JPH04135621A - Exhaust gas decomposing device - Google Patents

Exhaust gas decomposing device

Info

Publication number
JPH04135621A
JPH04135621A JP2100744A JP10074490A JPH04135621A JP H04135621 A JPH04135621 A JP H04135621A JP 2100744 A JP2100744 A JP 2100744A JP 10074490 A JP10074490 A JP 10074490A JP H04135621 A JPH04135621 A JP H04135621A
Authority
JP
Japan
Prior art keywords
carbon dioxide
chamber
magnetite
hydrogen
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2100744A
Other languages
Japanese (ja)
Inventor
Yutaka Tamaura
裕 玉浦
Norio Shudo
首藤 矩生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2100744A priority Critical patent/JPH04135621A/en
Publication of JPH04135621A publication Critical patent/JPH04135621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Iron (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently decompose carbon dioxide by providing a means for detecting the activated state of a decomposer, activating the decomposer in a low-temp. chamber and bringing the activate decomposer into contact with a gas contg. carbon dioxide. CONSTITUTION:A decomposer 1 consisting of an iron oxide such as magnetite is placed in a chamber 2, the chamber 2 is held at 200-350 deg.C, and the magnetite is transformed into an oxygen-deficient state. A gas contg. carbon dioxide is then introduced into the chamber 2, the carbon dioxide is catalyzed by the oxygen-deficient magnetite to form magnetite and carbon, and the carbon is successively deposited on the surface of the magnetite 1. Since the carbon dioxide decomposing function is deteriorated when a large amt. of carbon is deposited, the activated state of the decomposer 1 is detected by a detection means, and a signal is raised. Thus, carbon dioxide is efficiency decomposed in this way to prevent the warning of the earth's atmosphere.

Description

【発明の詳細な説明】 (顯業上の利用分野) この発明は、鉄酸化物からなる分解体を利用して炭酸ガ
スや窒素酸化物等の排ガスを分解する排気ガス分解装置
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas decomposition device that decomposes exhaust gases such as carbon dioxide and nitrogen oxides using a decomposition body made of iron oxide.

(徒来技術) 地球温度化の76凶とされている炭酸ガスを分解する有
効な手段として鉄酸化からなる分解体の利用が考えられ
ている。
(Archived technology) The use of a decomposition product made of iron oxidation is being considered as an effective means of decomposing carbon dioxide gas, which is considered to be the culprit behind global temperature change.

該分解体は所定温度で活性化して、送られて来た炭酸ガ
ス(CO,)の酸素イオン(0”−)を取り込み、炭素
(C)を表1h1に析出して分解することができる。
The decomposition body is activated at a predetermined temperature, takes in oxygen ions (0''-) of the sent carbon dioxide (CO,), and can precipitate and decompose carbon (C) as shown in Table 1h1.

かかる手段は低温(200〜350℃)で処理すること
ができるので安全性に富み有効な手段であると期待され
ている。
This method is expected to be safe and effective since it can be processed at low temperatures (200 to 350° C.).

(この発明が解決しようとする問題点)前記しているよ
うに炭酸ガスの分解処理において分解体の表面に炭素が
析出する。そして、この炭素が増えると、分解体への0
2−イオンの取り込みあるいは分解体からの酸素イオン
(02−)の引き出し等の機能の低トを生じて炭酸ガス
の分解処理を効率よく行うことができない。
(Problems to be Solved by the Invention) As mentioned above, carbon is deposited on the surface of the decomposed body during the decomposition treatment of carbon dioxide gas. And when this carbon increases, 0 to the decomposed body
The function of taking in 2- ions or extracting oxygen ions (02-) from the decomposed body is impaired, making it impossible to efficiently decompose carbon dioxide gas.

(問題点を解決するための手段) この発明は、分解体の活性化状態を検出し得る、活性化
状態検出−f段を設けたものであり、っぎの技術的手段
を講じた。
(Means for Solving the Problems) The present invention is provided with an activation state detection-f stage capable of detecting the activation state of the decomposed body, and takes the following technical means.

