JPH0413720A - Polycarbonate - Google Patents

Polycarbonate

Info

Publication number
JPH0413720A
JPH0413720A JP2115086A JP11508690A JPH0413720A JP H0413720 A JPH0413720 A JP H0413720A JP 2115086 A JP2115086 A JP 2115086A JP 11508690 A JP11508690 A JP 11508690A JP H0413720 A JPH0413720 A JP H0413720A
Authority
JP
Japan
Prior art keywords
optical
polymer
light
loss
aimed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115086A
Other languages
Japanese (ja)
Inventor
Saburo Imamura
三郎 今村
Tatsuo Izawa
達夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2115086A priority Critical patent/JPH0413720A/en
Publication of JPH0413720A publication Critical patent/JPH0413720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the title polycarbonate composed of specific recurring units, having light-transmitting characteristics extremely excellent in visible light to near-infrared light area, remarkably reduced in increase in loss even when exposed under high-temperature and high humidity conditions and useful as a light signal transmitting medium. CONSTITUTION:The aimed carbonate consisting of recurring units expressed by the formula (X and Y are heavy hydrogen or halogen element). Furthermore, the aimed carbonate is preferably obtained by dissolving bisphenol in an organic solvent such as pyridine or an aqueous solution of dichloromethane-sodium hydroxide, introducing phosgene into the solution and carrying out condensation polymerization.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光集積回路用導波路およびプラスチック光フ
ァイバなどのような光学材料および電気絶縁材料等のよ
うに電子部品材料として使用する、ハロゲン元素および
重水素を含むポリカーボネートに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to halogen-based materials used as optical materials such as optical integrated circuit waveguides and plastic optical fibers, and electronic component materials such as electrical insulating materials. It concerns polycarbonates containing elements and deuterium.

CY。C.Y.

ただし、式中XおよびYは同一または異なり、重水素あ
るいはハロゲン元素である。
However, in the formula, X and Y are the same or different and are deuterium or a halogen element.

(以下余白) [従来の技術] 光学部品および光ファイバの基材としては、光伝送損失
が小さくかつ伝送帯域が広いことから、一般に石英ガラ
スおよび多成分ガラス等のような無機系のものが使用さ
れている。
(Left below) [Prior art] Inorganic materials such as quartz glass and multi-component glass are generally used as base materials for optical components and optical fibers because they have low optical transmission loss and a wide transmission band. has been done.

一方、プラスチックを基材とする光学材料も開発されて
いる。これらのプラスチック光学材料は、無機系の材料
に比べて加工性がよく、取り扱い易い等の特徴を持つこ
とから注目されている。
On the other hand, optical materials based on plastic have also been developed. These plastic optical materials are attracting attention because they have characteristics such as better processability and easier handling than inorganic materials.

例えば光ファイバにおいては、ポリメチルメタクリレー
ト(PMMA)あるいはポリスチレンのように透明性に
優れたプラスチックを芯(コア)とし、その芯成分より
も屈折率の低いプラスチックを鞘(クラッド)成分とし
た同心のコアークラッド構造からなるものが知られてい
る。
For example, in an optical fiber, the core is a highly transparent plastic such as polymethyl methacrylate (PMMA) or polystyrene, and the sheath (cladding) is a plastic with a lower refractive index than the core. Those consisting of a core-clad structure are known.

[発明が解決しようとする課題] しかしながら、これらのプラスチック光ファイバは、無
機系のファイバに比べて内部を伝達する光の減衰度合が
大きいという問題点がある。
[Problems to be Solved by the Invention] However, these plastic optical fibers have a problem in that the degree of attenuation of light transmitted inside is greater than that of inorganic fibers.

光の伝達は光回路あるいはファイバの一端に入射した光
を長さ方向に沿って内部で全反射させることにより行な
うが、プラスチックの内部を光が伝達するときに、光が
吸収あるいは散乱されることによって光の減衰を強める
ような要因を最小にすることが重要である。
Light is transmitted by total internal reflection of the light incident on one end of an optical circuit or fiber along its length, but when light is transmitted inside plastic, it is absorbed or scattered. It is important to minimize factors that may increase the attenuation of light.

