JPH04137315A - Superconductor and superconductive coil and their manufacture - Google Patents

Superconductor and superconductive coil and their manufacture

Info

Publication number
JPH04137315A
JPH04137315A JP2256405A JP25640590A JPH04137315A JP H04137315 A JPH04137315 A JP H04137315A JP 2256405 A JP2256405 A JP 2256405A JP 25640590 A JP25640590 A JP 25640590A JP H04137315 A JPH04137315 A JP H04137315A
Authority
JP
Japan
Prior art keywords
superconductor
cross
superconducting coil
manufacturing
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256405A
Other languages
Japanese (ja)
Other versions
JP3049080B2 (en
Inventor
Toshio Ishizuki
石附 敏雄
Saburo Usami
三郎 宇佐美
Teruhiro Takizawa
滝沢 照広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2256405A priority Critical patent/JP3049080B2/en
Publication of JPH04137315A publication Critical patent/JPH04137315A/en
Application granted granted Critical
Publication of JP3049080B2 publication Critical patent/JP3049080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)

Abstract

PURPOSE:To reduce hysteresis and heating factors in the case of a repeated load so as to prevent quenching by working a multi-core compound superconductor whose surface is subjected to insulation treatment such a way that the shape of a cross section vertical to the longitudinal direction of the superconductor becomes approximately a square. CONSTITUTION:Working rolls 5a, 5b whose end portions in the upward and downward directions are flat and lateral direction working rolls 6a, 6b with flat end portions arranged in shifting by each 90 deg. from the rolls 5a, 5b are so arranged as the working surfaces of superconductors after completion of their surface insulation treatment are flush with each other. The intervals among those four working rolls 5a, 5b, 6a, 6b are adjusted so that the upward, downward, right and left directions of the superconductor are simultaneously formed according to a prescribed degree of processing. A portion of void is Nb-Ti line, and a portion that looks white is Cu. The external surface is covered with enamel insulating covering 4. The length of a linear portion on the cross section vertical to the longitudinal direction of the superconductor is at approximately 90%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導体ならびにその強化方法、および、超
電導コイルならびにその製造方法に関し、特に、液体H
e中で超電導現象を示す超電導線の機械的擾乱の原因の
1つである塑性ひずみ発熱を低減させる技術に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a superconductor, a method for reinforcing the same, and a superconducting coil and a method for manufacturing the same.
The present invention relates to a technology for reducing plastic strain heat generation, which is one of the causes of mechanical disturbance in superconducting wires that exhibit superconducting phenomena in e.g.

[従来の技術] 液体Heにより冷却することで超電導現象を示す超電導
材料(例えば、Nb−Ti線)は、一般に、熱伝導の高
いCu又はAQ、(これらを、安定化機材という。)の
中に、極細線として多数理め込まれることによって、多
芯複合材の超電導体として使用される。
[Prior Art] Superconducting materials (for example, Nb-Ti wires) that exhibit superconducting phenomena when cooled with liquid He are generally heated in Cu or AQ, which has high thermal conductivity (these are referred to as stabilizing materials). By incorporating a large number of ultra-fine wires, it is used as a superconductor in multicore composites.

この超電導体は、従来では、「超電導工学の基礎」第6
1巻第4号、核融合研究P317(1989)に記載さ
れている方法で製造されている。
This superconductor has been previously described in the 6th book of ``Fundamentals of Superconductivity Engineering''.
It is manufactured by the method described in Vol. 1, No. 4, Nuclear Fusion Research P317 (1989).

上記従来技術について、第8図を用いて説明する。The above conventional technique will be explained using FIG. 8.

まず、−本のNb−Ti81などの超電導材料を安定化
機材の中に埋め込み、つぎに、この超電導材料と安定化
機材とを集合化(80)して多芯複合化超電導体とする
First, a superconducting material such as Nb-Ti81 is embedded in a stabilizing material, and then the superconducting material and the stabilizing material are aggregated (80) to form a multicore composite superconductor.

次に、この多芯複合化超電導体の芯線を安定化機材の中
で撚り(ツイスト82)、その後、目的の形状に整形(
83)する。
Next, the core wires of this multicore composite superconductor are twisted (twist 82) in stabilizing equipment, and then shaped into the desired shape (
83) Do.

次に、上記多芯複合化超電導体を熱処理(85)した後
、伸線加工を行ない、その後、エナメル被覆などの表面
を#!縁焙処理86)する。
Next, the multi-core composite superconductor is heat-treated (85) and then wire-drawn, and then the surface of the enamel coating is coated with #! Edge roasting process 86).

上記のようにして製造された超電導体の長さ方向の拡大
断面図を第9図に示す。
FIG. 9 shows an enlarged longitudinal sectional view of the superconductor manufactured as described above.

この断面図に示される超電導体は、実際には、約2 a
n X 1 mm程度の大きさであり、超電導材料の極
細線が約2000本以上埋込まれている。
The superconductor shown in this cross-section is actually about 2 a
It has a size of about n x 1 mm, and has about 2000 or more ultrafine wires made of superconducting material embedded therein.

同図において、白抜きの部分がNb−Ti線でり、白く
見える部分がCuであり、その体積比は1対1である。
In the figure, the white parts are Nb-Ti wires, and the white parts are Cu, and their volume ratio is 1:1.

次に、上記多芯複合化超電導体を多層巻した超電導コイ
ルについて説明する。
Next, a superconducting coil obtained by winding the multi-core composite superconductor in multiple layers will be described.