すなわち、鉄酸化物からなる分解体1を200〜350
℃に保持し得る室2に収容して活性化口f能にt分け、
該活性化した分解体1に炭酸ガスを含むガスを接触反応
させて炭酸ガスを分解するとともにこの分解体lの活性
化状態を検出し得る活性回状態検出手段を設けてなる炭
酸ガス分解装置の構成とする。
That is, the decomposed product 1 made of iron oxide is 200 to 350
It is housed in a chamber 2 that can be maintained at ℃ and divided into activated openings,
A carbon dioxide gas decomposition apparatus is provided, which decomposes carbon dioxide by causing a contact reaction with a gas containing carbon dioxide gas to the activated decomposition body 1, and is provided with an activation state detection means capable of detecting the activation state of this decomposition body 1. composition.

(作用) 鉄酸化物(以下、この実施例ではマグネタイト(F e
、04)とする)等の分解体1を室2に収容し、またこ
の室2の内部温度を200〜300℃(好しくは約30
0℃)に保持する。
(Function) Iron oxide (hereinafter, magnetite (F e
.
0°C).

なお、このマグネタイ1−の分子構造は、2価の鉄(F
e”″)が1個と3価の(F’e”)が2個存在して計
8価のプラス電荷であり、これが陰イオンを保有するW
!素(02−)4個と結びついてFe、04の安定した
マグネタイトになっている。
The molecular structure of this magnetite 1- is composed of divalent iron (F
There is one e"") and two trivalent (F'e"), giving a total of 8 positive charges, which is the W that holds anions.
! It combines with four elements (02-) to form stable magnetite of Fe, 04.

そして、このマグネタイトを前記した所定温度の雰囲気
のもとで1例えば水素(H7)を流すことにより、また
、高電圧あるいは減圧にすることで、酸素を除去させて
、酸素を欠乏した活性のマグネタイ1〜(Fe、04−
x)に変身させることができきる。
Then, oxygen is removed from this magnetite by flowing hydrogen (H7), for example, into the atmosphere at the above-mentioned predetermined temperature, or by applying high voltage or reduced pressure. 1~(Fe, 04-
x) can be transformed into

つぎに、炭酸ガス(CO,)を含むガスを室2に送り込
むと、この炭酸ガスは酸素が欠乏しているマグネタイト
(Fe、04−x)と接触反応してマグネタイト(Fc
、04)と炭素(C)を生成する。その化学反応式はつ
ぎの通りである。
Next, when gas containing carbon dioxide (CO,) is sent into chamber 2, this carbon dioxide gas reacts with oxygen-deficient magnetite (Fe, 04-x), and magnetite (Fc
, 04) and carbon (C). The chemical reaction formula is as follows.

ド e、04 + H2→ ト′ el 0.−x+H20・・・  ■Fe、04
− x 十CO2→ ド e、04+C・  ・  ・ ■ したがって、炭酸ガス(CO2)を分解することができ
、そして分解により生じた炭素(C)はマグネタイト(
)’e、04)の表面に析出し以後炭酸ガスを分解して
いくことによって増加する。
Do e, 04 + H2→ To' el 0. -x+H20... ■Fe, 04
− x 10 CO2 → Do e, 04+C・・・ ■ Therefore, carbon dioxide gas (CO2) can be decomposed, and the carbon (C) produced by the decomposition is converted into magnetite (
)'e, 04) and increases as carbon dioxide gas is decomposed.

この炭素(C)が分解体1に多量付着すると、当然なか
らh乏酸ガス(CO2)の分解機能が低I〜することに
なるが、−例としてこの分解体1の電全、電導ル゛を検
出することによりその0五状態を知ることができる。ま
た、分解されて排出される炭酸ガス、eJ辿の検出によ
ってもことがpf能である。
If a large amount of this carbon (C) adheres to the decomposition body 1, the decomposition function of the decomposed gas (CO2) will naturally become low. By detecting ゛, its 05 state can be known. Furthermore, the pf function can also be detected by detecting the eJ trace of carbon dioxide gas that is decomposed and emitted.

このようにして、分解体1の活性化状態を活性化状態検
出手段が検出して活性化状態やその限界の信号を出力す
る。
In this way, the activation state detecting means detects the activation state of the disassembled body 1 and outputs a signal indicating the activation state and its limit.

