JPH04137687A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04137687A
JPH04137687A JP25946290A JP25946290A JPH04137687A JP H04137687 A JPH04137687 A JP H04137687A JP 25946290 A JP25946290 A JP 25946290A JP 25946290 A JP25946290 A JP 25946290A JP H04137687 A JPH04137687 A JP H04137687A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
wavelength
semiconductor laser
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25946290A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25946290A priority Critical patent/JPH04137687A/en
Publication of JPH04137687A publication Critical patent/JPH04137687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide optical etching characteristics against outside input and enable complete current constriction by making the thickness of an oscillator identical to the wavelength in the optical oscillator of energy responding to a second quantum level difference in quantum well structure. CONSTITUTION:When electric current is arranged to flow in a forward direction between electrodes 111 and 101, the light of wavelength responding to a quantum level difference of a quantum well layer 107 is emitted where barrier layers 106 and 109 are 125nm thick respectively while an oscillator is 244nm long. This is identical to a value obtained when the wavelength of 810nm is divided by the refraction factor of 3.32 of the barrier layers 106 and 109 based on the level where n=2, and represents one wavelength of oscillation light where the length of the oscillator is n=2. The loss is marked in terms of laser oscillation where the quantum level is n=1. Under a current injected state, the oscillation of 810nm where the level is n=2 preferentially occurs. When the light of 840nm wavelength is input from the outside under this state, the carriers are pumped up to the level of n=1. The level of oscillation is transferred from n=2 to n=1 where the oscillation wavelength jumps from 810nm to 840nm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基板の垂直方向にレーザ光を発振する面発光
半導体レーザであり、更に外部入力光に対してスイッチ
ング特性を有する面発光半導体レーザに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface emitting semiconductor laser that emits laser light in a direction perpendicular to a substrate, and furthermore, a surface emitting semiconductor laser that has switching characteristics with respect to externally input light. Regarding.

[従来の技術] 従来、基板の垂直方向に共振器を持つ面発光レーザは、
第50回応用物理学会学術講演会講演予稿集 第3分冊
 p、  909 29a−ZG−7のごときものであ
った。第6図はその発光部を示す斜視図である。(60
2)n型GaAs基板に(603>n型A I G a
 A s / A I A s多層膜、 (604) 
n型AlGaAsクラッド層、 (605) p型Ga
As活性層、 (506)p型AlGaAsクラッド層
を成長した後、円柱状の領域を残してエツチングし、(
607)p型、 (608) n型、 (609)I)
型、 (610)p型の順にAlGaAsで埋め込む。
[Conventional technology] Conventionally, surface emitting lasers with a resonator in the vertical direction of the substrate,
It was something like Proceedings of the 50th Annual Conference of the Japan Society of Applied Physics, Volume 3, p, 909 29a-ZG-7. FIG. 6 is a perspective view showing the light emitting section. (60
2) On the n-type GaAs substrate (603>n-type A I Ga
As / AI As multilayer film, (604)
n-type AlGaAs cladding layer, (605) p-type Ga
After growing the As active layer and the (506) p-type AlGaAs cladding layer, they are etched leaving a cylindrical region (
607) p type, (608) n type, (609) I)
type and (610) p type in this order with AlGaAs.

しかる後(610)p型AlGaAsキャップ層の上部
に (611)誘電体多層膜を蒸着し、(601)n型
オーミック電極、<612)p型オーミック電極を形成
し、面発光レーザを構成した。
Thereafter, a (611) dielectric multilayer film was deposited on top of the (610) p-type AlGaAs cap layer, and a (601) n-type ohmic electrode and <612) p-type ohmic electrode were formed to form a surface emitting laser.