従来では、この超電導コイルは、例えば、約2wX1■
の超電導体1を、型枠に1000回以上巻き、約100
〜150℃中でエポキシ含浸し、レーストラック状に成
形することによって製作している。
Conventionally, this superconducting coil has a power of approximately 2w×1■, for example.
of superconductor 1 was wound around the form more than 1000 times, and
It is manufactured by impregnating it with epoxy at ~150°C and molding it into a racetrack shape.

第4図は、この超電導コイルを多層巻した方向と直角方
向に切断したときの断面を示す部分拡大断面図である。
FIG. 4 is a partially enlarged sectional view showing a cross section of this superconducting coil taken in a direction perpendicular to the direction in which the superconducting coil is wound in multiple layers.

同図に示すように、この超電導コイルは、超電導体1を
積層し、各層間には絶縁材としてガラスクロス(GFR
P) 2を配置している。また、エポキシ含浸した結果
、超電導体1コーナ部外側にはエポキシ3が充填されて
いる。
As shown in the figure, this superconducting coil is made by laminating superconductors 1 and using glass cloth (GFR) as an insulating material between each layer.
P) 2 is placed. Furthermore, as a result of the epoxy impregnation, the outside of one corner of the superconductor is filled with epoxy 3.

[発明が解決しようとする課題] 上記従来技術において、超電導材料として一般に用いら
れるNb−Ti線の降伏応力は高いが、安定化機材であ
るCu (純網)およびAI (純アルミニウム)の降
伏応力は低い。
[Problem to be solved by the invention] In the above-mentioned conventional technology, the yield stress of Nb-Ti wire, which is generally used as a superconducting material, is high, but the yield stress of Cu (pure mesh) and AI (pure aluminum), which are stabilizing materials, is high. is low.

さらに、上記従来技術における超電導体製造方法におい
ては、線引成形後に、約300〜350℃でエナメル被
覆などの表面を絶縁処理を行なうので、Cuなどの降伏
応力は低下する。このため、超電導体としては、繰返し
負荷状態においてヒステリシスを描く。
Furthermore, in the above-mentioned prior art superconductor manufacturing method, the surface is subjected to insulation treatment such as enamel coating at about 300 to 350° C. after wire drawing, so the yield stress of Cu and the like is reduced. Therefore, the superconductor exhibits hysteresis under repeated load conditions.

第3図を用いて、このヒステリシスについて説明する。This hysteresis will be explained using FIG. 3.

第3図は、繰返し負荷下における超電導体内部の応力・
ひずみ状態を示すグラフである。
Figure 3 shows the stress and stress inside the superconductor under repeated loads.
It is a graph showing a strain state.

縦軸は応力、横軸はひずみをしめす。The vertical axis shows stress and the horizontal axis shows strain.

同図に示すように、Nb−Ti線と銅との複合体である
超電導体は、破線で示すように、低い応力の繰返し負荷
においてもヒステリシスを描く特性を持つ。
As shown in the figure, the superconductor, which is a composite of Nb-Ti wire and copper, has the characteristic of exhibiting hysteresis even under repeated loads of low stress, as shown by the broken line.

従来技術においては、このヒステリシスの面積で示され
る部分のエネルギーが熱に変換され、高価な冷却剤であ
るHe消費量を増加させることになり、さらには、超電
導状態から常電導状態に移行するクエンチが起こるとい
う問題がある。
In the conventional technology, the energy indicated by the area of this hysteresis is converted into heat, which increases the consumption of He, which is an expensive coolant, and furthermore, the quenching state that transitions from the superconducting state to the normal conducting state increases. There is a problem that occurs.

次に、上記従来技術の超電導体を用いて製造した超電導
コイルについて説明する。
Next, a superconducting coil manufactured using the above-mentioned conventional superconductor will be explained.

この超電導コイルを構成する材料の熱収縮量を第5図に
示す。
FIG. 5 shows the amount of thermal contraction of the material constituting this superconducting coil.

同図の縦軸は熱収縮量を百分率で示し、横軸は温度を示
す。
In the figure, the vertical axis indicates the amount of thermal contraction in percentage, and the horizontal axis indicates temperature.

また、第6図はコイルのエポキシ部に発生する拘束ひず
みを示すグラフである。
Further, FIG. 6 is a graph showing the restraint strain generated in the epoxy portion of the coil.

同図の縦軸はエポキシ部拘束ひずみを百分率で示し、横
軸は温度を示す。
In the figure, the vertical axis shows the epoxy part restraint strain in percentage, and the horizontal axis shows the temperature.

第5図に示すように、エポキシの熱収縮量は、他の構成
材に化してきわめて大きい。したがって、第6図の破線
に示すように、従来技術では、エポキシモールドし、超
電導コイルとして機能する液体He温度4.2Kまでに
冷却する間で、エポキシには、約1.25%の引張ひず
みが負荷されることになる。その他に励磁した時の電磁
力、走行時の振動等を考えると約1.35%の引張ひず
みが繰返し負荷されると考えられる。
As shown in FIG. 5, the amount of thermal shrinkage of epoxy is extremely large compared to other constituent materials. Therefore, as shown by the broken line in FIG. 6, in the prior art, the epoxy has a tensile strain of about 1.25% during epoxy molding and cooling to a liquid He temperature of 4.2 K, which functions as a superconducting coil. will be loaded. Considering other factors such as electromagnetic force during excitation and vibration during running, it is thought that a tensile strain of approximately 1.35% will be repeatedly applied.