(効果) 炭酸ガスを分解できるので、地球の温暖化を防止して環
境の改善を図れる。また、分解体1の活性化状態を検出
できるので1分解体1による炭酸ガスの分解処理効率あ
るいは交換時期等をも把握することができ、その対応処
置に当ることができる。
(Effects) Since it can decompose carbon dioxide gas, it can prevent global warming and improve the environment. Furthermore, since the activation state of the decomposition body 1 can be detected, the efficiency of decomposition processing of carbon dioxide gas by the decomposition body 1, the replacement timing, etc. can be grasped, and corresponding measures can be taken.

(実施例) 以下、この発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

まず、その構成について説明すると、室2は室内の温度
を検出するセンサ(例えば、熱電対)19を有し且つ中
空で円痴状に形成するとともに人口部3および出口部4
の両端部をそれぞれ先細に形成している。そして、数案
2の外側には室2を加熱する加熱器5を設けているとと
もに内部に複数個の分解体1を所定間隔置いて設けてい
る。なお、該分解体1は板状のアルミナにマグネタイト
(酸素が欠乏しているマグネタイトでもよい)を複数層
メツキして構成している。
First, to explain its configuration, the chamber 2 has a sensor (for example, a thermocouple) 19 that detects the temperature inside the room, is hollow and circular in shape, and has an artificial part 3 and an outlet part 4.
Both ends are tapered. A heater 5 for heating the chamber 2 is provided on the outside of Plan 2, and a plurality of decomposed bodies 1 are provided inside at predetermined intervals. The decomposition body 1 is constructed by plating a plurality of layers of magnetite (oxygen-deficient magnetite may be used) on plate-shaped alumina.

また、分解体1の活性状態を検出する活性状態検出手段
は分解体1の電導瓜を検出するセンサ6で構成されてお
り、前記分解体の中で中央部に位置する分解体1の人口
側及び出口側の端部に接続している。なお、分解体゛1
の活性状態を検出する手段は、例えば室2の人口部の静
圧を検出してもよくこの手段にのみ限定されるものでな
く、また分解体1自体も、例えばキューブ形状やハニカ
ム形状等でもよくこの実施例のように薄板形状に限定さ
れるものでない。
The active state detection means for detecting the active state of the decomposed body 1 is composed of a sensor 6 that detects the conductive gourd of the decomposed body 1, and is located on the population side of the decomposed body 1 located in the center of the decomposed body 1. and connected to the outlet end. In addition, decomposed body 1
The means for detecting the active state of the cell 2 may be, for example, detecting the static pressure of the artificial part of the chamber 2, and is not limited to this means. The disassembled body 1 itself may also be shaped, for example, in a cube shape or a honeycomb shape. It is not limited to a thin plate shape as in this embodiment.

そして、7は′r字型で中空形状の中継管であって、一
端部を中間部に開閉バルブ8を有し月、つガス供給源又
はガス発生源に連通口■能に設けているガス管9に着脱
、自在に接続し、別の端部を開閉バルブ14を有する水
素室10に着脱自在に接続している。そして、詠水素′
♀゛]0は申閤分に開閉バルブ11を有し目、つ水素供
給源又は水素発生源(例えば、水素タンクや水素発生装
置等)に連通可能に設けている水素管12に着脱自在に
接続している。なお、該水素室1oには水素量を検出す
る水素量検出センサ13を設けている。
Reference numeral 7 denotes an R-shaped and hollow relay pipe, which has an opening/closing valve 8 at one end and a gas supply source or gas generation source. It is detachably connected to the pipe 9, and the other end is detachably connected to a hydrogen chamber 10 having an on-off valve 14. And Eishin'
♀゛]0 has an opening/closing valve 11 at the front end and can be detachably attached to a hydrogen pipe 12 which is provided to communicate with a hydrogen supply source or a hydrogen generation source (for example, a hydrogen tank or a hydrogen generator). Connected. Note that the hydrogen chamber 1o is provided with a hydrogen amount detection sensor 13 for detecting the amount of hydrogen.

15は室2から出てきた未反応水素と水とを回収する回
収室であって、一端部を前記2に着脱自在に接続し他端
部を水を分解する水分解室16に着脱自在に接続してい
る。そして、該回収室15は管17を介して前記水素室
1oに連通可能に設け、水分解室16はq#18を介し
て水素室1oに連通可能に設けている。
Reference numeral 15 denotes a recovery chamber for recovering unreacted hydrogen and water coming out of chamber 2, one end of which is detachably connected to 2, and the other end detachably connected to a water decomposition chamber 16 that decomposes water. Connected. The recovery chamber 15 is provided in communication with the hydrogen chamber 1o via a pipe 17, and the water decomposition chamber 16 is provided in communication with the hydrogen chamber 1o via q#18.

つぎに、第2図のブロック回路を説明すると。Next, the block circuit in FIG. 2 will be explained.

20は演算制御部(以上、cl−1uと唾ぶ)、21は
制御プログラムやデータ等を内蔵するメモリ、22は人
力インターフェイス、23は出方インターフェイスであ
る。
20 is an arithmetic control unit (hereinafter referred to as cl-1u), 21 is a memory containing control programs, data, etc., 22 is a human power interface, and 23 is an output interface.

そして、該CPtJ20に人力インターフェイス22を
介して人力される情報としては作業開始情報又は作業停
止情報、室2内の温良を検出するセンサ19からの温度
情報。分解体1の活性化状態を検出するセンサ6からの
活性化を山軸、水素室ユOに貯留されている水素−°を
検出する水素量検出センサ13からの水素量情報等があ
り、またこのCI) U 20に人力される情報として
はクロックジェネレータ25からのタロツク情報がある
The information manually input to the CPtJ 20 via the human interface 22 includes work start information or work stop information, and temperature information from the sensor 19 that detects the temperature inside the room 2. There is the activation from the sensor 6 that detects the activation state of the disassembly 1, the hydrogen amount information from the hydrogen amount detection sensor 13 that detects the hydrogen stored in the hydrogen chamber UO, and the like. The information manually input to the CI U 20 includes tarot information from the clock generator 25.

そして、CPU20から出力インターフェイス23を介
して出力される信号としては、加熱器5、r3fJrA
バルブ8、開閉バルブ11、開閉バルブ14を作動する
信号及び表示装置(例えば、ランプや音声合成等)26
をする表示信号がある。
The signals output from the CPU 20 via the output interface 23 include the heater 5, r3fJrA
A signal and display device (for example, a lamp, a voice synthesizer, etc.) 26 that operates the valve 8, the opening/closing valve 11, and the opening/closing valve 14.
There is a display signal that does this.

該CPU20は次の機能を有する。すなわち、(1)作
業スイッチ24ガ「ON」になるとクロックジェネレー
タ25がら発生するクロックパルスを取り込む。また、
開閉バルブ14に「開」イ言号を出力する8 (2)クロックパルスを所定数カウントしたとき(例え
ば、1分間に相当する)開閉バルブ8に「閉」信号を出
力し、開閉バルブ14に「開」伝号を出力する。以上、
同様の動作を繰り返す。
The CPU 20 has the following functions. That is, (1) when the work switch 24 is turned ON, the clock pulse generated by the clock generator 25 is captured. Also,
Output the word "open" to the on-off valve 14 (2) When a predetermined number of clock pulses are counted (e.g., corresponding to one minute), output a "close" signal to the on-off valve 8; Outputs the "open" signal. that's all,
Repeat the same action.

(3)水素量検出センサ13が水素−水足を検すると、
開閉バルブ11に「開」イ菖号を出力し、そして所定量
に達するとその開閉バルブ1]に「閉」信号を出力する
(3) When the hydrogen amount detection sensor 13 detects hydrogen-water level,
An "open" signal is output to the on-off valve 11, and when a predetermined amount is reached, a "close" signal is output to the on-off valve 1.

なお、該実施例では、1分間ごとに切替る構成としたが
、数秒以上であればよくこの時間に限定されない。また
、分解体であるマグネタイトをあらかじめ酸素が欠乏し
ている状態にしている場合には開閉バルブ8を「閉」に
し、そしでて開閉バルブ14を「閉」にする信号を出力
して作業を開始してもよい。
In addition, in this embodiment, the configuration is such that the switching is performed every minute, but the time is not limited to this, as long as it is several seconds or more. In addition, if the decomposed magnetite is already in an oxygen-deficient state, the on-off valve 8 is set to "close", and a signal is output to turn on-off valve 14 to "close" to start the work. You may start.

つぎに、その作用について説明する。Next, its effect will be explained.

まず、作業スイッチ24をrONJにする。すると、C
PU20は人力インターフェイス22を介してこの作業
開始情報を入力し、加熱器5に加熱指令信号をする。し
たがって、室2はこの加熱器5で加熱されて室内の温度
は高まる。そして、CPU20はセンサ19から出力さ
れている温度情報を取り込んで室2の室内温度が約30
0℃に達したと判断するとこの温度を保持し得るように
加熱器5に制御信号を出力する。
First, the work switch 24 is set to rONJ. Then, C
The PU 20 inputs this work start information via the human power interface 22 and sends a heating command signal to the heater 5. Therefore, the room 2 is heated by the heater 5, and the temperature inside the room increases. Then, the CPU 20 takes in the temperature information output from the sensor 19 and determines that the indoor temperature of the room 2 is approximately 30.
When it is determined that the temperature has reached 0° C., a control signal is output to the heater 5 so that this temperature can be maintained.

つぎに、CPU20は開閉バルブ14に「開」信号を出
力すると、この開閉バルブ14は開くので水素室10に
貯留されている水素は開閉バルブ14と中継間7を通っ
て室2に送り込まれる。すると、この水素はマグネタイ
ト()’e、04)と接触反応してマグネタイトの酸素
イオン(02−)を引き出して酸素が欠乏した活性のマ
グネタイト(F e、04−X)と水を生成する。その
化学反応式を示すとつぎの通りである。
Next, when the CPU 20 outputs an "open" signal to the on-off valve 14, the on-off valve 14 opens, and the hydrogen stored in the hydrogen chamber 10 is sent into the chamber 2 through the on-off valve 14 and the relay space 7. Then, this hydrogen undergoes a contact reaction with magnetite ()'e, 04), extracts oxygen ions (02-) from magnetite, and generates oxygen-deficient active magnetite (Fe, 04-X) and water. The chemical reaction formula is as follows.

ド e、○、+ZH,→   )’e、04  X  
十 ZH? ○そして、室2から出てきた未反応水素(
H2)と水(H,O)は回収室15で回収されて、未反
応水素は管17を介して水素室10に案内され、水は水
分解室16に送り込まれて水素(H7)と酸素(02)
に分解される。そして1.この水素(H,)は管18を
通って水素室10に案内さりれる。したがって反応に使
う水素を効率良く利用できる。なお、水、#箪検出セン
サ13が水素室内の水素量が所定以上であると検出する
と、CPIJ20は開閉バルブ11に「開」信号を出力
して開閉バルブ11を開けるので、水素が水素供給源か
ら水素室10に供給される。
Do e, ○, +ZH, → )'e, 04 X
Ten ZH? ○Then, the unreacted hydrogen that came out from chamber 2 (
H2) and water (H, O) are recovered in the recovery chamber 15, unreacted hydrogen is guided to the hydrogen chamber 10 via pipe 17, and water is sent to the water splitting chamber 16 where hydrogen (H7) and oxygen are recovered. (02)
It is decomposed into And 1. This hydrogen (H,) is guided into the hydrogen chamber 10 through a pipe 18. Therefore, the hydrogen used in the reaction can be used efficiently. Note that when the water/#ken detection sensor 13 detects that the amount of hydrogen in the hydrogen chamber is above a predetermined value, the CPIJ 20 outputs an "open" signal to the on-off valve 11 to open the on-off valve 11, so that hydrogen is the hydrogen supply source. The hydrogen is supplied to the hydrogen chamber 10 from the hydrogen chamber 10.

このような作業が行なわれている間にC)’U20が所
定数のクロックパルスをカウントすると、CPU20は
開閉バルブ14の「開」信号の出力を停止するとともに
開閉バルブ8の「開」信号を出力する。従って、開閉バ
ルブ14は閉じて水素装置の供給を停止し、開閉バルブ
8は開いて炭素ガス供給源からの炭酸ガスを中継管7を
通って室2に供給する。すると、炭酸ガス(Go、)の
酸素イオン(02−)は酸素が欠乏した活性のマグネタ
イト(Fe 、os x )に取り込まれて炭素(C)
を生成する。その化学反応を示すとつぎの通りである。
C)' When the U20 counts a predetermined number of clock pulses while such work is being performed, the CPU 20 stops outputting the "open" signal of the on-off valve 14 and outputs the "open" signal of the on-off valve 8. Output. Therefore, the on-off valve 14 is closed to stop supplying the hydrogen device, and the on-off valve 8 is opened to supply carbon dioxide gas from the carbon gas supply source to the chamber 2 through the relay pipe 7. Then, the oxygen ion (02-) of carbon dioxide gas (Go, ) is taken into active magnetite (Fe, os x ) that is deficient in oxygen and becomes carbon (C).
generate. The chemical reaction is shown below.

ド e、○、−x+   1/2CO2→ト’e、O,
+1/2G そして、該炭素(C)はマグネタイトの表面に析出する
。このような作業が行なわれている闇にCPIJ20が
所定数のクロックパルスをカウントすると、CPTJ2
0は開閉バルブ8の「開」43号の出力を停止し、開閉
バルブ14の「開」信号を出力する。従って、開閉バル
ブ8を通って送り込よれる炭醜ガスの供給を伜IFする
とともに水素室10の水素は開閉にバルブ、中継管7を
通って室2に供給されて前記と同様の作業が行なわれて
いる。
Do e, ○, -x+ 1/2CO2→t'e, O,
+1/2G Then, the carbon (C) is deposited on the surface of magnetite. When CPIJ20 counts a predetermined number of clock pulses while such work is being performed, CPTJ2
0 stops the output of the "open" signal 43 of the on-off valve 8 and outputs the "open" signal of the on-off valve 14. Therefore, the supply of coal gas sent through the opening/closing valve 8 is increased, and the hydrogen in the hydrogen chamber 10 is supplied to the chamber 2 through the opening/closing valve and the relay pipe 7, and the same operation as described above is performed. It is being done.

また、センサ6から出力される活性状態情報を取り込ん
だCPU20はあらがじめ内臓しているデータ値と比較
演算制御部して析出した炭素量が所定量に達した、すな
わち分解体1の活性化状態が限界に近いかあるいは達し
たと判断すると出力インターフェイス23を開して表示
指令信号を出力する。徒って、C)’tJ20から表示
指令信号を受けた表示装置26は表示してし、例えば作
業者、運転者等に放置するので、新しい分解体lとの交
換時期を容易に知ることができる。
Further, the CPU 20 which has taken in the activation state information outputted from the sensor 6 compares it with the built-in data value in advance and determines that the amount of precipitated carbon has reached a predetermined amount, that is, the activity of the decomposed body 1. When it is determined that the state of display is close to or has reached the limit, the output interface 23 is opened and a display command signal is output. Unfortunately, the display device 26 that receives the display command signal from the can.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すものであって、第1図
は分N#装置の一部破断した側断面図、@2図はブロッ
ク回路である。 1は分解体、2は室を>Rす。 手続補正書(方創 平成 兜、x2.%
The drawings show an embodiment of the present invention, in which Fig. 1 is a partially cutaway side sectional view of the N# device, and Fig. 2 is a block circuit. 1 is the decomposed body and 2 is the chamber. Procedural amendment (Fang Chuang Heisei Kabuto, x2.%

Claims (1)

【特許請求の範囲】[Claims]  鉄酸化物からなる分解体1を200〜350℃に保持
し得る室2に収容して活性化可能に設け、該活性化した
分解体1に炭酸ガスを含むガスを接触反応させて炭酸ガ
スを分解するとともにこの分解体1の活性化状態を検出
し得る活性可状態検出手段を設けてなる炭酸ガス分解装
置。
A decomposed body 1 made of iron oxide is housed in a chamber 2 that can be maintained at 200 to 350°C and is provided to be activated, and the activated decomposed body 1 is brought into contact with a gas containing carbon dioxide to generate carbon dioxide. A carbon dioxide decomposition device comprising an active state detecting means capable of detecting the activated state of the decomposed body 1 while decomposing it.
JP2100744A 1990-04-16 1990-04-16 Exhaust gas decomposing device Pending JPH04135621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100744A JPH04135621A (en) 1990-04-16 1990-04-16 Exhaust gas decomposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100744A JPH04135621A (en) 1990-04-16 1990-04-16 Exhaust gas decomposing device