[発明が解決しようとする課題] しかし、従来の技術では共振器ミラーとなる多層膜の反
射率は、ある波長に対してのみ高反射率となるため、レ
ーザ発振はするが外部の入力光に対して機能動作をする
ものではない。従って、これを2次元アレイにしても種
々の演算動作ができない。更に、活性層以外の部分に電
流が流れるのを防ぐ手段として、埋め込み層にp−n接
合を設けているが、十分な電流狭窄を得ることは難しく
完全には無効電流を抑制できない。無効電流の抑制は、
面発光レーザにおいて重要な課題であり、このために前
述の従来例でも室温連続発振駆動することが困難である
。また埋め込み層を従来例のように多層構造にした場合
、円柱状に残した成長層の界面と埋め込み層のp−n界
面の位置を考慮する必要があり、埋め込み成長の膜厚制
御が難しく再現性良く製造することは極めて困難である
[Problems to be Solved by the Invention] However, in the conventional technology, the reflectance of the multilayer film that serves as the resonator mirror is high only for a certain wavelength. It does not perform any functional action. Therefore, even if this is made into a two-dimensional array, various calculation operations cannot be performed. Furthermore, a pn junction is provided in the buried layer as a means to prevent current from flowing to portions other than the active layer, but it is difficult to obtain sufficient current confinement and reactive current cannot be completely suppressed. Suppression of reactive current is
This is an important issue in surface-emitting lasers, and for this reason, even in the conventional example described above, it is difficult to drive continuous oscillation at room temperature. In addition, when the buried layer has a multilayer structure as in the conventional example, it is necessary to consider the position of the interface of the columnar growth layer and the p-n interface of the buried layer, making it difficult to control the thickness of the buried layer and reproduce it. It is extremely difficult to manufacture with good performance.

本発明はこのような課題を解決するもので、その目的と
するところは、外部光入力に対して光スイッチング特性
を有し、且つ完全な電流狭窄が可板な構造であり、且つ
極めて簡単に製造できる高効率の面発光半導体レーザを
提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a structure that has optical switching characteristics in response to external light input, allows complete current confinement, and is extremely easy to implement. The object of the present invention is to provide a highly efficient surface-emitting semiconductor laser that can be manufactured.

[課題を解決するための手段] 上記課題を解決するため、本発明の半導体レーザは、 (1)半導体基板に垂直な方向に共振器を持ち、該半導
体基板側に半導体多層膜で形成された反射ミラーを持ち
、垂直な方向に光が出射される面発光半導体レーザに於
いて、童子井戸構造を持つ活性層を有し、前記共振器の
厚さが、前記量子井戸構造の策二の量子準位差に対応す
るエネルギーの光の共振器中での波長と同一であること
を特徴としている。
[Means for Solving the Problems] In order to solve the above problems, the semiconductor laser of the present invention includes: (1) a resonator having a resonator in a direction perpendicular to a semiconductor substrate, and a semiconductor multilayer film formed on the semiconductor substrate side; A surface-emitting semiconductor laser that has a reflective mirror and emits light in a vertical direction has an active layer with a Doji well structure, and the thickness of the resonator is the same as the second quantum well of the quantum well structure. It is characterized in that the wavelength of energy corresponding to the level difference is the same as the wavelength in the resonator.

(2)前記共振器を形成する半導体層の少なくとも一層
が柱状で、該柱状の半導体層の周囲をII−Vl族化合
物半導体層で埋め込むことを特徴としている。
(2) At least one of the semiconductor layers forming the resonator is columnar, and the periphery of the columnar semiconductor layer is buried with a II-Vl group compound semiconductor layer.

(3)光出射側の半導体コンタクト層の膜厚が01μm
以上3. 0μm以下であることを特徴としている。
(3) The thickness of the semiconductor contact layer on the light emission side is 01 μm
Above 3. It is characterized by being 0 μm or less.

<4)該II−Vl族化合物半導体層がZnSe、Zn
S、ZnSSe、ZnCd5.Cd5Seのいずれかで
あることを特徴としている。
<4) The II-Vl group compound semiconductor layer is ZnSe, Zn
S, ZnSSe, ZnCd5. It is characterized by being one of Cd5Se.

(5)該I+−VI族化合物半導体層の格子定数が、該
柱状の半導体層の格子定数と一致していることを特徴と
している。
(5) The lattice constant of the I+-VI group compound semiconductor layer is the same as the lattice constant of the columnar semiconductor layer.

(6)前記半導体基板および量子井戸層がGaAsであ
ることを特徴としている。
(6) The semiconductor substrate and the quantum well layer are made of GaAs.

(7)前記半導体基板がGaAsであり、前記童子井戸
層がI nGaAsであることを特徴としている。
(7) The semiconductor substrate is made of GaAs, and the Dojiwell layer is made of InGaAs.

(8)前記半導体基板がInPであり、前記量子井戸層
がInGaAsPであることを特徴としている。
(8) The semiconductor substrate is made of InP, and the quantum well layer is made of InGaAsP.

