JPH04138406A - Heat resistant optical fiber - Google Patents

Heat resistant optical fiber

Info

Publication number
JPH04138406A
JPH04138406A JP2262142A JP26214290A JPH04138406A JP H04138406 A JPH04138406 A JP H04138406A JP 2262142 A JP2262142 A JP 2262142A JP 26214290 A JP26214290 A JP 26214290A JP H04138406 A JPH04138406 A JP H04138406A
Authority
JP
Japan
Prior art keywords
optical fiber
layer
polyimide resin
coated
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2262142A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
徳永 利秀
Yoshinori Kurosawa
芳宣 黒沢
Takeshi Okubo
豪 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2262142A priority Critical patent/JPH04138406A/en
Publication of JPH04138406A publication Critical patent/JPH04138406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the heat resistance of the optical fiber and to allow the easy peeling of a polyimide resin and org. metallic polymer by coating the surface of the optical fiber with a resin consisting of carbon, hydrogen and nitrogen, then heating the fiber in an inert atmosphere to carbonize the resin and to form a carbide layer, then coating the layer with the polyimide resin or org. metallic polymer. CONSTITUTION:The surface of the single mode optical fiber (SMF) 1 formed by heating and stretching the SMF is coated with the UV curing resin consisting of the carbon, hydrogen and nitrogen, for example, urethane acrylate and thereafter the fiber is passed in an electric furnace of an N2 atmosphere to form the carbide layer 2. The surface of this carbide layer 2 is coated with the polyimide resin layer or the org. metallic polymer layer 3 and this layer is cured, by which the coated optical fiber 4 is perfected. The heat resistance is maintained in this way and the carbide layer plays the role of slipping. The peeling of the coating material at the time of connection is thus facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性光ファイバに係り、特に光ファイバを
被覆するポリイミド樹脂又は有機金属ポリマの剥離性を
改善したことに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-resistant optical fiber, and particularly to improving the releasability of a polyimide resin or an organometallic polymer coating the optical fiber.

[従来の技術] 光ファイバは、従来の電線に比べ重量が軽く、電磁誘導
がなく、伝送路損失が少ない等の利点から、屋内、屋外
に限らず様々なところで、使用されている。
[Prior Art] Optical fibers are used in a variety of places, not only indoors and outdoors, because of their advantages such as being lighter in weight than conventional electric wires, having no electromagnetic induction, and having low transmission line loss.

特に屋外等の環境の厳しいところで使用する場合には、
高温で使用できる耐熱性光ファイバの需要が高まってい
る。また光ファイバを接続する場合は、容易に被覆を剥
離し、かつ光ファイバの素線を傷付けないようにしなけ
ればならない。
Especially when used in harsh environments such as outdoors,
Demand for heat-resistant optical fibers that can be used at high temperatures is increasing. Furthermore, when connecting optical fibers, the coating must be easily peeled off and the strands of the optical fibers must not be damaged.

これらに対処するために従来の光ファイバは、回りにポ
リイミド樹脂又は有機金属ポリマを被覆して耐熱性を持
たせている。
To cope with these problems, conventional optical fibers are coated with polyimide resin or organic metal polymer to make them heat resistant.

[発明が解決しようとする課題1 しかしながら、光フアイバ間の接続時、ポリイミド樹脂
を除去する必要がある。シリコンや紫外線硬化樹脂はア
ルコール類をガーゼ等に含浸させて容易に擦り取ること
ができる、また有機溶剤中で膨潤させる方法もあるが、
ポリイミド樹脂は上記方法では容易に剥離することが困
難である。そこで酸素プラズマで熱酸化分解させるか、
またはNH−NH2(N2 H4:ヒドラジン)などの
強アルカリ性溶剤で剥離する方法もあるが、接続作業に
は溶剤が有毒で危険であり、またガラスを溶かすおそれ
もあるため不向きである。
[Problem to be Solved by the Invention 1] However, when connecting optical fibers, it is necessary to remove the polyimide resin. Silicone and ultraviolet curing resin can be easily rubbed off by impregnating gauze with alcohol, and there is also a method of swelling them in an organic solvent.
It is difficult to easily peel polyimide resin using the above method. Therefore, either thermal oxidation decomposition is performed using oxygen plasma, or
Alternatively, there is a method of stripping with a strong alkaline solvent such as NH-NH2 (N2 H4: hydrazine), but this is not suitable for connection work because the solvent is toxic and dangerous and may melt the glass.