一方、エポキシの4.2にでの引張強度σBが約130
MPa、縦弾性係数Eが約6 GPaであるので、脆性
破壊すると、そのひずみσII/Eは約2.2%となり
、従って、2〜2.5%が許容ひずみと考えられる。こ
のため、現状のコイルでは、エポキシ割れの観点から見
ると、安全率はあまり高くないという問題がある。
On the other hand, the tensile strength σB of epoxy at 4.2 is approximately 130
Since the MPa and longitudinal elastic modulus E are approximately 6 GPa, the strain σII/E will be approximately 2.2% when brittle fracture occurs, and therefore, 2 to 2.5% is considered to be the allowable strain. Therefore, the current coil has a problem in that the safety factor is not very high from the viewpoint of epoxy cracking.

次に、第7図には、超電導コイル構成材料の熱伝導率の
温度依存性を示す。
Next, FIG. 7 shows the temperature dependence of the thermal conductivity of the superconducting coil constituent material.

同図の縦軸は熱伝導率を示し、横軸は温度を示す。The vertical axis in the figure shows thermal conductivity, and the horizontal axis shows temperature.

超電導体の熱伝導率に比べ、エポキシの熱伝導率は約1
/1000と小さく、エポキシ割れや他の要因で熱が発
生した場合には、熱の拡散をさまたげる原因になるとい
う問題がある。
Compared to the thermal conductivity of superconductors, the thermal conductivity of epoxy is approximately 1
/1000, which poses a problem that if heat is generated due to epoxy cracking or other factors, it will hinder the diffusion of heat.

本発明の目的は、Cu等の安定化機材の降伏応力を上げ
、繰返し負荷における超電導体のヒステリシスを小さく
して、発熱要因を小さくしクエンチを防止する方法、お
よび、超電導体のコーナ部の極率半径(R)を小さくし
て、多層巻きにしてコイルを製造する時に、超電導体ど
うしの密着度を上げ、横方向の熱の流れが良好である超
電導コイルならびにその製造方法を提供することにある
The purpose of the present invention is to provide a method for increasing the yield stress of a stabilizing material such as Cu, reducing the hysteresis of a superconductor under repeated loads, reducing heat generation factors, and preventing quenching, and a method for preventing quenching of a superconductor at a corner. To provide a superconducting coil and a method for manufacturing the same, which increase the degree of adhesion between superconductors and improve the flow of heat in the lateral direction when manufacturing the coil by reducing the radius (R) and winding the coil in multiple layers. be.

[課題を解決するための手段] 上記目的は、表面を絶縁処理した多芯複合化超電導体の
長さ方向と垂直な断面における形状が略四角形になるよ
うに加工する工程を含んで構成される超電導体の製造方
法により達成できる。
[Means for Solving the Problem] The above object is constituted by a step of processing a multi-core composite superconductor whose surface is insulated so that its shape in a cross section perpendicular to the length direction is approximately square. This can be achieved by a method for manufacturing superconductors.

また、超電導体に張力を加えながら、型枠に多層巻きす
る超電導コイルの製造方法により達成できる。
Furthermore, this can be achieved by a method of manufacturing a superconducting coil in which the superconductor is wound in multiple layers around a mold while applying tension to the superconductor.

[作 用] 表面を絶縁処理した超電導体は、その安定化機材の降伏
強度が低下しているので、絶縁処理後に、減面圧延加工
することにより、加工硬化し降伏応力が高くなる。その
結果、超電導体としての降伏応力も高くなり、塑性変形
による発熱を防止し。
[Function] In a superconductor whose surface has been insulated, the yield strength of its stabilizing material is reduced, so by subjecting it to area reduction rolling after the insulating treatment, the superconductor is work hardened and its yield stress increases. As a result, the yield stress of the superconductor increases, preventing heat generation due to plastic deformation.

クエンチ防止となる。Prevents quenching.

また、超電導体の長さ方向の断面形状を略四角形にする
ことによって、隅部の大きい空間が発生することを防止
しできる。このため、超電導コイルを製造するために、
多層巻きとした場合において、熱伝導率の良くない接着
剤の量を減らすことができ、また、超電導体どうしの密
着度が良くなり冷却効果が改善される。その結果、クエ
ンチ防止となる。
Further, by making the longitudinal cross-sectional shape of the superconductor substantially square, it is possible to prevent the formation of large spaces at corners. Therefore, in order to manufacture superconducting coils,
In the case of multilayer winding, the amount of adhesive having poor thermal conductivity can be reduced, and the degree of adhesion between superconductors is improved, improving the cooling effect. As a result, quenching is prevented.

[実施例] 次に1本発明の実施例を図を用いて説明する。[Example] Next, an embodiment of the present invention will be described using the drawings.

本発明の第1実施例を、第1図および第2図を用いて説
明する。
A first embodiment of the present invention will be described using FIGS. 1 and 2.

第1図は、本実施例に係る超電導体の製造方法の一部を
説明するための説明図である。
FIG. 1 is an explanatory diagram for explaining part of the method for manufacturing a superconductor according to this example.

また、第2図は、本実施例に係る方法で製造した超電導
体の長さ方向の拡大断面図である。
Moreover, FIG. 2 is an enlarged cross-sectional view in the longitudinal direction of the superconductor manufactured by the method according to this example.

本実施例に係る超電導体の製造方法は、第8図に示した
従来方法の製造方法に、第1図に示すような、加工ロー
ル5a、5b、6a、6bによる圧延成形工程を追加し
たものである。
The method for manufacturing a superconductor according to this embodiment is such that a rolling forming step using processing rolls 5a, 5b, 6a, and 6b as shown in FIG. 1 is added to the conventional manufacturing method shown in FIG. It is.