Publications (1)

Publication Number Publication Date
JPH04135621A true JPH04135621A (en) 1992-05-11

Family

ID=14282060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100744A Pending JPH04135621A (en) 1990-04-16 1990-04-16 Exhaust gas decomposing device

Country Status (1)

Country Link
JP (1) JPH04135621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115914A1 (en) * 2004-05-25 2005-12-08 Toyo University Educational Foundation Method of decomposing carbon dioxide and method of forming carbon-particle structure
JP2007083159A (en) * 2005-09-21 2007-04-05 Kinzo Ri Carbon dioxide fixing catalyst and its manufacturing method
GB2439142A (en) * 2006-06-14 2007-12-19 John Rutherford Moody Recovery of carbon from carbon dioxide
JP2009249247A (en) * 2008-04-08 2009-10-29 Sumitomo Heavy Ind Ltd Carbon recovery apparatus and carbon recovery method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115914A1 (en) * 2004-05-25 2005-12-08 Toyo University Educational Foundation Method of decomposing carbon dioxide and method of forming carbon-particle structure
US7807025B2 (en) 2004-05-25 2010-10-05 Toyo University Educational Foundation Method of decomposing carbon dioxide and method of forming carbon-particle structure
US8038849B2 (en) 2004-05-25 2011-10-18 Toyo University Educational Foundation Process for producing a carbon-particle structure
JP2007083159A (en) * 2005-09-21 2007-04-05 Kinzo Ri Carbon dioxide fixing catalyst and its manufacturing method
GB2439142A (en) * 2006-06-14 2007-12-19 John Rutherford Moody Recovery of carbon from carbon dioxide
JP2009249247A (en) * 2008-04-08 2009-10-29 Sumitomo Heavy Ind Ltd Carbon recovery apparatus and carbon recovery method

Similar Documents

Publication Publication Date Title
MY120320A (en) Method for producing an oxidized product and generating power using a solid electrolyte membrane integrated with a gas turbine.
ATE153311T1 (en) METHOD AND DEVICE FOR GENERATING NITROGEN OXIDE
JPH04135621A (en) Exhaust gas decomposing device
JP2002360672A (en) Hydrogen peroxide sterilizer
DE69129456T2 (en) METHOD AND APPARATUS FOR GENERATING PHOSPHINE AND SAFETY SYSTEM FOR PHOSPHINE GENERATORS
IT1109177B (en) REFINEMENTS IN OR RELATING TO PROCEDURES TO TREAT MIXTURES OF GASES INCLUDING CARBON MONOXIDE AND HYDROGEN
Broda The history of inorganic nitrogen in the biosphere
GB1505842A (en) Gas generating systems
Gilbert Speculation on the relationship between organic and atmospheric evolution
DE3382024D1 (en) WATER PURIFICATION SYSTEM USING AN IONIZED OXYGEN ALLOTROPIC GAS, METHOD AND DEVICE THEREFOR.
WO2005041337A3 (en) Fuel cell system and control method thereof
JPS5378885A (en) Sensor for detecting oxygen concentration
Baboo Study on plasma chemistry for human health & waste management
GB2370036A (en) Treatment of chemical hydrolysates
JPS5353504A (en) Noncombustin type recovering method for exhaust gas in pure oxygentop-blown converter
JP2000312532A (en) Supply of exhaust gas to facility for cultivating plant
GB1513493A (en) Treatment of gas mixtures containing oxides of nitrogen
JPH03170316A (en) Decomposition of carbon dioxide gas
SU817077A1 (en) Method of protective atmosphere regeneration in thermal furnace
TW200719954A (en) Method of decomposing dioxin and apparatus thereof
JP2001058184A (en) Method and apparatus for treating harmful substance
JPS5272393A (en) Production of neutralized aceive carbon granuls by the activation with steam
JPS53125964A (en) Continuous treatment apparatus for exhaust gas from fixed source
ATE78793T1 (en) PROCESS FOR GENERATING HYDROGEN PEROXIDE BY CHEMICAL PHOTOREDUCTION OF OXYGEN AND OBTAINED HYDROGEN PEROXIDE.
Nitta et al. Oxygen recovery system using sabatier carbon dioxide reduction for closed ecology experiment facilities (CEEF)