[実 施 例] 第1図は本発明の実施例における半導体レーザの発光部
の断面を示す斜視図である。
[Example] FIG. 1 is a perspective view showing a cross section of a light emitting part of a semiconductor laser in an example of the present invention.

(102)のn型GaAs基[1に、(103> n型
GaAsバッファ層、(104)のn型A I 11.
vG a [1,3A S層とn型A 1 a、tG 
a il、9A s層からなり波長840nm付近の光
に対し95%以上の反射率を持つ15ベアの分布反射型
多層膜ミラー (105)のn型A 111.7G a
 9.3A S層とn型A l l!、tG a [1
,QA S層からなり波長810nm付近の光に対し9
5%以上の反射率を持つ15ペアの分布反射型多層膜ミ
ラー (106)のn型A 111.aG a B、s
A Sバリア層、<107)の膜厚100△の量子井戸
活性層、(lo9> p型A 1114G a 11.
sA sバリア、(110)p型A l [+、。
(102) n-type GaAs group [1, (103> n-type GaAs buffer layer, (104) n-type AI 11.
vG a [1,3A S layer and n-type A 1 a,tG
a il, 9A 15-bear distributed reflection multilayer mirror (105) n-type A 111.7G a that is composed of s layers and has a reflectance of 95% or more for light around a wavelength of 840 nm.
9.3A S layer and n-type A l l! , tG a [1
, QAS layer, and has a resistance of 9 to 810 nm wavelength.
15 pairs of distributed reflection multilayer mirrors (106) with a reflectance of 5% or more, n-type A 111. aG a B,s
A S barrier layer, <107) quantum well active layer with a film thickness of 100Δ, (lo9> p-type A 1114G a 11.
sA s barrier, (110) p-type A l [+,.

G a il、gA sコンタクト層を順次積層して成
る。
It is formed by sequentially stacking G ail and gAs contact layers.

(106)のn型A I 11.aG a 11.aA
 sバリア層の途中まで円柱形状にエツチングされ、そ
の周りがGaASと格子整合する(Loll)のZ n
 S Ta1Iss e 1I9a居で埋め込まれてい
る。更に、表面に4ペアの (112)のSi○2/α
−3t誘電体多層膜を、ウエノト工、チングで、発光部
の径よりやや小さい領域を残して形成しである。(11
2)の誘電体多層膜以外の表面に(111)のp型オー
ミック電極、基板側に(101)のn型オーミック電極
が形成された構造となっている。
(106) n-type AI 11. aG a 11. aA
Zn of cylindrical shape is etched to the middle of the s barrier layer, and the surrounding area is lattice-matched to GaAS (Loll).
It is embedded in S Ta1Iss e 1I9a. Furthermore, 4 pairs of (112) Si○2/α on the surface
A -3t dielectric multilayer film was formed using Uenoto machining and cutting, leaving a region slightly smaller than the diameter of the light emitting part. (11
It has a structure in which a p-type ohmic electrode (111) is formed on the surface other than the dielectric multilayer film 2), and an n-type ohmic electrode (101) is formed on the substrate side.