すなわち、上下方向の端部の平坦な加工ロール5a、5
bと、これと90°ずつずらせて配置した端部の平坦な
左右方向加工ロール6a、6bとを、被加工材となる表
面絶縁処理が終了した超電導体の加工面が、同一平面上
になるように配置する。
That is, the processing rolls 5a, 5 having flat ends in the vertical direction
b, and horizontal processing rolls 6a and 6b with flat ends arranged 90 degrees apart from this, so that the processing surfaces of the superconductor that has undergone surface insulation treatment and become the workpiece are on the same plane. Place it like this.

これら4つの加工ロール5aなどの間隔を調整し、表面
絶縁処理が終了した超電導体の上下・左右方向を一所定
の加工度に、同時に成形加工する。
The intervals between these four processing rolls 5a are adjusted, and the superconductor whose surface insulation treatment has been completed is simultaneously formed to a predetermined degree of processing in the vertical and horizontal directions.

なお、加工ロールは無能動で超電導体1の移動により摩
擦で回転する方式で行っておりエナメル層をキズつける
ことがない。加工度15%まで圧延したものでもエナメ
ル4の絶縁ハクリはなかった。
Note that the processing roll is non-active and rotates by friction due to the movement of the superconductor 1, so that the enamel layer is not damaged. Even when rolled to a working degree of 15%, there was no insulation peeling of Enamel 4.

第2図は、第9図に示した従来方法で製造した超電導体
を本実施例に係る方法によって、10%圧延成形加工し
たときの長さ方向の拡大断面図を示す。
FIG. 2 shows an enlarged cross-sectional view in the longitudinal direction when the superconductor manufactured by the conventional method shown in FIG. 9 was rolled and formed by 10% by the method according to this embodiment.

同図において、白抜きの部分がNb−Ti線、白く見え
る所がCuである。なお、外表面にはエナメル絶縁被覆
4が施しである。
In the figure, the white part is the Nb-Ti wire, and the white part is the Cu wire. Note that an enamel insulation coating 4 is applied to the outer surface.

同図に示すように2本実施例に係る超電導体は、その長
さ方向に垂直な断面における形状の直線部分の長さは、
第9図に示す従来技術に係る超電導体の同じ部分の長さ
に比べ、上下・左右面とも改善されている。
As shown in the figure, in the superconductor according to the second embodiment, the length of the straight part of the shape in the cross section perpendicular to the length direction is:
Compared to the length of the same portion of the superconductor according to the prior art shown in FIG. 9, the length is improved in both the upper and lower and left and right sides.

この直線部分の割合は高いほどよい。本実施例では、約
90%である。
The higher the ratio of this straight line portion, the better. In this example, it is approximately 90%.

この結果、上記断面コーナ部の曲率半径は、従来技術で
は約0.4 mnあるが、これを約0.18mnとする
ことができ、後述する超電導コイルを製造するために、
多層巻きとしたときの超電導体どうしの密着度が良くな
り、冷却効果の改善が図れ、クエンチを防止する効果も
ある。
As a result, the radius of curvature of the cross-sectional corner portion, which is approximately 0.4 mm in the conventional technology, can be reduced to approximately 0.18 mm, and in order to manufacture the superconducting coil described later,
When wound in multiple layers, the degree of adhesion between superconductors is improved, the cooling effect can be improved, and quenching can be prevented.

次に、第10図を用いて、本実施例に係る超電導体の引
張試験結果を示す。
Next, using FIG. 10, the results of a tensile test of the superconductor according to this example will be shown.

この引張試験は周知の試験方法であり、同図の縦軸は応
力を示し、横軸はひずみを示す。
This tensile test is a well-known test method, and the vertical axis in the figure shows stress and the horizontal axis shows strain.

また、同図(a)は従来の超電導体、同図(b)は1o
%加工した本実施例に係る超電導体の応力−ひずみの関
係を0印で示す。
In addition, the figure (a) shows a conventional superconductor, and the figure (b) shows a 1o
The stress-strain relationship of the superconductor processed by % in this example is indicated by a 0 mark.

超電導体としての0.2%降降伏応力ケア、従来技術で
は290MPaであるのに対し、本実施例の技術でハ4
60MPaになり、約1.6倍となる。このことがら、
圧延加工による降伏応力の改善効果が大きいことがわか
る。
The 0.2% yield stress care for superconductors is 290 MPa with the conventional technology, but with the technology of this example, it is
It becomes 60 MPa, which is about 1.6 times. This thing,
It can be seen that the rolling process has a large effect of improving yield stress.

同図に示すように、Nb−Ti線は降伏応力が高い(1
400MPa)ので、超導電体の降伏応力が向上した原
因は、・印で示すCuの降伏応力が約100MPaから
250MPaに上昇したからであると考えられる。
As shown in the figure, the Nb-Ti wire has a high yield stress (1
400 MPa), it is thought that the reason for the improvement in the yield stress of the superconductor is that the yield stress of Cu, indicated by the * symbol, increased from about 100 MPa to 250 MPa.

なお、加工度5%、15%のものについて引張試験を行
った結果、0.2%降伏応力はそれぞれ420MPa、
490MPaになり、加工度が5%以上であれば約1.
5倍以上に降伏応力が上昇し、十分圧延加工の効果があ
ることがわかる。
In addition, as a result of a tensile test performed on 5% and 15% workpieces, the 0.2% yield stress was 420 MPa and 420 MPa, respectively.
490MPa, and if the working degree is 5% or more, it will be about 1.
It can be seen that the yield stress increases by more than 5 times, indicating that the rolling process is sufficiently effective.

次に、本発明の第2実施例について第11図を用いて説
明する。
Next, a second embodiment of the present invention will be described using FIG. 11.

第11図は、本実施例に係る超電導コイル製造方法を示
す工程図である。
FIG. 11 is a process diagram showing the superconducting coil manufacturing method according to this example.