光回路部品においては現状の光フアイバ通信に用いられ
ている、波長が650〜1600nmの光を用いている
ので、光ファイバの材料としてプラスチックを用いる場
合、上述の波長領域における低損失化はより切実である
Optical circuit components use light with a wavelength of 650 to 1600 nm, which is used in current optical fiber communications, so when plastic is used as the material for optical fibers, it is even more urgent to reduce loss in the above wavelength range. It is.

プラスチックの光伝送損失の最も大きな要因は、プラス
チックを構成する分子における炭素−水素間の赤外振動
吸収の高調波である。この炭素−水素結合に起因する高
調波を小さくし、また長波長シフトさせるために、プラ
スチック分子中の水素原子を弗素等のハロゲン原子ある
いは重水素原子で置換することが提案されている。
The biggest factor in optical transmission loss in plastics is harmonics of infrared vibration absorption between carbon and hydrogen in the molecules that make up the plastic. In order to reduce the harmonics caused by this carbon-hydrogen bond and shift the wavelength to longer wavelengths, it has been proposed to replace hydrogen atoms in plastic molecules with halogen atoms such as fluorine or deuterium atoms.

例えば、水素を弗素で置換したプラスチックとしては、
エステル側鎖の水素の一部を弗素置換したポリメタクリ
レート −CH,−C(CH,)− COO(CHI)、(CF2)。cFsがPMMAより
低損失となることが示された(例えば「戒能俊邦、高分
子論文集、42巻、 1985年257−264頁、高
分子学会」参照)。
For example, as a plastic in which hydrogen is replaced with fluorine,
Polymethacrylate -CH, -C(CH,)-COO(CHI), (CF2) in which some of the hydrogens in the ester side chains are substituted with fluorine. It has been shown that cFs has a lower loss than PMMA (for example, see "Toshikuni Kaino, Kobunshi Saishuu, Vol. 42, pp. 257-264, 1985, Society of Polymer Science and Technology").

しかしながら、エステル側鎖あるいは主鎖の、メチル基
に炭素−水素結合が残っているために低損失化は充分で
はない、エステル側鎖の水素をすべて重水素置換あるい
は弗素置換することは低損失化に有用と考えられる。し
かしながら、重水素置換は水素交換反応が起こりやすく
、弗素置換は原料アルコールの安定性が悪い等の合成上
の問題があり、上述のような完全な置換体のモノマを得
ることは非常に困難であった。
However, because carbon-hydrogen bonds remain in the methyl group of the ester side chain or main chain, it is not sufficient to reduce the loss.Replacing all hydrogens in the ester side chain with deuterium or fluorine does not reduce the loss. It is considered useful for However, deuterium substitution tends to cause hydrogen exchange reactions, and fluorine substitution has synthetic problems such as poor stability of the raw alcohol, making it extremely difficult to obtain completely substituted monomers as described above. there were.

また、コア材料として用いられる重水素化ポリメチルメ
タクリレート −CDx −C(CDs) − COOCD。
Deuterated polymethyl methacrylate-CDx-C(CDs)-COOCD is also used as a core material.

はポリメチルメタクリレートに比べると低損失化が図れ
るが、小さいながらもC−D結合に起因する高調波吸収
があり、光集積回路のように1300〜1600nm付
近の光を用いる場合、光損失を無視することはできない
、さらにポリスチレン等に比べ吸湿性が高く、2%程度
の飽和吸湿率を持つ。
Although it can achieve lower loss than polymethyl methacrylate, it has harmonic absorption due to CD bond, although it is small, and when using light around 1300 to 1600 nm as in optical integrated circuits, optical loss can be ignored. Furthermore, it has higher hygroscopicity than polystyrene, etc., and has a saturated moisture absorption rate of about 2%.