また有機金属ポリマは、剥離させるために燃焼させると
一部セラミック化するなめ削り取るような機械的作業で
しか剥離することができず、この場合、特に剥離部の光
ファイバに傷を付け、強度は劣化させ、接続作業時に光
ファイバが折れることが多いという問題があった。
In addition, organometallic polymers can only be removed by mechanical operations such as shaving off parts of the organic metal polymer that become ceramic when they are burnt. There was a problem in that the optical fiber deteriorated and the optical fiber often broke during connection work.

本発明は、以上の課題に鑑み為されたものであり、その
目的は、光ファイバの耐熱性を保持させ、かつポリイミ
ド樹脂及び有機金属ポリマを容易に11、′1:1 剥離することができる耐熱性光ファイバを提供するする
ことにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to maintain the heat resistance of an optical fiber and to be able to easily peel off a polyimide resin and an organometallic polymer at a ratio of 11,'1:1. Our mission is to provide heat-resistant optical fibers.

[課題を解決するための手段] 本発明は・、以上の目的を達成するために、光ファイバ
の被覆構造を改良した。
[Means for Solving the Problems] In order to achieve the above objects, the present invention improves the coating structure of an optical fiber.

つまり、光ファイバにポリイミド樹脂又は有機金属ポリ
マからなる被覆材を被覆した耐熱性光ファイバにおいて
、光ファイバの表面に炭素、水素、窒素からなる樹脂を
被覆後、不活性雰囲気中で加熱して炭化させて炭化層を
形成した後、ポリイミド樹脂又は有機金属ポリマを被覆
することを特徴とする。
In other words, in a heat-resistant optical fiber in which the optical fiber is coated with a coating material made of polyimide resin or organometallic polymer, the surface of the optical fiber is coated with a resin made of carbon, hydrogen, and nitrogen, and then heated in an inert atmosphere to carbonize it. The method is characterized in that after a carbonized layer is formed, a polyimide resin or an organic metal polymer is coated.

また前記有機金属ポリマとして具体的にはポリチタノカ
ルボシランを使用することが好適である。
Further, specifically, it is preferable to use polytitanocarbosilane as the organometallic polymer.

更に前記炭化層の厚さを3μm以上にすることが望まし
い。
Furthermore, it is desirable that the thickness of the carbonized layer be 3 μm or more.

[作用1 本発明によれば、光ファイバとポリイミド樹脂又は有機
金属ポリマなどの被覆材の間に、炭化層を設けることに
よって、耐熱性を維持し、かつ炭化層が滑りの役目を果
たして接続時の被覆材の剥離を容易にすることができる
[Function 1] According to the present invention, by providing a carbonized layer between the optical fiber and the coating material such as polyimide resin or organic metal polymer, heat resistance is maintained and the carbonized layer acts as a slippery material during connection. The coating material can be easily removed.

[実施例1 以下、本発明に係る好適な実施例を第1図を用いて説明
する。
[Embodiment 1] Hereinafter, a preferred embodiment according to the present invention will be described using FIG. 1.