本実施例に係る超電導コイル製造方法は、まず、従来方
法により製造された超電導体1を、加工ロール5,6を
用いて圧延加工した後、超電導体1の降伏応力σアより
若干高い約300MPaの張力をかけながら、レースト
ラック状の型枠7に、各層間の絶縁材としてガラスクロ
ス2(第4図参照)を介して、多層に巻き付ける。ここ
で、各層間にガラスクロス2を介するのは、超電導体1
を引っ張りながら巻くので、型枠7のコーナ部等で超電
導体1表面に処理したエナメル層4にキズが生じるのを
防止するためである。
In the superconducting coil manufacturing method according to this embodiment, first, the superconductor 1 manufactured by the conventional method is rolled using processing rolls 5 and 6, and then the yield stress σa of the superconductor 1 is approximately 300 MPa, which is slightly higher than the yield stress σa of the superconductor 1. While applying a tension of , it is wound in multiple layers around a racetrack-shaped formwork 7 with glass cloth 2 (see FIG. 4) interposed as an insulating material between each layer. Here, the glass cloth 2 is interposed between each layer of the superconductor 1.
This is to prevent scratches from occurring on the enamel layer 4 treated on the surface of the superconductor 1 at the corners of the formwork 7, etc., as the superconductor 1 is wound while being pulled.

所定の巻数(寸法)になったら型枠7に固定した状態で
、有機系接着剤、例えばエポキシ4槽に入れ、コイル全
体にエポキシ3含浸させる。
When a predetermined number of turns (dimensions) is reached, the coil is fixed to the formwork 7 and placed in 4 baths of an organic adhesive such as epoxy, and the entire coil is impregnated with epoxy 3.

次に、所定の時間が経過したら室温にもどし、型枠7を
外し、これにより、超電導コイル8が完成される。
Next, after a predetermined period of time has elapsed, the temperature is returned to room temperature and the formwork 7 is removed, thereby completing the superconducting coil 8.

本実施例で示すように、型枠に超電導体を巻くときに、
超電導体に300MPaの張力を作用させて巻き、エポ
キシモールド後に室温に冷却して型枠を外すと、上記し
た第6図に示すように、エポキシ3には約0.4%の圧
縮ひずみが与えられる。
As shown in this example, when winding the superconductor around the formwork,
When the superconductor is wound under a tension of 300 MPa, cooled to room temperature after epoxy molding, and the mold is removed, the epoxy 3 is subjected to a compressive strain of approximately 0.4%, as shown in Figure 6 above. It will be done.

また、エポキシ3と超電導体との熱収縮量の差が約0.
4%あるので、エポキシモールド温度から室温まで冷却
した時、熱収縮量差で発生した熱ひずみを打消すことに
なる。その後、液体He温度4.2Kまで冷却すること
によって、エポキシ3には、約0.85%の引張ひずみ
が負荷されることになる。
Also, the difference in thermal shrinkage between epoxy 3 and superconductor is about 0.
Since the amount is 4%, it cancels out the thermal distortion caused by the difference in the amount of thermal shrinkage when the epoxy mold is cooled from the temperature to room temperature. Thereafter, by cooling the liquid He to a temperature of 4.2 K, a tensile strain of about 0.85% is applied to the epoxy 3.

従来技術の超電導製造方法では、エポキシのひずみ量は
約1.25%であるので1本実施例に係る方法では、約
0.4%の引張ひずみ量が軽減できる。
In the conventional superconductor manufacturing method, the amount of strain in epoxy is about 1.25%, so in the method according to this embodiment, the amount of tensile strain can be reduced by about 0.4%.

エポキシ3の許容ひずみ量2%と、励磁による電磁力及
び運転時の振動応力とを考慮しても、本実施例に係る超
電導製造方法によれば約2倍の安全率が確保できる効果
がある。
Even when considering the allowable strain of epoxy 3 of 2%, the electromagnetic force due to excitation, and the vibration stress during operation, the superconductor manufacturing method according to this example has the effect of securing a safety factor of about twice. .

なお、エポキシ3に圧縮残留応力のみを発生させるので
あれば圧延成形加工工程は必要ない。
Note that if only compressive residual stress is to be generated in the epoxy 3, the rolling process is not necessary.

次に、第12図を用いて、本実施例に係る超電導コイル
に繰返し負荷したときの塑性ひずみ挙動を示す。
Next, using FIG. 12, the plastic strain behavior when the superconducting coil according to this example is repeatedly loaded is shown.

この図において、超電導体の圧延加工は10%である。In this figure, the rolling process of the superconductor is 10%.

また、同図において、縦軸は負荷応力σを示し、横軸は
塑性ひずみε、を示す。
Further, in the same figure, the vertical axis shows the applied stress σ, and the horizontal axis shows the plastic strain ε.

O印で示す圧延加工のまま、および、Δ印で示す圧延加
工後エポキシ含浸処理を考慮したものの塑性ひずみは、
・印及びム印で示す2回目の繰返しでの塑性ひずみε、
に比べ、非常に大きな値となっており、従来方法で製造
した超電導体コイルの挙動と大差ないことがわかる。
The plastic strain of the as-rolled material, marked O, and after the epoxy impregnation treatment after rolling, marked Δ, are as follows:
・Plastic strain ε at the second repetition indicated by marks and mu marks,
It is a very large value compared to , and it can be seen that the behavior is not much different from the behavior of superconducting coils manufactured by conventional methods.