従って、湿度が高い環境では、水分子のOHの振動吸収
が光損失に影響を与える。OH振動吸収の高調波によっ
て、特に近赤外域の光伝送損失は低下する(例えば「戒
能俊邦、高分子学会予稿集32巻、4号、 1983年
2525頁」参照)、すなわち使用環境条件の湿度変化
により光伝送損失が変動するという問題点があった。
Therefore, in a humid environment, vibrational absorption of OH in water molecules affects optical loss. The optical transmission loss, especially in the near-infrared region, decreases due to the harmonics of OH vibration absorption (see, for example, "Toshikuni Kaino, Proceedings of the Society of Polymer Science and Technology, Vol. 32, No. 4, 1983, p. 2525"), that is, the humidity of the usage environment conditions. There was a problem in that optical transmission loss fluctuated due to changes.

また、有機系ポリマ、特にポリメチルメタクリレート系
ポリマのガラス転移温度は一般に100℃前後である。
Further, the glass transition temperature of organic polymers, particularly polymethyl methacrylate polymers, is generally around 100°C.

そのため耐熱温度の上限は70℃程度であり、実用的な
ものとしては使用することができなかった。そこで、こ
れらのような耐熱性に関する問題点を解決するものとし
て、ポリカーボネートを用いた光導波路および光ファイ
バが提案されている(例えば、「日中ら、富士通、39
巻。
Therefore, the upper limit of the heat resistance temperature is about 70°C, and it could not be used for practical purposes. In order to solve these heat resistance problems, optical waveguides and optical fibers using polycarbonate have been proposed (for example, ``Nichi et al., Fujitsu, 39
roll.

1号、65頁」参照)。これらは優れた耐熱性と安定し
た伝送特性を示すが、側鎖にC−H結合が存在するため
光伝送損失が高いという問題点がある。
No. 1, page 65). Although these exhibit excellent heat resistance and stable transmission characteristics, they have the problem of high optical transmission loss due to the presence of C--H bonds in their side chains.

本発明はこのような現状に鑑みてなされたものであり、
その目的は可視光〜近赤外光域において低損失であり、
しかも耐熱性に優れ、かつ吸湿に伴うOH振動吸収の影
響の少ないプラスチック光学材料、撥水材等の表面処理
剤および酸素富化膜等の機能膜として使用可能なポリカ
ーボネートを提供することにある。
The present invention was made in view of the current situation, and
The purpose is to achieve low loss in the visible light to near-infrared light range.
Moreover, it is an object of the present invention to provide a polycarbonate which has excellent heat resistance and can be used as a surface treatment agent such as a plastic optical material, a water repellent material, etc., and a functional film such as an oxygen enrichment film, which is less affected by OH vibration absorption due to moisture absorption.

[課題を解決するための手段] このような目的を達成するために、本発明は、下記−数
式(1)で表わされる繰り返し単位からなることを特徴
とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention is characterized by comprising a repeating unit represented by the following formula (1).

ただし、式中XおよびYは同一または異なり、重水素あ
るいはへロゲン元素である。
However, in the formula, X and Y are the same or different and are deuterium or a heliogen element.

[作 用] 本発明においては、ポリカーボネートの水素をハロゲン
化あるいは重水素化することによりC−H結合に起因す
る高調波吸収を小さく、かつ長波長シフトさせることに
より低損失の光学材料を得ることができる。さらに側鎖
のハロゲン化によりポリマの吸湿性は大幅に低下し、吸
湿に基づ(0−H振動吸収強度は極めて小さ(なる。P
MMA系のポリマが吸湿性が大きいために吸湿あるいは
脱湿によってOH基に基づ(吸収強度が大きく変動し、
安定した導光特性が得られなかったのに比べ、本発明は
極めて安定した光特性を維持し得るという特徴がある。
[Function] In the present invention, by halogenating or deuterating the hydrogen of polycarbonate, the harmonic absorption caused by the C-H bond is reduced and the wavelength is shifted to a longer wavelength, thereby obtaining a low-loss optical material. I can do it. Furthermore, due to the halogenation of the side chains, the hygroscopicity of the polymer decreases significantly, and the 0-H vibration absorption strength becomes extremely small (P
Because MMA-based polymers have high hygroscopicity, they absorb or dehumidify, resulting in OH groups (absorption strength fluctuates greatly,
Compared to the case where stable light guiding characteristics were not obtained, the present invention is characterized in that extremely stable optical characteristics can be maintained.