<III)と(101)の電極の開に順方句に電流を流
すと(107)の量子井戸層の量子準位差に対応した波
長の光が発光する。その際、量子準位n=1から(ま8
40nmの波長の光が、量子準位n=2からは810n
mの光が出る。レーザ発振は下側の半導体多層膜ミラー
と上側の誘電体多層膜ミラーの開で共振器が形成されて
起こる。本実施例に於いては(106)と(109)の
バリア層の厚さが各々122nmで、共振器長が244
nmである。これはn=2の準位からの発振波長810
nmをバリア層の屈折率3.32で割った値と同一にし
である。これによって共振器長がn=2の発振光の一波
長となる。また下側の半導体多層膜ミラーが、AI[1
7G a 11.3A S (膜厚66.9nm)とA
 I [1,+c a89As(膜厚59.7nm)の
層を交互に15ベア一積層した層(104)とA l 
e、vG a 11.3A S (膜厚64.5nm)
とA 1 a、tG a e、eA S (膜厚57゜
5nm)の層を交互に15ペア一積層した層(105)
から成っている。(104)の多層膜は840nmの波
長に対して95%の高反射率を持ち、(105)の多層
膜は810nmの波長に対して95%程度の反射率とな
る。
When a current is passed in the forward direction between the electrodes <III) and (101), light with a wavelength corresponding to the quantum level difference of the quantum well layer (107) is emitted. At that time, from the quantum level n = 1 (ma 8
Light with a wavelength of 40 nm has a wavelength of 810n from the quantum level n=2.
m light is emitted. Laser oscillation occurs when a resonator is formed between the lower semiconductor multilayer mirror and the upper dielectric multilayer mirror. In this example, the thickness of the barrier layers (106) and (109) is 122 nm each, and the resonator length is 244 nm.
It is nm. This is the oscillation wavelength of 810 from the n=2 level.
It is equal to the value obtained by dividing nm by the refractive index of the barrier layer, which is 3.32. As a result, the resonator length becomes one wavelength of the oscillated light with n=2. In addition, the lower semiconductor multilayer mirror is AI[1
7G a 11.3A S (film thickness 66.9nm) and A
I [1, +ca A layer (104) in which 15 layers of a89As (film thickness 59.7 nm) are stacked alternately and A l
e, vG a 11.3A S (film thickness 64.5nm)
A layer (105) in which 15 pairs of layers of A 1 a, tG a e, eA S (film thickness 57° 5 nm) are laminated alternately.
It consists of The multilayer film (104) has a high reflectance of 95% for a wavelength of 840 nm, and the multilayer film (105) has a reflectance of about 95% for a wavelength of 810 nm.

第2図は、本実施例に於ける活性層付近の断面構造を模
式的に示した図である。(202)のA I 3.vG
 a il、3A sと(201)のA 1 s、tG
 a e9A sで構成される下部反射鏡の一部と、(
203)のA1θ、tG a[1,6A Sバリア層と
、(204)のGaAs量子井戸活性層と、(205)
のA I l!、aG a e、6A sバリア層と、
(206)の5i02と<207)のα−3tで構成さ
れる上部反射鏡の一部が示されている。(208)はn
=2の量子準位に対応する波長の光の定在波を模式的に
示したものである。共振器長が一波長分であるので波の
腹が活性層の位置に一致する。従って量子準位n;2(
発振波長810nm)からのレーデ発振が起こり易く、
量子準位n=1 (発振波長840nm)からのレーザ
発振に対しては損失が大きく、電流を注入した状態では
810nmの発振が優先して起こる。この状態で外部が
ら840nmの波長の光を入力するとn=1の準位にキ
ャリアがポンプされ、レーザ発振の準位がn=2がらn
=1に移り、発振波長が810nmがら840nmにジ
ャンプする。
FIG. 2 is a diagram schematically showing a cross-sectional structure near the active layer in this example. (202) AI 3. vG
a il, 3A s and (201) A 1 s, tG
A part of the lower reflector consisting of a e9A s, and (
A1θ, tGa[1,6A S barrier layer of (203), GaAs quantum well active layer of (204), and (205)
A I l! , aG a e, 6A s barrier layer,
A part of the upper reflector is shown, which is composed of 5i02 of (206) and α-3t of <207). (208) is n
This is a diagram schematically showing a standing wave of light having a wavelength corresponding to a quantum level of =2. Since the resonator length is one wavelength, the antinode of the wave coincides with the position of the active layer. Therefore, the quantum level n;2(
Radhe oscillation from the oscillation wavelength (810 nm) is likely to occur,
Loss is large for laser oscillation from quantum level n=1 (oscillation wavelength 840 nm), and when current is injected, oscillation at 810 nm occurs preferentially. In this state, when light with a wavelength of 840 nm is input from the outside, carriers are pumped to the n=1 level, and the laser oscillation level changes from n=2 to n.
= 1, and the oscillation wavelength jumps from 810 nm to 840 nm.

第3図は本実施例に於ける光出力のスペクトルを示す図
であり、 (a)は電流注入をした時、 (b)は外部
から840nmの光入力のあった場合を示す。前述の理
由により発振波長のジャンプしていることがわかる。
FIG. 3 is a diagram showing the spectrum of the optical output in this example. (a) shows the case when current is injected, and (b) shows the case when 840 nm light is input from the outside. It can be seen that the oscillation wavelength jumps due to the above-mentioned reason.

第4図は、注入電流Iinと840nmの外部光入力P
 in (840nm)と810 nmの光出力P。u
t(810r+n+)の関係を示すタイミングチャート
図である。
Figure 4 shows the injection current Iin and the external optical input P of 840 nm.
optical output P at in (840 nm) and 810 nm. u
FIG. 7 is a timing chart diagram showing the relationship between t(810r+n+).

