
The RCCP method is becoming popular due to its design theory, ease of construction, and long-term stability.

〈発明が解決しようとする課題〉 RCCP工法に用いるコンクリートは無筋コンクリート
でありコンクリート自体の圧縮強度は確保されるものの
曲げ強度、せん断強度は脆弱であり重量車輌の輪荷重に
よる耐力不足をまぬかれない。
<Problem to be solved by the invention> The concrete used in the RCCP method is unreinforced concrete, and although the compressive strength of the concrete itself is ensured, the bending strength and shear strength are weak, and it is difficult to avoid insufficient strength due to the wheel load of a heavy vehicle. It doesn't happen.

〈課題を解決するめだの手段〉 本発明は繊度1000デニール〜8000デニールでア
スペクト比が40以上の有機モノフィラメントを、得ら
れるコンクリートに対して体積比で0.5〜3%添加す
る事により、繊維補強されたRCCP工法の可能なコン
クリートを開発した点にある。
<Meeda's Means for Solving the Problems> The present invention is capable of forming fibers by adding organic monofilaments having a fineness of 1000 to 8000 deniers and an aspect ratio of 40 or more in a volume ratio of 0.5 to 3% to the resulting concrete. The key point is that we have developed concrete that can be reinforced with the RCCP method.

以下その詳細を説明する。The details will be explained below.

繊維補強RCCP工法で重要な事は、従来のRCCP工
法と同等以上の施工性を確保しつつ、マトリクス中へ繊
維を均一に分散させ、輪荷重に対する補強効果を持たせ
る事であり、そのためにも繊度は1000デニール以上
、8000デニール以下、アスペクト比が40以上、好
ましくは繊度が1500デニール〜4000デニール、
アスペクト比が40〜400が望ましい。
What is important with the fiber-reinforced RCCP method is to ensure workability equivalent to or better than the conventional RCCP method, while uniformly dispersing fibers into the matrix to provide a reinforcing effect against wheel loads. The fineness is 1000 denier or more and 8000 denier or less, the aspect ratio is 40 or more, preferably the fineness is 1500 denier to 4000 denier,
An aspect ratio of 40 to 400 is desirable.

IIt維緻度1000デニール未満の場合、混線中にフ
ァイバーポール(以下FBと略)が発生し、施工性・補
強性の面で好ましくない。
If the IIt fiber density is less than 1000 denier, fiber poles (hereinafter abbreviated as FB) will occur during cross-wire, which is unfavorable in terms of workability and reinforcing properties.

補強的にも8000デニールを越えてはカット長が長く
なり、繊維径が太くなるため補強に必要な繊維本数が不
足し、強度低下をきたす。
In terms of reinforcement, if it exceeds 8,000 denier, the cut length becomes longer and the fiber diameter becomes thicker, resulting in an insufficient number of fibers required for reinforcement, resulting in a decrease in strength.

補強に有効に働く、アスペクト比(繊維直径dに対する
繊維長さρrn/d」)は40以上が必要である。アス
ペクト比が40未満では強度が上がらない。あまり長い
と分散性が悪くなるので800以下が好ましい。
For effective reinforcement, the aspect ratio (fiber length ρrn/d to fiber diameter d) must be 40 or more. If the aspect ratio is less than 40, the strength will not increase. If it is too long, the dispersibility will deteriorate, so it is preferably 800 or less.

使用する繊維強度としては、5g/デニール以上、より
好ましくは7g/デニールが曲げ強度、せん断強度等物
性確保の面より望ましい。繊維強度が58/デニ一ル未
満の場合、初期クランク発生後の繊維の働きが不十分で
あり強度低下をきたす場合がある。
The fiber strength used is preferably 5 g/denier or more, more preferably 7 g/denier, from the viewpoint of ensuring physical properties such as bending strength and shear strength. If the fiber strength is less than 58/denier, the action of the fibers after initial cranking may be insufficient, resulting in a decrease in strength.

用いられる繊維としてはポリビニルアルコール系繊維、
ポリアクリロニトリル系繊維、ポリアミド系繊維、アラ
ミド系繊維、ポリエステル系繊維、ボリアリレート系繊
維およびポリオレフィン系繊維等が挙げられるが、特に
ポリビニルアルコール系繊維(以下PVA繊維と略)が
良好である。また、これらの繊維を混用しても良い。
The fibers used are polyvinyl alcohol fibers,
Examples include polyacrylonitrile fibers, polyamide fibers, aramid fibers, polyester fibers, polyarylate fibers, and polyolefin fibers, but polyvinyl alcohol fibers (hereinafter abbreviated as PVA fibers) are particularly good. Further, these fibers may be used in combination.

PVA繊維は、OH基を持ち親水性であるためマトリク
ス成分との接着性が極めて良好であり補強材として用い
た場合、硬化体の曲げ強度が増加すると共に靭性が著し
く改善され、耐衝撃性に優れた材料となる。
PVA fiber has an OH group and is hydrophilic, so it has extremely good adhesion with matrix components. When used as a reinforcing material, the bending strength of the cured product increases, the toughness is significantly improved, and the impact resistance is improved. It is an excellent material.

本発明にいう転圧用コンクリートとはゼロスランプの超
硬練りコンクリートであり、配合としては骨材により異
なるが、水/セメントが(以下W/Cと略する)30〜
40重量%、細骨材/全骨材が(以下S / aと略す
る)30〜50重量%、セメント量が200〜300k
g/ m3の範囲にあるコンクリートであり、好ましく
はw/cが33〜38重量%、s / aが35〜45
重量%セメント量が250〜300kg/+a”のコン
クリートである。
The compaction concrete referred to in the present invention is a zero slump cemented carbide concrete, and the mix varies depending on the aggregate, but the water/cement ratio (hereinafter abbreviated as W/C) is 30 to 30.
40% by weight, fine aggregate/total aggregate (hereinafter abbreviated as S/a) 30-50% by weight, cement amount 200-300k
g/m3, preferably w/c of 33-38 wt%, s/a of 35-45
The concrete has a weight percent cement amount of 250 to 300 kg/+a''.

セメントは通常のセメントが用いられ、例えばポルトラ
ンドセメント、高炉セメント、シリカセメント、フライ
アツンユセメント等が挙げられる。
As the cement, common cements are used, such as Portland cement, blast furnace cement, silica cement, fly-a-thonyu cement, and the like.

細骨材としては最大長径4mm以下の用海陸の各種砂、
砕石粉が用いられる。
Fine aggregates include various types of sand from land and sea with a maximum length of 4 mm or less,
Crushed stone powder is used.

粗骨材としては最大長径5〜loomffiの各種じや
り等が用いられる。
Various types of coarse aggregates having a maximum major axis of 5 to loomffi are used as the coarse aggregate.

混和剤としてAE剤、流動化剤、減水剤、増粘剤、保水
剤、撥水剤等を混合することが出来る。
As an admixture, an AE agent, a fluidizing agent, a water reducing agent, a thickening agent, a water retaining agent, a water repellent, etc. can be mixed.

この様に本発明はモノフィラ有機繊維を補強材として使
用する事により従来の配合・施工材料・施工方法を変え
る事なく高強度・高靭性を満足し長期耐久性・耐摩耗性
が良好な転圧コンクリートの開発に至った。
As described above, the present invention uses monofilament organic fibers as reinforcing materials to achieve high strength and toughness without changing conventional formulations, construction materials, and construction methods, and achieves rolling compaction with good long-term durability and wear resistance. This led to the development of concrete.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

この実施例に用いたコンクリートの配合はW/Cが37
重量%、s / aが44重量%、早強ポルトランドセ
メント297kg/+m”、水110kg/+a”、細
骨材として川砂943kg/m’、粗骨材として最大粒
径15mmの砂利1200kg/ m’、AE減水剤1
.485kg/ m’であり、補強繊維にはクラレ製ビ
ニロンフィラメントFRシリーズを使用した。
The concrete mix used in this example had a W/C of 37
Weight%, s/a is 44% by weight, early strength Portland cement 297kg/+m'', water 110kg/+a'', river sand 943kg/m' as fine aggregate, gravel with a maximum particle size of 15mm as coarse aggregate 1200kg/m' , AE water reducer 1
.. The weight was 485 kg/m', and Kuraray's vinylon filament FR series was used as the reinforcing fiber.

■)混練・成形方法 容量3OQ用の可傾式ミキサーで15Q混練した。混練
方法としてはまずセメント+砂利+砂十水+減水剤を混
合し、プレーンコンクリートを作成しその上に補強繊維
であるPVA繊維銘柄RF 4000drX 30mm
他を一括投入し、混線状態・FBの発生状況・繊維の分
散状況を調査した。その結果を表1に示す。
(2) Kneading/forming method The mixture was kneaded for 15Q using a tilting mixer with a capacity of 3OQ. The kneading method is to first mix cement + gravel + sand + water reducing agent to create plain concrete, and then add reinforcing fiber PVA fiber brand RF 4000drX 30mm on top of it.
Other materials were added all at once, and the crosstalk, FB occurrence, and fiber dispersion were investigated. The results are shown in Table 1.

プレーンのRCCP工法の転圧基準としては設計密度X
 O,96倍(ex  2.456X0.96=2.3
587/M”)の密度確保を一応の目安としている。
The rolling standard for plain RCCP method is design density
O, 96 times (ex 2.456X0.96=2.3
587/M”) is set as a tentative guideline.

本発明は鋼製型枠(内容量10cmX lOc+aX 
40cm)を用い、2.456g/ aII3X 40
00cm’ X O,96# 9.45kgのスラリー
を振動成形機の上部に乗せ振動させ上面−杯になるまで
振動成形し、型詰めを行い密度管理を行った。
The present invention is a steel formwork (inner capacity 10cmX lOc+aX
40cm), 2.456g/aII3X 40
00cm'

2)物性値 表1の配合で混練・成形したlOcmX lOcmX 
40cmの供試体の曲げ強度・圧縮強度を測定した。
2) Physical property value lOcmX kneaded and molded according to the formulation shown in Table 1
The bending strength and compressive strength of a 40 cm specimen were measured.

試験機は200TONの油圧式万能試験機を用いた。A 200 TON hydraulic universal testing machine was used as the testing machine.

測定方法は曲げ試験は、供試体(IOX IOX 40
)の3等分点載荷、曲げタフネスは得られた曲げ一タワ
ミ曲線のタワミ量0.2cmまでのタフネス量を求めプ
レーン(比較例1)を1とした倍率で求めた。
The measurement method is a bending test using a specimen (IOX IOX 40
), the bending toughness was determined by calculating the toughness up to a deflection of 0.2 cm on the obtained bending-deflection curve and using a magnification of 1 for the plain (Comparative Example 1).

圧縮試験は供試体Φ100X 200Hを用いて測定し
た。得られた結果を表1に示す。
The compression test was measured using a specimen Φ100X 200H. The results obtained are shown in Table 1.

表1の如く、実施例1.2のモノフィラメントで補強さ
れたコンクリートは、RccPの典型的なゼロスランプ
配合でもスムーズに混練が可能で、良好な操業性を示し
、その物性は曲げ強度はプレーンの50%増加、タフネ
スは6倍を示し、重寧両によるく゛りかえし走行、クラ
ックに耐え、薄層化の可能性を示す。
As shown in Table 1, the monofilament-reinforced concrete of Example 1.2 can be mixed smoothly even with RccP's typical zero slump mix, and exhibits good operability. 50% increase, toughness is 6 times higher, withstands repeated running and cracking due to heavy lifting, and shows the possibility of thinning.

比較例1 実施例1で用いたコンクリートに補強繊維を混合しなか
った場合の例である(プレーンと称する)。
Comparative Example 1 This is an example in which reinforcing fibers were not mixed into the concrete used in Example 1 (referred to as plain).

比較例2〜5 表1に示す補強繊維を用い、実施例1と同様に試験を行
った例である。本発明に規定する補強繊維の繊度、アス
ペクト比、混入量を外れた場合、曲げ強度、曲げタフネ
ス、圧縮強度のすべてに優れた転圧コンクリートは得ら
れなかった。
Comparative Examples 2 to 5 These are examples in which tests were conducted in the same manner as in Example 1 using the reinforcing fibers shown in Table 1. When the fineness, aspect ratio, and mixing amount of the reinforcing fibers were outside the range specified in the present invention, compacted concrete with excellent bending strength, bending toughness, and compressive strength could not be obtained.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] 繊度が1000〜8000デニールでアスペクト比が4
0以上の有機モノフィラメントを体積比で0.5〜3%
有する転圧コンクリート。
The fineness is 1000-8000 denier and the aspect ratio is 4.
0.5 to 3% by volume of organic monofilaments of 0 or more
Contains compacted concrete.
JP26241790A 1990-09-28 1990-09-28 Fiber reinforced rolled concrete Pending JPH04139045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26241790A JPH04139045A (en) 1990-09-28 1990-09-28 Fiber reinforced rolled concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26241790A JPH04139045A (en) 1990-09-28 1990-09-28 Fiber reinforced rolled concrete

Publications (1)

Publication Number Publication Date
JPH04139045A true JPH04139045A (en) 1992-05-13

Family

ID=17375496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26241790A Pending JPH04139045A (en) 1990-09-28 1990-09-28 Fiber reinforced rolled concrete

Country Status (1)

Country Link
JP (1) JPH04139045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203590A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp Fiber-reinforced extremely stiff consistency concrete and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303837A (en) * 1987-04-10 1988-12-12 Kuraray Co Ltd Fiber for reinforcing cement mortar or concrete and composition used with fiber thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303837A (en) * 1987-04-10 1988-12-12 Kuraray Co Ltd Fiber for reinforcing cement mortar or concrete and composition used with fiber thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203590A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp Fiber-reinforced extremely stiff consistency concrete and method for producing the same

Similar Documents

Publication Publication Date Title
Xie et al. Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres
Lang et al. Properties of pervious concrete made from steel slag and magnesium phosphate cement
CN100434382C (en) Plastic anti-crack modified fiber of cement-based material and prepn. process
KR100244102B1 (en) Interground fiber cement
AU2003297334B2 (en) Fiber reinforcement material, products made therefrom, and method for making the same
Osunade Effect of replacement of lateritic soils with granite fines on the compressive and tensile strengths of laterized concrete
US5685902A (en) Carbon fiber-reinforced concrete and method for preparing the same
KR101192238B1 (en) Permeable paving manufacture method to use eco-friendly recycled aggregate double-coated
EP2376401B1 (en) Fiber-containing concrete compositions
Karthika et al. Structural properties of lightweight self-compacting concrete made with pumice stone and mineral admixtures
CN111439977A (en) Impact-resistant basalt fiber reinforced concrete and preparation method thereof
CN110423073A (en) Wet joint concrete dry blend and preparation method are shunk in a kind of compensation of super hardening
CN108911648A (en) A kind of sprayable early-strength superhigh tenacity mortar concrete system and preparation method thereof
JPH04139045A (en) Fiber reinforced rolled concrete
CN110952412A (en) Concrete pavement construction method
CN110965425A (en) Asphalt concrete pavement construction method
CZ20023619A3 (en) Fiber-reinforced concrete mixture compacted by rolling and process for making roads from such concrete mixture
JP2001302314A (en) High-toughness, fiber-reinforced concrete and its production process
JP2840676B2 (en) Organic fiber reinforced permeable concrete composition
JPH07279312A (en) Concrete filler member
Ashteyat et al. Upcycling of recycled asphalt pavement aggregate and recycled concrete aggregate and silica fume in roller-compacted concrete
Armağan et al. Steel scrap added roller compacted concrete
Jaya et al. Flexural strength properties of porous concrete pavement incorporating nano black rice husk ash
Lone et al. Use of Discrete Fiber in Rigid Road Pavement
Agrawal et al. Effect of varying sizes of rubber particles in concrete