本発明におけるポリマの製造法は、一般のポリカーボネ
ート製造法と同様であり、ビスフェノールをピリジン等
の有機溶媒やジクロルメタン−水酸化ナトリウム水溶液
に溶解し、ホスゲンを導入し、縮重合を行なわせるもの
である。
The method for producing the polymer in the present invention is similar to the general method for producing polycarbonate, in which bisphenol is dissolved in an organic solvent such as pyridine or a dichloromethane-sodium hydroxide aqueous solution, phosgene is introduced, and condensation polymerization is performed. .

[実施例] 以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれら実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

虱ユjJUL九工 100m1の三ロフラスコにデュウテロジフェニロール
プロパンd−14を20gと140■1のピリジンを入
れた。溶解後かき混ぜつつ約1+g/mlの割合でホス
ゲンを溶液中に通した。温度を25−30℃に保った。
20g of deuterodiphenyolpropane d-14 and 140ml of pyridine were placed in a 100m1 three-bottle flask. After dissolution, phosgene was passed through the solution at a rate of about 1+g/ml with stirring. The temperature was kept at 25-30°C.

ピリジン塩駿塩が析出し、反応液が黄赤色になったとき
にホスゲンの添加をやめた。反応混合物を600m1の
水中に注ぎポリマを分離した。
When pyridine salt precipitated and the reaction solution turned yellow-red, the addition of phosgene was stopped. The reaction mixture was poured into 600 ml of water to separate the polymer.

ポリマは濾別後水洗い乾燥させた。得られたポリマの分
子量は54000であった。化学構造は表1に示す。
The polymer was filtered, washed with water and dried. The molecular weight of the obtained polymer was 54,000. The chemical structure is shown in Table 1.

基因ヱl亘土ユ 300m1のフラスコに20gのデュウテロジフェニロ
ールヘキサフルオロブロバンd−8,6gの水酸化ナト
リウム、1gのベンジルトリメチルアンモニウムの塩化
物、 100m1の蒸留水および50+olのジクロル
メタンをいれた。混合物を速くかきまぜ、水冷下20℃
に保ちながらホスゲンをIg/winの割合で通した。
In a 300 ml flask were placed 20 g of deuterodiphenylohexafluorobroban d-8, 6 g of sodium hydroxide, 1 g of benzyltrimethylammonium chloride, 100 ml of distilled water, and 50+ ol of dichloromethane. . Stir the mixture rapidly and cool with water at 20°C.
Phosgene was passed through at a ratio of Ig/win while maintaining the temperature.

反応終了後ジクロルメタンを留去し、粗製ポリマを水洗
し、乾燥させた。得られたポリマの分子量は75000
であった。化学構造は表1に示す。
After the reaction was completed, dichloromethane was distilled off, and the crude polymer was washed with water and dried. The molecular weight of the obtained polymer is 75,000
Met. The chemical structure is shown in Table 1.

ポリマ ゛ 3−8 製造例1および2と同様にして、表1に示すポリマを製
造した。
Polymer 3-8 Polymers shown in Table 1 were produced in the same manner as Production Examples 1 and 2.

表1 製造したポリマ 化学構造 Y3 叉11乱1 ポリマ製造例1で得た棒状重合体の両端を光学研磨し、
分光器で近赤外〜可視光域での吸収を測定した。その結
果、660.850.1300および1550nmにお
けるオプティカルデンシティ(OD)はそれぞれ0.0
12.0.005.0.005および0.120 (c
m−’)であり、きわめて高い透光性を示した。同様に
して他のポリマについても吸収を測定した。表2にその
結果をまとめた。
Table 1 Chemical structure of the produced polymer Y3 11Ran 1 Both ends of the rod-shaped polymer obtained in Polymer Production Example 1 were optically polished,
Absorption in the near infrared to visible light range was measured using a spectrometer. As a result, the optical density (OD) at 660.850.1300 and 1550 nm is 0.0, respectively.
12.0.005.0.005 and 0.120 (c
m-') and exhibited extremely high translucency. Absorption was similarly measured for other polymers. Table 2 summarizes the results.

表2 製造したポリマの透光性 化学構造 叉11肌λ ポリマ製造例1で得たポリマをコア成分、ポリマ製造例
2で得たポリマをクラッド成分とする光り導波路を作製
した。
Table 2: Transparent chemical structure of the produced polymer (lambda) An optical waveguide was produced using the polymer obtained in Polymer Production Example 1 as a core component and the polymer obtained in Polymer Production Example 2 as a cladding component.

上述の2種のポリマをメチルイソブチルケトンに溶解し
溶液とした。まず、クラッド成分ポリマをシリコン基盤
上に約15μmの厚さに塗布した。
The above two types of polymers were dissolved in methyl isobutyl ketone to form a solution. First, a cladding component polymer was applied onto a silicon substrate to a thickness of about 15 μm.

焼成および乾燥処理後、クラッド成分ポリマ上にコア成
分ポリマな約8μmの厚さに塗布した。次に、ホトリソ
グラフィおよびドライエツチングにより、コア成分ポリ
マを長さ50mm、幅8μm、高さ8μmの直線矩形パ
タンに加工した。加工後クラッド成分をコア成分ポリマ
上に塗布し光導波路を得た。
After firing and drying, the core component polymer was coated onto the cladding component polymer to a thickness of approximately 8 μm. Next, the core component polymer was processed into a linear rectangular pattern with a length of 50 mm, a width of 8 μm, and a height of 8 μm by photolithography and dry etching. After processing, the cladding component was applied onto the core component polymer to obtain an optical waveguide.

波長1300nmの光を導波路の一端から照射し、他端
から出てくる光量を測定することにより導波路の損失を
計算した。この導波路の損失は0.12dB/cI11
であり充分に種々の光回路に供し得ると考えられる。
The loss of the waveguide was calculated by irradiating light with a wavelength of 1300 nm from one end of the waveguide and measuring the amount of light coming out from the other end. The loss of this waveguide is 0.12dB/cI11
Therefore, it is considered that it can be sufficiently applied to various optical circuits.

叉JJ乳且 コア成分としてポリマ製造例1で得たポリマを、クラッ
ド成分としてポリマ製造例2で得たポリマな用いて光フ
ァイバを作製した。
An optical fiber was produced using the polymer obtained in Polymer Production Example 1 as the core component and the polymer obtained in Polymer Production Example 2 as the cladding component.

コア成分ポリマを過熱しつつ押し出し機にてファイバ化
し、これを溶媒化したクラッド成分ポリマ中に通すこと
によりコーティングを行なった。この工程を経てコア直
径0.75mmクラッド膜厚0、05mmの光ファイバ
を得た。このファイバは波長650止で100dB/k
m、波長850nmで60dB/km以下の低損失窓が
観察された。
The core component polymer was formed into a fiber using an extruder while being heated, and the fiber was passed through the solvated cladding component polymer to perform coating. Through this process, an optical fiber having a core diameter of 0.75 mm and a cladding film thickness of 0.05 mm was obtained. This fiber is 100dB/k at wavelength 650
m, a low loss window of 60 dB/km or less was observed at a wavelength of 850 nm.