PinとP outの関係は、光のインバーター動作を
示しており、光入力による種々の論理演算回路をくむこ
とができる。従って、本発明の面発光半導体レーザを単
一半導体基板上にアレイ化すれば並列光演算プロセッサ
ーとなる。
The relationship between Pin and P out indicates an optical inverter operation, and various logical operation circuits can be implemented using optical input. Therefore, if the surface emitting semiconductor lasers of the present invention are arrayed on a single semiconductor substrate, a parallel optical arithmetic processor can be obtained.

更に、本実施例の面発光半導体レーザは、埋め込みに用
いたZ n S s、ess e e、ea層がIGΩ
Julトの抵抗を宵し、埋め込み層への注入電流のもれ
が起こらないため、極めて有効な電流狭窄が達成される
。また埋め込み層は多層構造にする必要がないため容易
に成長でき、バッチ間の再現性も高い。
Furthermore, in the surface emitting semiconductor laser of this example, the Z n S s, ess e e, and ea layers used for embedding are IGΩ.
Very effective current confinement is achieved because the resistance of the layer is reduced and no leakage of the current injected into the buried layer occurs. Furthermore, since the buried layer does not need to have a multilayer structure, it can be easily grown and has high batch-to-batch reproducibility.

さらに(、aAsに比べ屈折率が十分小さいZn5af
Iss e a、ea層を用いたリブ導波路構造により
、より効果的な光の閉じ込めが実現される。
Furthermore, Zn5af has a sufficiently small refractive index compared to aAs.
A rib waveguide structure using Iss e a, ea layers achieves more effective light confinement.

第5図は本発明の実施例の面発光半導体レーザの駆動電
流と量子準位n=2からの発振光出力の関係を示す図で
ある。室温において連続発振が達成され、しきい値0.
3mAと極めて低い値を得た。また外部微分量子効率も
高く、無効電流の抑制がレーザの特性向上に貢献してい
る。
FIG. 5 is a diagram showing the relationship between the driving current of the surface emitting semiconductor laser according to the embodiment of the present invention and the oscillation light output from the quantum level n=2. Continuous oscillation is achieved at room temperature, with a threshold value of 0.
An extremely low value of 3 mA was obtained. The external differential quantum efficiency is also high, and suppression of reactive current contributes to improved laser characteristics.

本発明の実施例の面発光半導体レーザのコンタクト層の
膜厚に関しては、0.1μmから0.3μmが最適で、
この範囲が素子抵抗が低く、外部微分量子効率も高い。
Regarding the film thickness of the contact layer of the surface emitting semiconductor laser according to the embodiment of the present invention, the optimum thickness is 0.1 μm to 0.3 μm.
In this range, the element resistance is low and the external differential quantum efficiency is also high.

更に、半導体基板をGaASとし、量子井戸層をInG
aAsにすることにより発振波長が970nmと940
nmとなり、基板に透過となる外部入力光が使用可能と
なる。
Furthermore, the semiconductor substrate is made of GaAS, and the quantum well layer is made of InG.
By using aAs, the oscillation wavelength is 970 nm and 940 nm.
nm, and external input light that is transmitted through the substrate can be used.

更に、半導体基板をInPとし、量子井戸層をInGa
AsPにすることにより発振波長が1゜55μm帯とな
り、これも基板側からの外部入力光が使用可能となる。
Furthermore, the semiconductor substrate is made of InP, and the quantum well layer is made of InGa.
By using AsP, the oscillation wavelength becomes a 1°55 μm band, which also allows use of external input light from the substrate side.

[発明の効果] 以上述べたように本発明の半導体レーザの構造よれば、
以下のような効果が得られる。
[Effects of the Invention] As described above, according to the structure of the semiconductor laser of the present invention,
The following effects can be obtained.

(1)共振器ミラーとなる半導体多層膜の反射率ピーク
を複合化して光入力によるスイ・ノチング特性が可能と
なる。光インバーター機能を有するので論理演算が可能
である。基板表面に垂直な方向に光放出する素子である
ので2次元アレイ化が容易であり、従って、本構造によ
り並列光演算素子の製作が可能となる。
(1) By combining the reflectance peaks of the semiconductor multilayer film serving as the resonator mirror, it is possible to achieve a switch-notching characteristic due to optical input. Since it has an optical inverter function, logical operations are possible. Since it is an element that emits light in a direction perpendicular to the substrate surface, it is easy to form a two-dimensional array, and therefore, with this structure, it is possible to fabricate a parallel optical arithmetic element.