しかし、10%圧延加工後、300Paで張力を加え、
エポキシ3含浸処理を考慮する本実施例の超電導体1で
は、1回目■と2回目1印では塑性ひずみは大差なく、
塑性ひずみε、の減少に効果があることがわかる。
However, after 10% rolling, tension was applied at 300 Pa,
In the superconductor 1 of this example considering the epoxy 3 impregnation treatment, there is no big difference in plastic strain between the first time ■ and the second time marked 1.
It can be seen that this is effective in reducing the plastic strain ε.

したがって、従来のコイル製造方法に圧延加工及び30
0MPaで強巻きすることによって、繰返し負荷により
超電導体自身が発熱する熱量を抑制する効果が大きく、
クエンチを防止する効果がある。
Therefore, conventional coil manufacturing methods include rolling and 30%
Strong winding at 0 MPa has a great effect of suppressing the amount of heat generated by the superconductor itself due to repeated loads.
It has the effect of preventing quenching.

なお、無加工材を降伏応力以上で引張ることは、圧延加
工硬化させるのと同じ効果が得られると思ったが、第1
3図に示すように、引張後、エポキシ含浸処理と同様な
熱処理を施すことで軟化するためか、無加工材とほぼ同
じ挙動を示し効果がないことがわかった。
I thought that stretching the unprocessed material above the yield stress would have the same effect as hardening it by rolling, but the first
As shown in Figure 3, it was found that the material behaved almost the same as the unprocessed material and had no effect, probably because it was softened by heat treatment similar to epoxy impregnation treatment after tensioning.

次に、超電導体の断面形状を略四角形にした効果につい
て説明する。
Next, the effect of making the cross-sectional shape of the superconductor substantially square will be explained.

上記したように、第2図は、圧延加工した後の超電導体
1の断面を示す。
As mentioned above, FIG. 2 shows a cross section of the superconductor 1 after being rolled.

前述したように第8図の従来法での断面に比べ、コーナ
部曲率半径が、0.4 xmあったものが0.18mn
になっていること、および、上下・左右両面の平坦度も
改善されているので、第4図に示すように多層巻きにし
た時に、超電導体1どうしのすき間に充填されるエポキ
シ3量が減少し、エポキシ割れに伴う発熱量が減少し、
クエンチを防止する効果がある。
As mentioned above, compared to the cross section of the conventional method shown in Figure 8, the radius of curvature of the corner part was 0.4 x m, but now it is 0.18 mm.
, and the flatness of both the top and bottom and left and right surfaces has been improved, so when winding in multiple layers as shown in Figure 4, the amount of epoxy 3 that is filled into the gaps between the superconductors 1 is reduced. The amount of heat generated due to epoxy cracking is reduced,
It has the effect of preventing quenching.

また、300MPaで強巻きすることで、超電導体1の
各層間に配置したガラスクロス3が、より密着して固定
されるので、超電導コイル8とした時の形状が安定する
Further, by winding strongly at 300 MPa, the glass cloth 3 placed between each layer of the superconductor 1 is fixed more closely, so that the shape of the superconducting coil 8 is stabilized.

さらに、超電導コイル8内で何らかの要因で発熱しても
、熱伝導率の大きな超電導体1(第7図参照)を伝わっ
て液体Heで冷却され、発熱を抑制する効果も大きくな
る。
Furthermore, even if heat is generated within the superconducting coil 8 for some reason, it is cooled by liquid He through the superconductor 1 (see FIG. 7), which has a high thermal conductivity, and the effect of suppressing heat generation is increased.

上記超電導コイルを磁気浮上手段に用いれば。If the above superconducting coil is used as a magnetic levitation means.

クエンチを防止でき、効率のよい磁気浮上装置が得られ
る。
Quenching can be prevented and an efficient magnetic levitation device can be obtained.

なお、従来方法で製造された超電導体を多層巻きして超
電導コイルを製作したあと、圧延加工すれば、同様な効
果が得られる。
Note that the same effect can be obtained by manufacturing a superconducting coil by winding a superconductor manufactured by a conventional method in multiple layers and then rolling it.

第9図の超電導体製造方法においては、ACロスを減少
させるためツイストし、その後、成形加工を行い形状を
整えている。しかし、その後、圧延加工を行うとツイス
トが戻り、超電導体1にねじれを発生することが懸念さ
れる。そのためにも超電導コイル8を裏作する場合には
、第11図に示すように超電導体1に張力を加えながら
強巻きする一連の工程の中に圧延加工を行なうことで超
電導体のツイストの戻り現象を防止できる。
In the superconductor manufacturing method shown in FIG. 9, the material is twisted to reduce AC loss, and then shaped into a shape. However, if the rolling process is performed thereafter, the twist will return and there is a concern that the superconductor 1 will be twisted. For this purpose, when fabricating the superconducting coil 8, as shown in FIG. 11, rolling is performed during the series of steps of tightly winding the superconductor 1 while applying tension, so that the untwisted superconductor 1 can be untwisted. can be prevented.

[発明の効果] 本発明によれば、超電導体製造の最終工程として、超電
導体に塑性加工を加えるので、降伏強度が上昇し、クエ
ンチを防止できる効果がある。また、超電導体の長さ方
向の断面を略四角形にするので、この断面の上下・左右
両面の平坦度が改善され、かつ、コーナ部の曲率半径が
小さくなるので、多層巻きにして、超電導コイルとした
ときに、超電導体どうしの密着度が改善され熱の流れが
良くなり冷却効果が上がる。その結果、クエンチを防止
できる。
[Effects of the Invention] According to the present invention, since plastic working is applied to the superconductor as the final step of manufacturing the superconductor, the yield strength increases and quenching can be prevented. In addition, since the cross section of the superconductor in the longitudinal direction is approximately rectangular, the flatness of this cross section on both the top and bottom, left and right sides is improved, and the radius of curvature of the corner portion is reduced, so it is possible to wind the superconducting coil in multiple layers. When this happens, the degree of adhesion between superconductors is improved, heat flow improves, and the cooling effect increases. As a result, quenching can be prevented.