このプラスチック光ファイバを、温度60℃、湿度90
%RHの条件下で2昼夜静置してから取り出し、光伝送
特性を測定した。吸湿に基づく損失増は波長850止で
50dB/km以下であった。同じ条件下でバーデユー
テロポリメチルメタクリレートの、吸湿に基づく損失増
は300dB/km以上であり、光損失が大幅に改善さ
れた。
This plastic optical fiber was heated at a temperature of 60°C and a humidity of 90°C.
It was left standing for two days and nights under conditions of %RH, and then taken out and its optical transmission characteristics were measured. The increase in loss due to moisture absorption was 50 dB/km or less at a wavelength of 850 or less. Under the same conditions, the increase in loss due to moisture absorption of bardeuteropolymethyl methacrylate was more than 300 dB/km, and the optical loss was significantly improved.

大11糺A 本実施例は、封止絶縁材料としてポリマ使用した実施例
である。
Large 11 Adhesive A This example is an example in which a polymer is used as the sealing insulating material.

ポリマ製造例4で得たポリマの衝撃強度は410kg、
 cm/cm”と非常に太き(、またガラス転移温度は
160℃であり熱変形温度も140℃と耐熱性に優れて
いた。また加工性にも優れ、30%のポリマと70%の
溶媒シリカからなる混合物に半導体を封止し、加熱成形
することが可能であった。樹脂封止したものを耐湿性加
速試験(121”C,100%相対湿度)したところ、
 1500時間経過しても不良が発生しなかった。
The impact strength of the polymer obtained in Polymer Production Example 4 was 410 kg.
cm/cm" (and the glass transition temperature was 160°C and the heat distortion temperature was 140°C, indicating excellent heat resistance. It also had excellent processability, and was made of 30% polymer and 70% solvent. It was possible to encapsulate a semiconductor in a mixture made of silica and heat mold it.When the resin encapsulated product was subjected to an accelerated moisture resistance test (121"C, 100% relative humidity),
No defects occurred even after 1500 hours.

[発明の効果] 以上説明したように、本発明によるポリカーボネートは
、従来のプラスチック光学材料に比べ、可視〜近赤外光
域において極めて優れた光伝送特性を有すると共に、高
温多湿条件下にさらされても損失増が著しく少ない。そ
のため、近赤外光域における光集積回路用材料および可
視光域あるいは近赤外光域用光源を用いる数100mの
距離間における光信号伝送媒体として安定して使用し得
るという利点がある。
[Effects of the Invention] As explained above, the polycarbonate according to the present invention has extremely superior optical transmission characteristics in the visible to near-infrared light range compared to conventional plastic optical materials, and is resistant to exposure to high temperature and high humidity conditions. However, the increase in losses is extremely small. Therefore, it has the advantage that it can be stably used as an optical signal transmission medium over a distance of several hundred meters using a material for optical integrated circuits in the near-infrared light region and a light source for the visible light region or near-infrared light region.

また、従来光フアイバ通信に用いられている、650〜
1600r+mの波長域において低損失であるので、多
成分系ガラスおよび石英系光ファイバと、光/電気変換
あるいは電気/光変換なしに接続して使用することがで
きる。すなわち、これらの光学材料を使って作製した光
部品により経済性に優れたローカルエリアネットワーク
などのような光信号伝送システムを構成できるという利
点がある。
In addition, 650~
Since it has low loss in the wavelength range of 1600 r+m, it can be used in connection with multi-component glass and quartz optical fibers without optical/electrical conversion or electrical/optical conversion. That is, there is an advantage that optical components manufactured using these optical materials can be used to construct optical signal transmission systems such as local area networks that are highly economical.

さらに、光学材料としてだけではなく広範囲にわたる用
途が可能であるという利点がある。
Furthermore, it has the advantage that it can be used not only as an optical material but also in a wide range of applications.

Claims (1)

【特許請求の範囲】 1)下記一般式(1)で表わされる繰り返し単位からな
ることを特徴とするポリカーボネート;▲数式、化学式
、表等があります▼・・・(1) ただし、式中XおよびYは同一または異なり、重水素あ
るいはハロゲン元素である。
[Claims] 1) A polycarbonate characterized by consisting of repeating units represented by the following general formula (1); ▲There are numerical formulas, chemical formulas, tables, etc.▼...(1) However, in the formula, Y is the same or different and is deuterium or a halogen element.
JP2115086A 1990-05-02 1990-05-02 Polycarbonate Pending JPH0413720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115086A JPH0413720A (en) 1990-05-02 1990-05-02 Polycarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115086A JPH0413720A (en) 1990-05-02 1990-05-02 Polycarbonate

Publications (1)

Publication Number Publication Date
JPH0413720A true JPH0413720A (en) 1992-01-17

Family

ID=14653852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115086A Pending JPH0413720A (en) 1990-05-02 1990-05-02 Polycarbonate

Country Status (1)

Country Link
JP (1) JPH0413720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036659A3 (en) * 2000-11-03 2003-02-13 Corning Inc Highly-halogenated low optical loss polyester
JP2016538523A (en) * 2013-11-29 2016-12-08 キム, ノ ウルKIM, No Eul Plastic hot water boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036659A3 (en) * 2000-11-03 2003-02-13 Corning Inc Highly-halogenated low optical loss polyester
US6610813B2 (en) 2000-11-03 2003-08-26 Corning Incorporated Highly-halogenated low optical loss polymer
JP2016538523A (en) * 2013-11-29 2016-12-08 キム, ノ ウルKIM, No Eul Plastic hot water boiler
US10539321B2 (en) 2013-11-29 2020-01-21 No Eul Kim Plastic hot water boiler

Similar Documents

Publication Publication Date Title
JPH08504967A (en) Light-limited optical waveguide
JP2813713B2 (en) Polyimide optical waveguide
JP2005002330A (en) Optical resin material, optical element, optical module, precursor of fluorinated polymer, and fluorinated polymer
KR20100067037A (en) Compounds containing crosslinkable moieties, prepolymers, compositions and polymer sheets obtained therefrom, and waveguides for optical interconnection
JP2573203B2 (en) Optical waveguide having a core-jacket structure
JP3034236B2 (en) Optical communication device
US6077928A (en) Bis(dialkylmaleimide) derivative and polyetherimide for optical communications formed therefrom
US6100371A (en) Polyimide for optical communications and method for preparing the same
JPS6247605A (en) Clad material for optical transmission fiber
JP3273519B2 (en) Method for manufacturing polysiloxane-based optical waveguide
JPH0413720A (en) Polycarbonate
JP3674878B2 (en) Polyimide optical waveguide
US6028159A (en) Polyamideimide for optical communications and method for preparing the same
KR100509512B1 (en) Bis (trialkyl trimellitic anhydride) derivatives and polyesterimide for optical communication formed therefrom
Kaino Linear Optical Properties of Organic Solids
Flipsen et al. Polymer optical fiber with high thermal stability and low optical losses based on novel densely crosslinked polycarbosiloxanes
KR100243406B1 (en) Perfluorinated poly(arylether) for optical material, its preparation method, and optical material for optical waveguide
KR100292800B1 (en) Fluorine-substituted polyarylene ether copolymer and polymer optical device using the same
JP3110814B2 (en) Siloxane polymer and optical material
JPH09235322A (en) Optical material and optical waveguide
US6013759A (en) Polyamideimide for optical communications and method for preparing the same
JPH04190202A (en) Optical waveguide using organic high-polymeric pelyfluoro material
JP2940645B2 (en) Heat resistant plastic optical fiber
JP3597056B2 (en) Polymer material, optical waveguide and method for forming the same
JP4010721B2 (en) Polymer material for optical communication, synthesis method thereof, and optical waveguide using the material