(2)埋め込みにIGΩ以上の抵抗を有する■−■族化
合物半導体層を用いるため、注入電流のもれが起こらず
、極めて有効な電流狭窄が達成される。
(2) Since a ■-■ group compound semiconductor layer having a resistance of IGΩ or more is used for embedding, leakage of the injection current does not occur, and extremely effective current confinement is achieved.

さらに活性層に用いるm−v族化合物半導体層とII−
VI族化合物半導体層とは屈折率差が大きく、従来より
も効果的な光閉じ込めが可能となる。
Furthermore, the m-v group compound semiconductor layer used for the active layer and the II-
It has a large difference in refractive index from the Group VI compound semiconductor layer, making it possible to confine light more effectively than before.

したがって従来困難であった室温連続発振が容易に達成
され、その発振しきい値も低く外部微分m子効率も高い
Therefore, continuous oscillation at room temperature, which has been difficult in the past, can be easily achieved, and the oscillation threshold is low and the external differential m-molecular efficiency is high.

(3)埋め込み層は、■−V族化合物半導体層を用いた
場合のように、多層構造にしてpn接合を形成する必要
がないため、容易に成長でき、バッチ間の再現性も高い
(3) Since the buried layer does not need to have a multilayer structure and form a pn junction unlike the case of using a -V group compound semiconductor layer, it can be easily grown and has high batch-to-batch reproducibility.

(4)埋め込みに用いるI[−Vl族化合物半導体層の
格子定数を柱状部の半導体層の格子定数と一致させるこ
とにより、レーザの特性に悪影響を及ぼすn−v’を族
化合物半導体層と柱状部の半導体層の開の相互拡散が抑
制され、信頼性の高い面発光レーザが得られる。
(4) By matching the lattice constant of I The interdiffusion of the semiconductor layers in the semiconductor layer is suppressed, and a highly reliable surface emitting laser can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における面発光半導体レーザの
発光部の断面を示す斜視図。 第2図は本発明の実施例に於ける面発光半導体レーザの
活性層付近の断面構造図。 第3図は本発明の実施例に於ける面発光半導体レーザの
発振スペクトルを示す図であり、 (a)は電流注入し
た場合、 (b)は更に外部光入力のあった場合の図。 第4図は本発明の実施例に於ける面発光半導体レーザの
入力電流と光入力と光出力のタイミングチャートを示す
図。 第5図は本発明の実施例の面発光半導体レーザの駆動電
流と発振光出力の関係を示す図。 第6図は従来の面発光半導体レーザの発光部を示す斜視
図。 ぐ101)・・・・・・n型オーミック電極<102)
−・−−−−n型GaAs基板((03)・n型GaA
sバッファ層 (104) (105)・・・・・・分布反射型ミラー
(105) (203)==−−n型A l 11.a
G a [1,6A Sクラ、7ド層 (107)(204>−−−・G a A s ji子
井戸活性層(109)(205)・−−−−・I)型A
 1 [1,4G a 11.aA sクラッド層 (110>・・・・・・ p型A l [1,IG a f3.9A s :l 
7タクト居(108)=−4: n S 52as e
 2.94層(111)・・・・・・p型オーミック電
極(112)・・・・・・5i02/α−St誘電体多
層膜(201)’・・−A I 11.IG a 6.
gA s層(202)・・・・・・A l l+、?G
 a a、3A s層(206)・・・・・・Si02
層 (20?)・・・・・・α−8I層 (208)・・・・・・共振器中の定在波(601)・
・・・・・・・・・・・・n型オーミック電極(602
)・・・・・・・・・・・・・n型GaAs基板(60
3>・−・・−n型A I G a A s / A 
I A s多層膜(604)・・・・・・・・・・・・
・n型AlGaAsクラッド層(605)・・・・・・
・・・・・・・p型GaAs活性層(606)・・・・
・・・・・・・・・p型AlGaAsクラ、ド層(60
7)・・・・・・・・・・・・・p型AIGaAs(6
08)・・・・・・・・・・・・・n型AIGaAs(
609)・・・・・・・・・・・・・p型AIGaAs
(610)・・・・・・・・・・・・・p型AlGaA
sキヤ、プ届(611)・・・・・・・・・・・・・誘
電体多層膜(612)・・・・・・・・・・・・・p型
オーミック電極以上 出願人セイコーエプソン株式会社 代理人弁理土鈴木喜三部(池1名) 20日 第2図 波長 (a) (nm) 波長(nm) (b)
FIG. 1 is a perspective view showing a cross section of a light emitting part of a surface emitting semiconductor laser in an embodiment of the present invention. FIG. 2 is a cross-sectional structural diagram of the vicinity of the active layer of a surface emitting semiconductor laser in an embodiment of the present invention. FIG. 3 is a diagram showing the oscillation spectrum of a surface emitting semiconductor laser in an embodiment of the present invention, (a) is a diagram when current is injected, and (b) is a diagram when external light is further input. FIG. 4 is a diagram showing a timing chart of input current, optical input, and optical output of a surface emitting semiconductor laser in an embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the driving current and the oscillation light output of the surface emitting semiconductor laser according to the embodiment of the present invention. FIG. 6 is a perspective view showing a light emitting part of a conventional surface emitting semiconductor laser. 101)...N-type ohmic electrode <102)
-・---n-type GaAs substrate ((03)・n-type GaAs
s buffer layer (104) (105)...Distributed reflection mirror (105) (203)==--n type A l 11. a
Ga [1,6A S, 7th layer (107) (204>----・Ga As ji child well active layer (109) (205)・----・I) type A
1 [1,4G a 11. aA s cladding layer (110>... p-type A l [1, IG a f3.9A s : l
7 tact time (108) = -4: n S 52as e
2.94 layers (111)...P-type ohmic electrode (112)...5i02/α-St dielectric multilayer film (201)'...-A I 11. IG a6.
gA s layer (202)...A l l+,? G
a a, 3A s layer (206)...Si02
Layer (20?)...α-8I layer (208)...Standing wave in resonator (601)
・・・・・・・・・・・・N-type ohmic electrode (602
)・・・・・・・・・・・・N-type GaAs substrate (60
3>・-・・-n-type A I Ga As / A
IAs multilayer film (604)・・・・・・・・・・・・
・N-type AlGaAs cladding layer (605)...
......p-type GaAs active layer (606)...
......p-type AlGaAs layer (60
7)・・・・・・・・・・・・P-type AIGaAs (6
08)・・・・・・・・・・・・N-type AIGaAs(
609)・・・・・・・・・・・・P-type AIGaAs
(610)・・・・・・・・・・・・p-type AlGaA
S carrier, p notification (611)・・・・・・・・・・・・Dielectric multilayer film (612)・・・・・・・・・・・・P-type ohmic electrode or more Applicant: Seiko Epson Kizobe Tsuchi Suzuki, Patent Attorney Co., Ltd. (1 person) 20th Figure 2 Wavelength (a) (nm) Wavelength (nm) (b)

Claims (1)

【特許請求の範囲】 (1)半導体基板に垂直な方向に共振器を持ち、該半導
体基板側に半導体多層膜で形成された反射ミラーを持ち
、垂直な方向に光が出射される面発光半導体レーザに於
いて、量子井戸構造を持つ活性層を有し、前記共振器の
厚さが、前記量子井戸構造の第二の量子準位差に対応す
るエネルギーの光の共振器中での波長と同一であること
を特徴とする半導体レーザ。 (2)前記共振器を形成する半導体層の少なくとも一層
が柱状で、該柱状の半導体層の周囲をII−VI族化合物半
導体層で埋め込むことを特徴とする請求項1記載の半導
体レーザ。(3)光出射側の半導体コンタクト層の膜厚
が0.1μm以上3.0μm以下であることを特徴とす
る請求項2記載の半導体レーザ。 (4)該II−VI族化合物半導体層がZnSe、ZnS、
ZnSSe、ZnCdS、CdSSeのいずれかである
ことを特徴とする請求項2記載の半導体レーザ。 (5)該II−VI族化合物半導体層の格子定数が、該柱状
の半導体層の格子定数と一致していることを特徴とする
請求項2記載の半導体レーザ。 (6)前記半導体基板および量子井戸層がGaAsであ
ることを特徴とする請求項1記載の半導体レーザ。 (7)前記半導体基板がGaAsであり、前記量子井戸
層がInGaAsであることを特徴とする請求項1記載
の半導体レーザ。 (8)前記半導体基板がInPであり、前記量子井戸層
がInGaAsPであることを特徴とする請求項1記載
の半導体レーザ。
[Claims] (1) A surface-emitting semiconductor that has a resonator in a direction perpendicular to a semiconductor substrate, has a reflective mirror formed of a semiconductor multilayer film on the semiconductor substrate side, and emits light in the perpendicular direction. The laser has an active layer having a quantum well structure, and the thickness of the resonator is equal to the wavelength in the resonator of light having an energy corresponding to a second quantum level difference of the quantum well structure. A semiconductor laser characterized by being identical. (2) The semiconductor laser according to claim 1, wherein at least one of the semiconductor layers forming the resonator is columnar, and the periphery of the columnar semiconductor layer is embedded with a II-VI group compound semiconductor layer. (3) The semiconductor laser according to claim 2, wherein the semiconductor contact layer on the light emission side has a thickness of 0.1 μm or more and 3.0 μm or less. (4) The II-VI group compound semiconductor layer is ZnSe, ZnS,
3. The semiconductor laser according to claim 2, wherein the semiconductor laser is made of one of ZnSSe, ZnCdS, and CdSSe. (5) The semiconductor laser according to claim 2, wherein the lattice constant of the II-VI group compound semiconductor layer matches the lattice constant of the columnar semiconductor layer. (6) The semiconductor laser according to claim 1, wherein the semiconductor substrate and the quantum well layer are made of GaAs. (7) The semiconductor laser according to claim 1, wherein the semiconductor substrate is GaAs and the quantum well layer is InGaAs. (8) The semiconductor laser according to claim 1, wherein the semiconductor substrate is InP and the quantum well layer is InGaAsP.
JP25946290A 1990-09-28 1990-09-28 Semiconductor laser Pending JPH04137687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25946290A JPH04137687A (en) 1990-09-28 1990-09-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25946290A JPH04137687A (en) 1990-09-28 1990-09-28 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04137687A true JPH04137687A (en) 1992-05-12

Family

ID=17334407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25946290A Pending JPH04137687A (en) 1990-09-28 1990-09-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04137687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114707A1 (en) * 2007-03-22 2008-09-25 Nec Corporation Plane emission-type semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114707A1 (en) * 2007-03-22 2008-09-25 Nec Corporation Plane emission-type semiconductor laser
US7974328B2 (en) 2007-03-22 2011-07-05 Nec Corporation Surface-emission type semiconductor laser

Similar Documents

Publication Publication Date Title
JP3783411B2 (en) Surface emitting semiconductor laser
JP4621393B2 (en) Surface emitting semiconductor laser and method for manufacturing surface emitting semiconductor laser
US6144682A (en) Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
US5940422A (en) Laser with an improved mode control
US6771680B2 (en) Electrically-pumped, multiple active region vertical-cavity surface-emitting laser (VCSEL)
JP2534444B2 (en) Integrated short cavity laser
US5963576A (en) Annular waveguide vertical cavity surface emitting laser and method of fabrication
JP2001237497A (en) Passive semiconductor structure and manufacturing method therefor
JP2001237410A (en) Optoelectronic integrated circuit and its manufacturing method
JPS59205787A (en) Single axial mode semiconductor laser
JP3689621B2 (en) Semiconductor light emitting device
JP2002083999A (en) Light emitting semiconductor element
JPH08213703A (en) Laser diode, manufacture thereof, and optical communication system utilizing the laser diode
KR20110025817A (en) Diode laser, integral diode laser and an integral semiconductor optical amplifier
US8693894B2 (en) Gain clamped optical device for emitting LED mode light
JP2002223033A (en) Optical element and optical system
JPH0629612A (en) Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture
JPWO2007135772A1 (en) Light emitting element
JPS63188983A (en) Semiconductor light emitting device
KR100404043B1 (en) Vertically integrated high-power surface-emitting laser diode and method of manufacturing the same
JP2003142773A (en) Semiconductor light emitting device
JP2000353858A (en) Surface-emitting laser and manufacture thereof
JPH04137687A (en) Semiconductor laser
US6770915B2 (en) Light emitting element with multiple multi-layer reflectors and a barrier layers
JP3060511B2 (en) Semiconductor laser