また、型枠に張力を加えた状態で、超電導体を多層巻き
エポキシ含浸し、室温で型枠を外す方法によって超電導
コイルを製作すると、エポキシに圧縮残留応力を発生さ
せることができ、液体He温度まで冷却した時にエポキ
シに発生する引張ひずみの発生を抑制することができる
。また、多層巻きする場合において、超電導体を圧延加
工し、その後、張力を加えて強巻きすることで、繰返し
負荷により塑性ひずみが減少でき、超電導体自身が発熱
する熱量を抑制する効果がある。さらに、張力を加えな
がら強巻きする一連の工程の中に圧延加工工程を持って
くることで超電導体のツイストの戻り現象を防止する効
果もある。
In addition, if a superconducting coil is manufactured by wrapping a superconductor in multiple layers and impregnating it with epoxy while applying tension to the formwork, and then removing the formwork at room temperature, compressive residual stress can be generated in the epoxy, and the temperature of the liquid He It is possible to suppress the tensile strain that occurs in epoxy when it is cooled to a certain temperature. In addition, in the case of multilayer winding, by rolling the superconductor and then applying tension and winding it tightly, plastic strain due to repeated loading can be reduced, which has the effect of suppressing the amount of heat generated by the superconductor itself. Furthermore, by including the rolling process in a series of steps of strong winding while applying tension, there is an effect of preventing the untwisting phenomenon of the superconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例に係る超電導体の製造方法の一部を
説明するための説明図、第2図は第1実施例に係る方法
で製造した超電導体の長さ方向の拡大断面図、第3図は
繰返し負荷における導体内部の応力・ひずみ状態を説明
するグラフ、第4図は従来法で製造した超電導体を多層
巻きとした超電導コイルの拡大断面図、第6図は超電導
コイル内のエポキシに発生する拘束ひずみ挙動を示すグ
ラフ、第5図、第7図は超電導コイル構成材料の熱収縮
量及び熱伝導率の温度特性を示すグラフ、第8図は従来
の超電導体製造方法を説明する説明図、第9図は従来法
で製造した超電導体の拡大断面図、第1o図は超電導体
の引張経験における応力−ひすみ線図、第11図は第2
実施例に係る超電導コイル製造方法を示す工程図、第1
2図は超電導コイルに繰返し負荷したときの塑性ひずみ
挙動を示すグラフ、第13図は従来途方法で製造された
超電導体で製作された超電導コイルに繰返し負荷した時
の塑性ひずみ挙動を示すグラフである。 1・・・超電導体、5 a 、 5 b 、 6 a 
、 6 b −圧延加工ロール、2・・・ガラスクロス
、3・・・エポキシ、4・・・エナメル被覆層、7・・
・型枠、8・・・超電導コイル。
FIG. 1 is an explanatory diagram for explaining part of the method for manufacturing a superconductor according to the first embodiment, and FIG. 2 is an enlarged cross-sectional view in the longitudinal direction of the superconductor manufactured by the method according to the first embodiment. , Figure 3 is a graph explaining the stress/strain state inside the conductor under repeated loads, Figure 4 is an enlarged cross-sectional view of a superconducting coil made by multilayer winding of superconductors manufactured by the conventional method, and Figure 6 is the inside of the superconducting coil. Figures 5 and 7 are graphs showing the thermal contraction amount and thermal conductivity temperature characteristics of the superconducting coil constituent materials. Figure 8 is a graph showing the behavior of constraint strain occurring in the epoxy. Figure 9 is an enlarged cross-sectional view of a superconductor manufactured by a conventional method, Figure 1o is a stress-strain diagram of a superconductor obtained by tensile experience, and Figure 11 is a diagram of a superconductor produced by a conventional method.
Process diagram showing the superconducting coil manufacturing method according to the example, 1st
Figure 2 is a graph showing the plastic strain behavior when a superconducting coil is repeatedly loaded, and Figure 13 is a graph showing the plastic strain behavior when a superconducting coil made using a superconductor produced using a conventional method is repeatedly loaded. be. 1... superconductor, 5 a, 5 b, 6 a
, 6 b - rolling roll, 2... glass cloth, 3... epoxy, 4... enamel coating layer, 7...
・Formwork, 8...Superconducting coil.

Claims (10)