波長1.3μm帯のシングルモード光ファイバ(SMF
)1を摂氏約200度で加熱延伸した外形125μmの
SMF表面に炭素、水素、窒素からなるUV(紫外線)
硬化樹脂、例えばウレタンアクリレート(日本ゴム社製
、商品名950Y110)を塗布した後、N2 雰囲気
の電気炉内を通して炭化層2を形成させる。ここで上記
ウレタンアクリレートに代えてポリイミドやナイロンも
使用できる。次にこの炭化層2の上にポリイミド樹脂層
又は有機金属ポリマ層3を塗布して硬化させることによ
って光フアイバ心線4が完成される。
Single mode optical fiber (SMF) with a wavelength of 1.3 μm
) 1 heated and stretched at about 200 degrees Celsius, and then UV (ultraviolet light) consisting of carbon, hydrogen, and nitrogen is applied to the surface of SMF with an outer diameter of 125 μm.
After applying a cured resin such as urethane acrylate (manufactured by Nippon Rubber Co., Ltd., trade name 950Y110), it is passed through an electric furnace in an N2 atmosphere to form a carbonized layer 2. Here, polyimide or nylon can also be used instead of the urethane acrylate. Next, a polyimide resin layer or an organic metal polymer layer 3 is coated on the carbonized layer 2 and cured to complete the optical fiber core 4.

ここで、炭化層2の厚さを3μmでポリイミド樹脂層3
の厚さを10μmに形成した。また同様な方法で炭化層
2の厚さを5μmに形成後、有機金属ポリマ層3として
ポリチタノカルボシランを厚さ10μm形成した。
Here, the thickness of the carbonized layer 2 is 3 μm, and the polyimide resin layer 3 is
was formed to have a thickness of 10 μm. Further, a carbonized layer 2 was formed to a thickness of 5 μm using the same method, and then a polytitanocarbosilane was formed to a thickness of 10 μm as an organometallic polymer layer 3.

いずれも上記各形成後の光ファイバの伝送損失は、波長
1.3μmで測定すると0.35dB1kmとなり、低
損失の光ファイバが得られた。
In each case, the transmission loss of the optical fiber after each of the above formations was 0.35 dB1 km when measured at a wavelength of 1.3 μm, and a low-loss optical fiber was obtained.

ポリイミド樹脂の層3の被覆の場合、炭化層2の厚さを
10μmの部分に切り込みを入れ、引き抜くことが可能
となった。
In the case of coating with the polyimide resin layer 3, it became possible to cut the carbonized layer 2 at a thickness of 10 μm and pull it out.

また、ポリイミド樹脂に代えて有機金属ポリマであるポ
リチタノカルボシランを使用した場合は、炭化層2の厚
さを5μn1と厚めに付けることによって、ガーゼで擦
り取ることができ、光ファイバの強度は劣化しなかった
。これは炭化層2が滑りの役目を果たしているためであ
る。
Furthermore, when polytitanocarbosilane, which is an organometallic polymer, is used instead of polyimide resin, the thickness of the carbonized layer 2 is made thicker (5 μn1), so that it can be rubbed off with gauze, which increases the strength of the optical fiber. did not deteriorate. This is because the carbonized layer 2 plays a sliding role.

[発明の効果] 以上述べたように本発明によれば次の効果を発揮する。[Effect of the invention] As described above, the present invention exhibits the following effects.

光ファイバと被覆材の間に炭化層を設けているので、ポ
リイミド樹脂及び有機金属ポリマの被覆を容易に剥離で
き、かつ剥離後光ファイバの強度を低下させず接続する
ことができる。
Since the carbonized layer is provided between the optical fiber and the coating material, the polyimide resin and organometallic polymer coating can be easily peeled off, and the optical fiber can be connected after peeling without reducing its strength.

したがって、光ファイバによる情報の伝送が普及しつつ
ある現状で、光ファイバの接続作業が容易になるという
効果がある。
Therefore, in the current situation where information transmission using optical fibers is becoming widespread, there is an effect that the work of connecting optical fibers becomes easier.

また、ポリイミド樹脂や有機金属ポリマは、商業的に入
手できるものを用いるので、実用化が容易である。
In addition, since commercially available polyimide resins and organometallic polymers are used, it is easy to put them into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光フアイバ心線4の断面図である
FIG. 1 is a sectional view of an optical fiber core 4 according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバにポリイミド樹脂又は有機金属ポリマ
からなる被覆材を被覆した耐熱性光ファイバにおいて、 光ファイバの表面に炭素、水素、窒素からなる樹脂を被
覆後、不活性雰囲気中で加熱して炭化させて炭化層を形
成した後、ポリイミド樹脂又は有機金属ポリマを被覆し
てなることを特徴とする耐熱性光ファイバ。
(1) In a heat-resistant optical fiber in which the optical fiber is coated with a coating material made of polyimide resin or organometallic polymer, the surface of the optical fiber is coated with a resin made of carbon, hydrogen, and nitrogen, and then heated in an inert atmosphere. A heat-resistant optical fiber characterized in that it is carbonized to form a carbonized layer and then coated with a polyimide resin or an organic metal polymer.
(2)前記有機金属ポリマがポリチタノカルボシランで
あることを特徴とする請求項1に記載の耐熱性光ファイ
バ。
(2) The heat-resistant optical fiber according to claim 1, wherein the organometallic polymer is polytitanocarbosilane.
(3)前記炭化層の厚さが3μm以上であることを特徴
とする請求項1又は2に記載の耐熱性光ファイバ。
(3) The heat-resistant optical fiber according to claim 1 or 2, wherein the thickness of the carbonized layer is 3 μm or more.
JP2262142A 1990-09-28 1990-09-28 Heat resistant optical fiber Pending JPH04138406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262142A JPH04138406A (en) 1990-09-28 1990-09-28 Heat resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262142A JPH04138406A (en) 1990-09-28 1990-09-28 Heat resistant optical fiber

Publications (1)

Publication Number Publication Date
JPH04138406A true JPH04138406A (en) 1992-05-12

Family

ID=17371640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262142A Pending JPH04138406A (en) 1990-09-28 1990-09-28 Heat resistant optical fiber

Country Status (1)

Country Link
JP (1) JPH04138406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125846A (en) * 2002-09-30 2004-04-22 Totoku Electric Co Ltd Optical fiber coil, optical fiber sensor, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125846A (en) * 2002-09-30 2004-04-22 Totoku Electric Co Ltd Optical fiber coil, optical fiber sensor, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR940007341Y1 (en) Fiber optic cannister with compliant base layer
US20030202763A1 (en) Method for forming a protective coating on an optical fiber
JPH04138406A (en) Heat resistant optical fiber
AU770457B2 (en) A method of producing a superconducting tape
CZ309598A3 (en) Process of making removable polyimide coating for optical fiber
JPS63151648A (en) Production of coated optical fiber
WO2005058769A2 (en) An optical fiber with a mechanically strippable coating and methods of making the same
EP0634378B1 (en) Process for improving the oxydation resistance of a fibre-reinforced composite having a glass, ceramic or glass-ceramic matrix
JP2701621B2 (en) Heat resistant optical fiber
JP2601719Y2 (en) Heat resistant optical fiber
JPH06230254A (en) Heat resistant glass fiber
JPH04295810A (en) Coated optical fiber for high temperature
JPH06148474A (en) Heat resistant coated glass fiber
JP2825097B2 (en) Optical fiber manufacturing method
JP2551068Y2 (en) Heat resistant optical fiber and heat resistant optical fiber with metal pipe
JP2581285B2 (en) Manufacturing method of heat resistant optical fiber
JP2576647Y2 (en) Heat resistant optical fiber
JP3804389B2 (en) Optical fiber manufacturing method
JPH01167707A (en) Fiber for light transmission and its production
JPH019923Y2 (en)
JPS59155804A (en) Optical fiber having metallic coated layer
JPS6334504A (en) Optical fiber
JPS6110044A (en) Production of fiber for optical transmission
JPH02285308A (en) Coated optical fiber
JPS5855349A (en) Glass fiber treatment