【特許請求の範囲】[Claims] 1.長さ方向と垂直な断面における形状が、略四角形で
あることを特徴とする多芯複合化超電導体。
1. A multicore composite superconductor characterized by having a substantially rectangular shape in a cross section perpendicular to the length direction.
2.ほぼ平行な2組の辺を持ち、それらの直線部分の長
さの合計は、断面周囲の長さの合計の90%以上である
ことを特徴とする多芯複合化超電導体。
2. A multi-core composite superconductor characterized in that it has two sets of substantially parallel sides, and the total length of the straight portions is 90% or more of the total length of the cross-sectional periphery.
3.多芯複合化超電導体を、長さ方向と垂直な断面にお
ける形状が略四角形になるように加工することを特徴と
する多芯複合化超電導体の強化方法。
3. 1. A method for strengthening a multi-core composite superconductor, which comprises processing the multi-core composite superconductor so that the cross-section perpendicular to the length direction has a substantially rectangular shape.
4.同一平面上において、加工面が互いに平行な2組の
ロールを用いて、多芯複合化超電導体を加工することを
特徴とする多芯複合化超電導体の強化方法。
4. A method for strengthening a multi-core composite superconductor, comprising processing the multi-core composite superconductor using two sets of rolls whose processing surfaces are parallel to each other on the same plane.
5.多芯複合化超電導体を製造する方法において、表面
を絶縁処理した上記多芯複合化超電導体の長さ方向と垂
直な断面における形状が略四角形になるように加工する
工程を含んで構成されることを特徴とする超電導体の製
造方法。
5. A method for manufacturing a multi-core composite superconductor, comprising the step of processing the multi-core composite superconductor whose surface is insulated so that its shape in a cross section perpendicular to the length direction is approximately square. A method for producing a superconductor, characterized by:
6.上記多芯複合化超電導体の長さ方向と垂直な断面に
おける形状が略四角形になるように加工する工程は、同
一平面上において、加工面が互いに平行な2組のロール
を用いて、多芯複合化超電導体を加工する工程であるこ
とを特徴とする請求項5記載の超電導体の製造方法。
6. The process of processing the above-mentioned multicore composite superconductor so that the cross section perpendicular to the length direction has a substantially rectangular shape is performed using two sets of rolls whose processing surfaces are parallel to each other on the same plane. 6. The method for manufacturing a superconductor according to claim 5, wherein the step is processing a composite superconductor.
7.請求項1または2記載の多芯複合化超電導体を、多
層巻きして製造することを特徴とする超電導コイル。
7. A superconducting coil manufactured by winding the multicore composite superconductor according to claim 1 or 2 in multiple layers.
8.超電導体を型枠に多層巻きし、接着剤を含浸して製
造される超電導コイルの製造方法において、 超電導体に張力を加えながら、型枠に多層巻きすること
を特徴とする超電導コイルの製造方法。
8. A method for manufacturing a superconducting coil, which is manufactured by winding a superconductor in multiple layers around a formwork and impregnating it with an adhesive, the method comprising: winding the superconductor in multiple layers around the formwork while applying tension to the superconductor. .
9.多芯複合化超電導体を、型枠に多層巻きし、接着剤
を含浸して製造される超電導コイルの製造方法において
、 表面を絶縁処理した上記多芯複合化超電導体の長さ方向
と垂直な断面における形状が略四角形になるように加工
する工程と、 超電導体に張力を加えながら、型枠に多層巻きする工程
と、 を含んで構成されることを特徴とする超電導コイルの製
造方法。
9. In a method for manufacturing a superconducting coil in which a multi-core composite superconductor is wound in multiple layers around a formwork and impregnated with an adhesive, 1. A method for manufacturing a superconducting coil, comprising: processing the superconductor so that it has a substantially rectangular shape in cross section; and winding the superconductor in multiple layers around a formwork while applying tension to the superconductor.
10.請求項7記載の超電導コイルを、磁気浮上手段に
用いることを特徴とする磁気浮上装置。
10. A magnetic levitation device characterized in that the superconducting coil according to claim 7 is used as a magnetic levitation means.
JP2256405A 1990-09-26 1990-09-26 Superconductor manufacturing method and superconducting coil manufacturing method Expired - Fee Related JP3049080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256405A JP3049080B2 (en) 1990-09-26 1990-09-26 Superconductor manufacturing method and superconducting coil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256405A JP3049080B2 (en) 1990-09-26 1990-09-26 Superconductor manufacturing method and superconducting coil manufacturing method

Publications (2)

Publication Number Publication Date
JPH04137315A true JPH04137315A (en) 1992-05-12
JP3049080B2 JP3049080B2 (en) 2000-06-05

Family

ID=17292222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256405A Expired - Fee Related JP3049080B2 (en) 1990-09-26 1990-09-26 Superconductor manufacturing method and superconducting coil manufacturing method

Country Status (1)

Country Link
JP (1) JP3049080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313943B1 (en) 1998-05-28 2001-11-06 Kistem Co., Ltd. Underwater microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313943B1 (en) 1998-05-28 2001-11-06 Kistem Co., Ltd. Underwater microscope

Also Published As

Publication number Publication date
JP3049080B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH07105753A (en) Oxide superconducting wire and its manufacture, and oxide superconducting coil
JPH08335414A (en) Oxide superconducting wire and manufacture thereof
JP6182577B2 (en) Method for producing compound superconducting wire and method for producing compound superconducting cable
JPH04137315A (en) Superconductor and superconductive coil and their manufacture
CA2324294C (en) Superconducting tapes
JP4423581B2 (en) Superconducting cable
Sugimoto et al. Development of Cu-Nb Reinforced Nb3Sn Wires
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
Ohya Numerical analysis of delamination degradation of epoxy-impregnated superconducting coils wound with REBCO tapes caused by thermal stress
JPS6228526B2 (en)
Yoo et al. Fabrication of twisted multifilamentary BSCCO 2223 tapes by using high resistive sheath for AC application
WO2022075127A1 (en) Nbti superconducting multi-core wire
JPH0644834A (en) Ceramics superconductive conductor
JPH03163713A (en) Manufacture of superconductive molded stranded wire
JPH08167332A (en) Superconducting cable
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JPS5831686B2 (en) superconducting cable
Hikichi et al. Superconducting Properties of (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x Multifilament Wires and Fabrication of a Coil
JPS62287605A (en) Superconducting magnet
JPH02174017A (en) Critical current improving method for compound superconducting wire
JPH0350368B2 (en)
JPH09134619A (en) High proof stress nb-al superconducting wire and its manufacture
JP2002093248A (en) Oxide superconductive compound multicore wire and manufacturing method for it
JPS629606A (en) Superconductive coil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees