JPH04135617A - Dry desulfurizing method with spout fluidized bed - Google Patents

Dry desulfurizing method with spout fluidized bed

Info

Publication number
JPH04135617A
JPH04135617A JP2256709A JP25670990A JPH04135617A JP H04135617 A JPH04135617 A JP H04135617A JP 2256709 A JP2256709 A JP 2256709A JP 25670990 A JP25670990 A JP 25670990A JP H04135617 A JPH04135617 A JP H04135617A
Authority
JP
Japan
Prior art keywords
desulfurization
spout
gas
cone
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2256709A
Other languages
Japanese (ja)
Inventor
Naruhito Takagi
高木 成仁
Hiroyuki Kako
宏行 加来
Takaharu Kurumachi
車地 隆治
Tadashi Nosaka
野坂 忠志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2256709A priority Critical patent/JPH04135617A/en
Publication of JPH04135617A publication Critical patent/JPH04135617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the rate of desulfurization of waste combustion gas and the rate of utilization of granules of a desulfurizing agent by feeding the desulfurizing agent together with the waste gas from the bottoms of the conical parts of a desulfurizer and forming spout beds in the conical parts. CONSTITUTION:Granules of a desulfurizing agent are sent from a hopper 13 to a feed pipe 17 leading to the bottoms of the conical parts 2 of a desulfurizer 1, a fluidizing medium is also sent from a hopper 14 to the pipe 17 as required and they are fed into the conical parts 2 with carrier gas 19. Waste gas enters the conical parts 2 together with the granules from a feed pipe 4 and moves toward the top of the desulfurizer 1 while violently mixing with the granules. Since the gas is decelerated at the outlets of the conical parts 2, large granules are separated from flows of the gas and drop again to form spout beds. Since the granules are agitated by the gas, the film resistance of the gas is reduced and the desulfurization of the gas is accelerated. The residence time of the large granules is longer than that of the small granules and the rate of utilization of Ca in the large granules, that is, the rate of reaction of S is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスパウト流動層を用いる乾式方法により効率良
く脱硫する方法、装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for efficiently desulfurizing by a dry method using a spouted fluidized bed.

[従来の技術] 火力発電所における重油焚、石炭焚ボイラから排出され
る排ガス中には、硫黄化合物(SOx)やHCl、NO
xなどの酸性有害物質が通常、100〜3.OOOpp
mの割合で含まれており、酸性雨や光化学スモッグの原
因物質とされるため、その効果的な処理手段が望まれて
いる。従来から湿式法(例えば石灰石−石膏法)または
乾式法(活性炭法)が実施されているが、湿式法は有害
物質の除去率が高い反面、廃水処理が困難で、煙突から
の白煙を防止するために排ガスを再加熱する必要があり
、設備費や運転費が高く、乾式法では高い除去率が得ら
れないという問題があった。このため、無排水の低コス
トプロセスで高い除去率が得られる脱硫方法の開発か望
まれている。
[Conventional technology] Sulfur compounds (SOx), HCl, NO
Acidic toxic substances such as x usually have a concentration of 100 to 3. OOOpp
Since it is considered to be a causative agent of acid rain and photochemical smog, effective treatment means are desired. Conventionally, wet methods (e.g. limestone-gypsum method) or dry methods (activated carbon method) have been used, but while the wet method has a high removal rate of harmful substances, it is difficult to treat wastewater and prevents white smoke from coming from chimneys. In order to do this, it is necessary to reheat the exhaust gas, which results in high equipment and operating costs, and the dry method has the problem that a high removal rate cannot be obtained. Therefore, it is desired to develop a desulfurization method that can obtain a high removal rate with a wastewater-free, low-cost process.

ボイラなどの排ガスの脱硫法としては、上記方法のほか
に、消石灰やそのスラリを排ガス中に噴霧する半乾式法
や、火炉内あるいは煙道内の高温ガス中に石灰石を直接
供給して酸性有害物質を除去する乾式法が提案されてい
る。以上の方法は設備費や運転費が安いという特徴を有
しているが、いずれも酸性有害物質の除去率が低いとい
う問題がある。
In addition to the above-mentioned methods, desulfurization methods for exhaust gas from boilers include a semi-dry method in which slaked lime or its slurry is sprayed into the exhaust gas, and a method in which limestone is directly supplied to high-temperature gas in a furnace or flue to remove acidic harmful substances. A dry method has been proposed to remove . Although the above methods are characterized by low equipment and operating costs, they all have the problem of low removal rate of acidic harmful substances.

これに対して、低温の排ガス中にカルシウム系脱硫剤、
例えば消石灰や生石灰を供給して、乾式法で主に硫黄化
合物を除去する方法か見直されている。この方法の代表
的なフローシートを第8図に示す。ボイラ51からの排
ガスはエアヒータ52で温度を下げられ、脱硫装置55
に導かれる。
In contrast, calcium-based desulfurization agents are present in low-temperature exhaust gas.
For example, the method of mainly removing sulfur compounds using a dry method by supplying slaked lime or quicklime is being reconsidered. A typical flow sheet for this method is shown in FIG. The temperature of the exhaust gas from the boiler 51 is lowered by the air heater 52, and the temperature is lowered by the desulfurization device 55.
guided by.

消石灰などの脱硫剤はボイラ51、煙道53または脱硫
装置55内に脱硫剤供給管5つより噴霧して供給され、
この時水も水スプレーノズル54から供給されることに
より排カスの温度を下げ、湿度を上げる。この除水は脱
硫剤と別に供給しても、脱硫剤をスラリとして同時に供
給してもよい。反応した脱硫剤は排ガス中の灰とともに
集塵装置56て捕集され、回収ダスト管61から廃棄さ
れる。
A desulfurizing agent such as slaked lime is supplied by spraying into the boiler 51, flue 53 or desulfurizing device 55 from five desulfurizing agent supply pipes,
At this time, water is also supplied from the water spray nozzle 54 to lower the temperature of the waste and increase the humidity. This water removal may be supplied separately from the desulfurizing agent, or the desulfurizing agent may be supplied simultaneously as a slurry. The reacted desulfurizing agent is collected together with the ash in the exhaust gas by the dust collector 56 and disposed of through the collection dust pipe 61.

[発明が解決しようとする課題] 前記従来技術において、脱硫装置55の入口付近では脱
硫剤の表面がフレッシュであるため、酸性有害物質の除
去率は排ガス中の水分(相対湿度)に影響を受けるとさ
れている。このように、反応初期で脱硫剤の活性が高い
条件において酸性有害物質の除去率を上げるためには、
排ガスの温度を下げ、水分を上げることが必要である。
[Problems to be Solved by the Invention] In the prior art described above, since the surface of the desulfurizing agent is fresh near the inlet of the desulfurization device 55, the removal rate of acidic harmful substances is affected by the moisture (relative humidity) in the exhaust gas. It is said that In this way, in order to increase the removal rate of acidic harmful substances under conditions where the desulfurization agent is highly active in the early stage of the reaction,
It is necessary to lower the temperature of the exhaust gas and increase the moisture content.

水や消石灰スラリを噴霧する方法が提案されているが、
このようなガス中の水分濃度を上げる方法では酸性有害
物質の除去率の向上は十分てはない。すなわち、脱硫装
置55の中間部から出口付近においては、脱硫剤により
酸性有害物質の50%以上が通常除去されているため、
酸性有害物質の濃度は数千ppmから数百ppmにまで
低下している。このような酸性有害物質の濃度において
は、低濃度の酸性有害物質とある程度反応した脱硫剤と
の反応となるために、反応速度か低下する。従ってこの
反応領域においては、脱硫剤の境膜抵抗を小さくするか
脱硫剤の滞留時間を長くすることが重要となる。従来、
酸性有害物質の除去率を80%以上にするためには、ガ
ス側の滞留時間を10秒以上に設定するか、あるいは脱
硫装置55の高さを数十m以上にする必要があるため、
脱硫装置55の寸法が大きくなりすぎる傾向がある。(
例えは、EPA First Combined FG
D SO2Control Symposium。
Methods of spraying water or slaked lime slurry have been proposed, but
Such a method of increasing the water concentration in the gas does not sufficiently improve the removal rate of acidic harmful substances. In other words, from the intermediate part to the vicinity of the outlet of the desulfurization device 55, more than 50% of the acidic harmful substances are usually removed by the desulfurization agent.
The concentration of acidic toxic substances has decreased from several thousand ppm to several hundred ppm. At such concentrations of acidic harmful substances, the reaction rate decreases because the desulfurizing agent reacts to a certain extent with the low concentration of acidic harmful substances. Therefore, in this reaction region, it is important to reduce the film resistance of the desulfurizing agent or to lengthen the residence time of the desulfurizing agent. Conventionally,
In order to increase the removal rate of acidic harmful substances to 80% or more, it is necessary to set the residence time on the gas side to 10 seconds or more, or to increase the height of the desulfurization device 55 to several tens of meters or more.
The dimensions of the desulfurization device 55 tend to become too large. (
For example, EPA First Combined FG
D SO2 Control Symposium.

1988.10.ST、Louis、特開昭61−28
7421号)。
1988.10. ST, Louis, JP-A-61-28
No. 7421).

また、脱硫剤の利用率を向上させるため、集塵装置56
で捕集された未反応の脱硫剤を含む粒子をリサイクルす
る場合、集塵装置56で処理しなければならない粒子量
が増加し、集塵装置56の処理容量を増やさなけれはな
らなくなる。また、リサイクルのための設備も必要にな
るなめ、設備費や運転費も高くなるという問題があった
In addition, in order to improve the utilization rate of the desulfurizing agent, the dust collector 56
When recycling the particles containing the unreacted desulfurization agent collected by the dust collector 56, the amount of particles that must be treated by the dust collector 56 increases, and the processing capacity of the dust collector 56 must be increased. Furthermore, since recycling equipment is also required, there is a problem in that equipment costs and operating costs increase.

このように、上記従来技術は、酸性有害物質の濃度が低
下した場合の脱硫剤粒子との反応について、十分な配慮
がなされておらず、脱硫率か低くなり、装置コストが高
価になる問題があった。
As described above, the above-mentioned conventional technology does not give sufficient consideration to the reaction with the desulfurizing agent particles when the concentration of acidic harmful substances decreases, resulting in a problem that the desulfurization rate becomes low and the equipment cost increases. there were.

そこで、本発明の目的は、脱硫剤の境膜抵抗を小さくす
るか、脱硫剤の滞留時間を長くすることにより装置をコ
ンパクトにして、しかも集塵装置で捕集された未反応の
脱硫剤を含む粒子のリサイクルする量を大幅に低減して
、簡易なシステムで高い脱硫率を得ることにある。
Therefore, an object of the present invention is to make the device more compact by reducing the film resistance of the desulfurizing agent or increasing the residence time of the desulfurizing agent, and to remove the unreacted desulfurizing agent collected by the dust collector. The objective is to significantly reduce the amount of recycled particles and obtain a high desulfurization rate with a simple system.

[課題を解決するための手段] 本発明の上記目的は、以下のような方法により達成され
る。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following method.

すなわち、脱硫装置の下部を少なくとも一個以上のコー
ン構造を有するコーン部とし、該脱硫装置の下部から酸
性有害物質を含む燃焼排ガスを供給すると同時に、脱硫
剤をコーン部の下部から供給して、該コーン部にスパウ
トヘットを形成するスパウト流動層による乾式脱硫方法
、またはその方法を実施するための装置、である。
That is, the lower part of the desulfurization equipment is a cone part having at least one cone structure, and at the same time, the combustion exhaust gas containing acidic harmful substances is supplied from the lower part of the desulfurization equipment, and at the same time, the desulfurization agent is supplied from the lower part of the cone part. This is a dry desulfurization method using a spout fluidized bed that forms a spout head in a cone portion, or an apparatus for carrying out the method.

[作用] 脱硫塔の下部を少なくとも1個以上のコーン構造にして
、その最下部から亜硫酸ガス等の酸性有害物質を供給す
ると同時に、カルシウム系化合物等の脱硫剤を供給する
。カスと脱硫剤粒子をコーン部の下部から上部に吹き上
げると、コーン部から出たところでガスは減速されるた
め大きな脱硫剤粒子はガス流れから外れて、下部の方に
再び落下するいわゆるスパウトベットを形成する。この
ようにスパウトベットを形成することにより、反応器内
のガスと脱硫剤粒子の流れが不均一になり、カスと脱硫
剤粒子の混合を激しくすることができる。したがって、
脱硫剤の境膜抵抗は小さくなり脱硫剤の滞留時間を長く
取れるために、装置がコンパクトになり、酸性有害物質
の除去率が上がり脱硫剤の利用率も同時に向上する。さ
らに、脱硫剤だけでスパウトベットが形成できない場合
は、流動媒体を添加すればよい。
[Function] The lower part of the desulfurization tower has at least one cone structure, and acidic harmful substances such as sulfur dioxide gas are supplied from the lowest part thereof, and at the same time, a desulfurization agent such as a calcium-based compound is supplied. When scum and desulfurizing agent particles are blown up from the bottom of the cone section to the top, the gas is decelerated when it exits the cone section, so large desulfurizing agent particles are separated from the gas flow and form a so-called spout bed where they fall back to the bottom. Form. By forming the spout bed in this way, the flow of the gas and the desulfurizing agent particles in the reactor becomes non-uniform, and the mixing of the scum and the desulfurizing agent particles can be increased. therefore,
The film resistance of the desulfurization agent is reduced, and the residence time of the desulfurization agent is increased, so the equipment becomes more compact, the removal rate of acidic harmful substances increases, and the utilization rate of the desulfurization agent also increases. Furthermore, if a spout bed cannot be formed using the desulfurizing agent alone, a fluidizing medium may be added.

ここでは脱硫剤として消石灰(以下Ca(○H)2と記
す)を例にしてSO2ガスとの脱硫反応について述べる
。脱硫反応は以下に示す反応となる。
Here, the desulfurization reaction with SO2 gas will be described using slaked lime (hereinafter referred to as Ca(○H)2) as an example of the desulfurization agent. The desulfurization reaction is as shown below.

Ca (OH)2+S O;= Ca S○3+H7○
   (1)Ca(○H)2 +S O2+1/202
−+CaS○4+H20く1)式は亜硫酸カルシウム(
Ca S O3)が生成する反応であり、(2)式は石
膏(Ca S O4)が生成する反応である。上記方法
を採用すると、排ガスにより脱硫剤はコーン部から吹き
上げられながら反応する。コーン部から出たどろで排ガ
スは減速されるため大きな脱硫剤粒子はガス流れから外
れて、下部の方に再び落下するいわゆるスパウトベット
を形成する。このような条件ては、脱硫剤粒子はガスに
より撹拌されるためガス境膜抵抗は小さくなり、脱硫反
応は促進される。また、小粒子に比べ大粒子の脱硫剤の
方が滞留時間が長くなり、大粒子のCa利用率も増加す
る。SO2濃度が高い反応初期においては(1)および
(2)式の反応が迅速に生じているが、S○2濃度が低
くなる脱硫装置の中間部以降では、本方法を採用するこ
とによりガスと粒子の相対速度を大きく取れるために、
境膜抵抗を小さくするためにも望ましい。また、スパウ
トベットを形成する本方法では、脱硫剤の排ガス中の酸
素(02)との混合特性も同時に大きくなるために、(
2)式による石膏(CaSO,)の生成率も向上する。
Ca (OH)2+S O;= Ca S○3+H7○
(1) Ca(○H)2 +S O2+1/202
−+CaS○4+H20k1) Formula is calcium sulfite (
Equation (2) is a reaction in which gypsum (Ca SO 4) is produced. When the above method is adopted, the desulfurizing agent reacts while being blown up from the cone portion by the exhaust gas. Since the exhaust gas is decelerated by the mud coming out of the cone, large desulfurizing agent particles are separated from the gas flow and fall back to the bottom, forming a so-called spout bed. Under such conditions, the desulfurizing agent particles are agitated by the gas, so the gas film resistance becomes small and the desulfurizing reaction is promoted. Moreover, the residence time of the desulfurizing agent with large particles is longer than that of the desulfurizing agent with small particles, and the Ca utilization rate of the large particles also increases. At the early stage of the reaction when the SO2 concentration is high, the reactions of equations (1) and (2) occur quickly, but after the middle part of the desulfurization equipment where the SO2 concentration is low, by adopting this method, the reactions of the gas and In order to increase the relative velocity of particles,
This is also desirable in order to reduce film resistance. In addition, in this method of forming a spout bed, since the mixing characteristics of the desulfurizing agent with oxygen (02) in the exhaust gas also increase at the same time, (
The production rate of gypsum (CaSO,) according to equation 2) is also improved.

以上述べたように、脱硫剤の表面に不活性な化合物か生
成するような反応に本発明は適する。
As described above, the present invention is suitable for reactions that produce inert compounds on the surface of the desulfurizing agent.

[実施例コ 本発明は、下記の実施例によって、さらに詳細に説明さ
れるが、下記の例では制限されるものではない。本発明
の実施例を第1図に示す。本プロセスは排ガス中のSO
2ガスを除去する脱硫装置1、反応後の脱硫剤粒子、ダ
ストを排ガスから分離する脱塵装置6、脱硫剤ホッパ1
3等の脱硫剤粒子の供給設備およびこれに付属する設備
からなる。SO2ガスを含む排ガスは、排ガス供給口4
から脱硫剤粒子と共にガス開閉弁3を通ってコーン部2
に入る。ここで脱硫剤粒子と排ガスは激しく混合しなが
ら脱硫装置1の上部の方に移動する。
[Examples] The present invention will be explained in more detail by the following examples, but the invention is not limited thereto. An embodiment of the invention is shown in FIG. This process is based on SO in exhaust gas.
2, a desulfurization device 1 that removes gas, a dust removal device 6 that separates desulfurization agent particles and dust after reaction from exhaust gas, and a desulfurization agent hopper 1.
It consists of a supply facility for desulfurizing agent particles such as No. 3, and associated equipment. The exhaust gas containing SO2 gas is sent to the exhaust gas supply port 4.
from the cone part 2 through the gas on-off valve 3 together with the desulfurizing agent particles.
to go into. Here, the desulfurization agent particles and the exhaust gas move toward the upper part of the desulfurization apparatus 1 while being mixed vigorously.

ここで反応に必要な水蒸気濃度に達しない場合は、脱硫
装置1の入口部に水噴霧をすれば良い。この脱硫装置1
て反応した脱硫剤と排カスは出口管5を経て脱塵装置6
に入る。ここで排ガス中のダストの99%以上が分離さ
れて、浄化された排カスは排ガスダクト9から系外に廃
棄される。
If the water vapor concentration required for the reaction is not reached here, water may be sprayed at the inlet of the desulfurization device 1. This desulfurization equipment 1
The reacted desulfurizing agent and waste gas pass through the outlet pipe 5 to the dust removal device 6.
to go into. More than 99% of the dust in the exhaust gas is separated here, and the purified exhaust gas is disposed of outside the system through the exhaust gas duct 9.

一方、脱塵装置6で分離されたダストは分離器8に入り
、小さい粒径のダストは廃棄物ダクト9から系外に排出
する。大きい粒径のダストは媒体ダクト10を通り、流
動媒体ホッパ14に入る。
On the other hand, the dust separated by the dust removing device 6 enters the separator 8, and the dust with small particle size is discharged from the waste duct 9 to the outside of the system. The large particle size dust passes through the media duct 10 and enters the fluidized media hopper 14 .

脱硫剤粒子、例えは微粉の石灰石、生石灰あるいは消石
灰は、脱硫剤ホッパ13から供給装置15を通って脱硫
装置1のコーン部2の下部に通じる粒子供給管17に送
られる。また流動媒体も必要な場合には流動床ホッパ1
4と供給装置16を経て粒子供給管17に送られ、搬送
ガス1つにより、粒子用開閉弁18を通って脱硫装置1
の下部のコーン部2に供給される。流動媒体あるいは脱
塵装置1て回収した粒子は、いずれも粒子供給管17内
て混合されて、脱硫装置1に供給される。このような方
法を採用すると、ガスにより脱硫剤はコーン部2から吹
き上げられながら反応する。コーン部2から出たところ
でガスは減速されるため大きな粒子はカス流れから外れ
て、下部の方に再び落下するいわゆるスパウトベットを
形成する。スパウトベットにおいては、粒子はガスによ
り撹拌されるためガス境膜抵抗は小さくなり、脱硫反応
は促進される。また、小粒子に比べ大粒子の脱硫剤の方
が滞留時間が長くなり、大粒子のCa利用率(脱硫剤の
S反応率)も増加する。
Desulfurization agent particles, for example finely divided limestone, quicklime or slaked lime, are sent from the desulfurization agent hopper 13 through a feed device 15 to a particle feed pipe 17 leading to the lower part of the cone section 2 of the desulfurization device 1 . If a fluidized medium is also required, the fluidized bed hopper 1
4 and the supply device 16 to the particle supply pipe 17, and one carrier gas passes through the particle on-off valve 18 to the desulfurization device 1.
is supplied to the cone section 2 at the bottom of the . The fluidized medium or the particles collected by the dust removal device 1 are mixed in the particle supply pipe 17 and then supplied to the desulfurization device 1. When such a method is adopted, the desulfurizing agent reacts while being blown up from the cone portion 2 by the gas. Since the gas is decelerated when it exits the cone portion 2, large particles are separated from the waste flow and form a so-called spout bed where they fall again towards the bottom. In the spout bed, the particles are stirred by the gas, so the gas film resistance is reduced and the desulfurization reaction is promoted. Moreover, the residence time of large-particle desulfurizing agents is longer than that of small-particles, and the Ca utilization rate (S reaction rate of desulfurizing agent) of large particles also increases.

流動媒体の供給量は、脱硫装置1下の層差圧を脱硫装置
1と粒子供給管17とを結ぶ管路に設けた差圧検出器1
1で検出して、制御器12により供給装置16を開閉制
御してコントロールする。
The supply amount of the fluidized medium is determined by detecting the interlayer pressure below the desulfurization device 1 using a differential pressure detector 1 installed in a pipe connecting the desulfurization device 1 and the particle supply pipe 17.
1, and the controller 12 controls opening and closing of the supply device 16.

スタートアップ、シャットダウンあるいは負荷制御時に
は、ガス開閉弁3と粒子用開閉弁18を制御することに
より、常に最適なスパウトベットを形成させる。特にコ
ーン部2のガス流速は7m/S以上に設定することが重
要てこのような条件を取れば安定なスパウトベットが形
成され、粒子の滞留時間も大きくなり脱硫率も大幅に向
上する。
During startup, shutdown, or load control, the gas on-off valve 3 and particle on-off valve 18 are controlled to always form an optimal spout bed. In particular, it is important to set the gas flow velocity in the cone section 2 to 7 m/s or more. If such conditions are adopted, a stable spout bed will be formed, the residence time of the particles will be increased, and the desulfurization rate will also be greatly improved.

また、コーン部2に耐摩耗性の材料、例えばセラミック
ス板を設置することにより、この部分での摩耗も低減で
きる。
Further, by providing a wear-resistant material such as a ceramic plate to the cone portion 2, wear in this portion can also be reduced.

第2図に脱硫装置1下部から排ガスを供給し、コーン部
2の下部から脱硫剤を供給する実施例を示す。この実施
例では、排ガスがコーン部2を通らないために、この部
分での圧力損失が小さくなる特徴を有する。水供給管2
0から脱硫装置lの排ガス供給口4に水をスプレーノズ
ル22を用いて噴霧し、反応に必要な水蒸気分圧に設定
する。
FIG. 2 shows an embodiment in which exhaust gas is supplied from the lower part of the desulfurization apparatus 1 and desulfurization agent is supplied from the lower part of the cone part 2. In this embodiment, since the exhaust gas does not pass through the cone portion 2, the pressure loss in this portion is reduced. water supply pipe 2
Water is sprayed from 0 to the exhaust gas supply port 4 of the desulfurization apparatus 1 using the spray nozzle 22, and the water vapor partial pressure is set to the level required for the reaction.

ここで排ガスは脱硫剤と十分反応しながら脱硫装置1下
部に移動する。脱硫装置1出口部には温度検出器24が
設置されており、ここでの設定温度が飽和温度の10〜
50℃になるように水供給管20に設けた水ポンプ21
の供給量を制御器23によりコントロールする。脱硫装
置1出口の排ガス温度が低下し過ぎると、脱塵装置6で
水分が露結し脱硫剤粒子等が付着して閉塞トラブルの原
因となるため、この部分での温度監視は特に重要となる
Here, the exhaust gas moves to the lower part of the desulfurization apparatus 1 while fully reacting with the desulfurization agent. A temperature detector 24 is installed at the outlet of the desulfurization equipment 1, and the set temperature here is 10 to 10, which is the saturation temperature.
A water pump 21 installed in the water supply pipe 20 to maintain a temperature of 50°C.
A controller 23 controls the supply amount. If the exhaust gas temperature at the outlet of the desulfurization device 1 drops too much, water will condense in the dust removal device 6 and desulfurization agent particles will adhere, causing blockage problems, so temperature monitoring in this part is especially important. .

第3図には、脱塵装置6で回収した粒子の一部を脱硫剤
ホッパ13にリサイクルして、脱硫装置1に供給する実
施例を示す。第1図、第2図においては、脱硫剤と脱塵
装置6で回収した粒子は粒子供給管17内でライン混合
していたが、本実施例では粒子同志の混合が脱硫剤ホッ
パ13で行われるために、より脱硫剤と脱塵装[60収
粒子との混合性は良くなる。この場合、脱塵装置6で回
収した粒子の脱硫剤ホッパ13への供給量は、分離器8
で系外に排出する粒子量でコントロールすれば良い。
FIG. 3 shows an embodiment in which part of the particles collected by the dust removal device 6 is recycled to the desulfurization agent hopper 13 and supplied to the desulfurization device 1. In FIGS. 1 and 2, the desulfurizing agent and the particles collected by the dust removing device 6 are line-mixed in the particle supply pipe 17, but in this embodiment, the particles are mixed in the desulfurizing agent hopper 13. As a result, the desulfurizing agent and the dust particles are better mixed. In this case, the amount of particles collected by the dust removing device 6 to be supplied to the desulfurizing agent hopper 13 is
This can be controlled by controlling the amount of particles discharged outside the system.

第4図に従来のダウンフロー(脱硫剤とガスを脱硫装置
1の上部から下に向がって供給する)と本発明の粒子滞
留時間を比較した結果を示す。粒子として工業用の消石
灰を用いた結果、空塔速度25 c m / sにおけ
る従来法の粒子滞留時間を1とすれば、本発明の粒子滞
留時間は20〜40%増大している。従って本発明を用
いれば脱硫率および脱硫剤のCa利用率も向上する。
FIG. 4 shows the results of comparing the particle residence time of the conventional downflow (desulfurization agent and gas are supplied downward from the top of the desulfurization apparatus 1) and the present invention. As a result of using industrial slaked lime as the particles, the particle residence time of the present invention is increased by 20 to 40% compared to the particle residence time of the conventional method at a superficial velocity of 25 cm/s. Therefore, if the present invention is used, the desulfurization rate and the Ca utilization rate of the desulfurization agent can also be improved.

第5図に反応温度と脱硫率の関係を示す。水蒸気濃度1
2vo ]%でS O2: 2 、000 ppmの模
擬ガスと消石灰をCa / Sのモル比−3の条件で反
応させた結果、従来法(ダウンフローによる方法)に比
べ本発明を用いたスパウトベット脱硫装置の方が脱硫率
が高いことが分かる。特に本発明において、反応温度を
50℃に設定すると、脱硫率は90%以上を達成するこ
とが分かる。
Figure 5 shows the relationship between reaction temperature and desulfurization rate. water vapor concentration 1
As a result of reacting a simulated gas with SO2: 2,000 ppm and slaked lime at a Ca/S molar ratio of -3 at It can be seen that the desulfurization equipment has a higher desulfurization rate. Particularly in the present invention, when the reaction temperature is set at 50° C., it can be seen that a desulfurization rate of 90% or more is achieved.

第6図に、第5図と同様の反応条件における反応温度と
Ca利用率の関係を示す。同一の反応条件においては、
脱硫率と同様にCa利用率は従来法(ダウンフローによ
る方法)より本発明の方が高い。これは本発明の方か粒
子滞留時間が大きいためと考えられる。
FIG. 6 shows the relationship between reaction temperature and Ca utilization rate under the same reaction conditions as in FIG. 5. Under the same reaction conditions,
Similar to the desulfurization rate, the Ca utilization rate is higher in the present invention than in the conventional method (downflow method). This is thought to be due to the longer particle residence time in the present invention.

第7図に、第5図と同様の反応条件における空塔速度と
Ca5O,/CaS○3のモル比の関係を示す。従来法
(ダウンフローによる方法)の空塔速度25 c m 
/ sでのCa S O4/ Ca S O3比を1と
すれば、従来法において空塔速度を75cm、/′Sに
増加すると0.5以下に減少する。しかし本発明におい
ては、ガスと粒子の混合性が良いために空塔速度を50
 c m / sに設定しても、CaS O4/′Ca
 S O3比は1以上であり、従来法に比べ(2)式の
反応が起こる確立が大きいことか分かる。
FIG. 7 shows the relationship between the superficial velocity and the molar ratio of Ca5O,/CaS3 under the same reaction conditions as in FIG. Superficial velocity of conventional method (downflow method): 25 cm
If the Ca S O4/Ca S O3 ratio at /s is 1, then in the conventional method, when the superficial velocity is increased to 75 cm, /'S, it decreases to 0.5 or less. However, in the present invention, the superficial velocity is reduced to 50% due to the good miscibility of gas and particles.
Even if set to cm/s, CaS O4/'Ca
It can be seen that the S O3 ratio is 1 or more, which means that the probability that the reaction of formula (2) will occur is greater than in the conventional method.

以上述べたように、本発明を用いることにより排ガス中
の有害な酸性カスを効率よく除去することが可能となる
As described above, by using the present invention, it becomes possible to efficiently remove harmful acidic scum from exhaust gas.

本実施例で用いる脱硫剤は消石灰、苛性カリ、苛性ソー
ダ、硫酸ナトリウム等のアルカリ金属またはアルカリ土
類金属化合物が適している。
Suitable desulfurizing agents used in this embodiment are alkali metal or alkaline earth metal compounds such as slaked lime, caustic potash, caustic soda, and sodium sulfate.

[発明の効果] 本発明によれば、S02を含む排ガスと脱硫剤粒子を激
しく混合でき、しかも粒子の滞留時間を大きく取れるた
めに、従来法に比べ同一の反応容積においては、S02
ガスの脱硫率および脱硫剤粒子の利用率はいずれも高い
値が得られる。
[Effects of the Invention] According to the present invention, the exhaust gas containing S02 and the desulfurizing agent particles can be mixed vigorously, and the residence time of the particles can be increased, so compared to the conventional method, the S02
High values can be obtained for both the gas desulfurization rate and the desulfurization agent particle utilization rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は本発明の実施例における
脱硫プロセスのフローシート、第4図は粒子滞留時間と
空塔速度の関係を示す図、第5図は反応温度と脱硫率の
関係を示す図、第6図は反応温度とCa利用率の関係を
示す図、第7図は空塔速度とCa S O< / Ca
 S O3比を示した実験データの図、第8図に従来の
脱硫プロセスのフローシートである。 第1図 1 脱硫装置、2・・・コーン部、4・・・排ガス供給
口、6・・脱塵装置、13・・・脱硫剤ホッパ、14・
・・流動媒体ホッパ、19・・・搬送ガス出願人 バブ
コック日立株式会社 代理人 弁理士 松永孝義 はか1名 排ガス供給口 14・流動媒体ホッパ 空塔速度(am/s) 第 図 第 図 第 図 第 図 反応温度(’C)
Figures 1, 2, and 3 are flow sheets of the desulfurization process in an example of the present invention, Figure 4 is a diagram showing the relationship between particle residence time and superficial velocity, and Figure 5 is reaction temperature and desulfurization rate. Figure 6 is a diagram showing the relationship between reaction temperature and Ca utilization rate, Figure 7 is superficial velocity and Ca SO < / Ca
A diagram of experimental data showing the SO3 ratio and a flow sheet of a conventional desulfurization process are shown in FIG. Fig. 1 1 Desulfurization device, 2... Cone part, 4... Exhaust gas supply port, 6... Dust removing device, 13... Desulfurizing agent hopper, 14...
... Fluidized medium hopper, 19... Carrier gas applicant Babcock Hitachi Co., Ltd. Agent Patent attorney Takayoshi Matsunaga 1 person Exhaust gas supply port 14 Fluidized medium hopper superficial velocity (am/s) Fig. Fig. Fig. Diagram Reaction temperature ('C)

Claims (9)

【特許請求の範囲】[Claims] (1)脱硫装置の下部を少なくとも一個以上のコーン構
造を有するコーン部とし、該脱硫装置の下部から酸性有
害物質を含む燃焼排ガスを供給すると同時に、脱硫剤を
コーン部の下部から供給して、該コーン部にスパウトベ
ットを形成することを特徴とするスパウト流動層による
乾式脱硫方法。
(1) The lower part of the desulfurization apparatus is a cone part having at least one cone structure, and at the same time, the combustion exhaust gas containing acidic harmful substances is supplied from the lower part of the desulfurization apparatus, and the desulfurization agent is supplied from the lower part of the cone part, A dry desulfurization method using a spout fluidized bed, characterized in that a spout bed is formed in the cone portion.
(2)脱硫剤に流動媒体を添加することを特徴とする請
求項1記載のスパウト流動層による乾式脱硫方法。
(2) The dry desulfurization method using a spout fluidized bed according to claim 1, characterized in that a fluidized medium is added to the desulfurization agent.
(3)脱硫装置の後続の集塵装置で回収した粒子の少な
くとも一部分を分離して、流動媒体として用いることを
特徴とする請求項2記載のスパウト流動層による乾式脱
硫方法。
(3) The dry desulfurization method using a spout fluidized bed according to claim 2, characterized in that at least a portion of the particles collected in a dust collector subsequent to the desulfurization device is separated and used as a fluidized medium.
(4)スパウトベットの層圧損が一定になるように流動
媒体の供給量を制御することを特徴とする請求項1記載
のスパウト流動層による乾式脱硫方法。
(4) The dry desulfurization method using a spout fluidized bed according to claim 1, characterized in that the supply amount of the fluidized medium is controlled so that the bed pressure loss of the spout bed is constant.
(5)コーン部のガス流速を7m/s以上とすることを
特徴とする請求項1記載のスパウト流動層による乾式脱
硫方法。
(5) The dry desulfurization method using a spout fluidized bed according to claim 1, characterized in that the gas flow velocity in the cone portion is 7 m/s or more.
(6)脱硫装置には水分を供給し、その供給量は脱硫装
置出口ガス温度で制御することを特徴とする請求項1記
載のスパウト流動層による乾式脱硫方法。
(6) The dry desulfurization method using a spout fluidized bed according to claim 1, characterized in that moisture is supplied to the desulfurization device, and the amount of water supplied is controlled by the temperature of the gas at the outlet of the desulfurization device.
(7)脱硫装置の下部に少なくとも一個以上のコーン構
造を有するコーン部を設け、該脱硫装置の下部に酸性有
害物質を含む燃焼排ガス供給口を設け、該コーン部の下
部に脱硫剤供給口を設け、コーン部にスパウトベットを
形成することを特徴とするスパウト流動層を持つ乾式脱
硫装置。
(7) A cone section having at least one cone structure is provided at the bottom of the desulfurization device, a combustion exhaust gas supply port containing acidic harmful substances is provided at the bottom of the desulfurization device, and a desulfurization agent supply port is provided at the bottom of the cone section. A dry desulfurization device having a spout fluidized bed, characterized in that a spout bed is formed in a cone portion.
(8)脱硫装置下部のコーン部に耐摩耗性材料を設置す
ることを特徴とする請求項7記載のスパウト流動層を持
つ乾式脱硫装置。
(8) The dry desulfurization device having a spout fluidized bed according to claim 7, characterized in that a wear-resistant material is installed in the cone section at the bottom of the desulfurization device.
(9)脱硫装置下部のコーン部に燃焼排ガス用およびス
パウトベット形成用流動媒体供給用の開閉弁をそれぞれ
取り付けることを特徴とする請求項7記載のスパウト流
動層を持つ乾式脱硫装置。
(9) The dry desulfurization device having a spout fluidized bed according to claim 7, wherein on-off valves for flue gas and for supplying a fluidized medium for forming a spout bed are respectively attached to the cone portion at the bottom of the desulfurization device.
JP2256709A 1990-09-26 1990-09-26 Dry desulfurizing method with spout fluidized bed Pending JPH04135617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256709A JPH04135617A (en) 1990-09-26 1990-09-26 Dry desulfurizing method with spout fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256709A JPH04135617A (en) 1990-09-26 1990-09-26 Dry desulfurizing method with spout fluidized bed

Publications (1)

Publication Number Publication Date
JPH04135617A true JPH04135617A (en) 1992-05-11

Family

ID=17296379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256709A Pending JPH04135617A (en) 1990-09-26 1990-09-26 Dry desulfurizing method with spout fluidized bed

Country Status (1)

Country Link
JP (1) JPH04135617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247954A (en) * 2008-04-03 2009-10-29 Kanken Techno Co Ltd Filtration type dust collector and waste gas detoxification apparatus using it
JP2017056380A (en) * 2015-09-14 2017-03-23 三菱重工業株式会社 Dry type desulfurization system and exhaust gas treatment equipment
JP2020131110A (en) * 2019-02-19 2020-08-31 大阪瓦斯株式会社 Catalyst container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247954A (en) * 2008-04-03 2009-10-29 Kanken Techno Co Ltd Filtration type dust collector and waste gas detoxification apparatus using it
JP2017056380A (en) * 2015-09-14 2017-03-23 三菱重工業株式会社 Dry type desulfurization system and exhaust gas treatment equipment
JP2020131110A (en) * 2019-02-19 2020-08-31 大阪瓦斯株式会社 Catalyst container

Similar Documents

Publication Publication Date Title
JP3881375B2 (en) Flue gas cleaning device
EP0139802B1 (en) Flue gas desulfurization process
EA010278B1 (en) Method and plant for removing gaseous pollutants from exhaust gases
EP0308217B1 (en) Wet desulfurization process for treating flue gas
US4293524A (en) Method and apparatus for cooling and neutralizing acid gases
EP0114477B1 (en) Method of and apparatus for removing sulfur oxides from hot flue gases
US4614645A (en) Method for treating effluent in exhaust gas treating apparatus
WO2001032296A1 (en) Method and apparatus for binding pollutants in flue gas
PL148177B1 (en) Method of removing sulfur compounds from combustion gases and apparatus therefor
US4600568A (en) Flue gas desulfurization process
HU221181B1 (en) Improved wet scrubbing method and apparatus for removing sulfur oxides from combustion effluents
FI84435C (en) Method and apparatus for cleaning contaminants containing gases
US6254771B1 (en) Method of processing desulfurization absorption liquid and apparatus therefor
EP0752910A1 (en) Method for removing sulphur dioxide from a gas
GB2171400A (en) Desulfurizing exhaust gas
US4375455A (en) Method and apparatus for cooling and neutralizing acid gases
JPH04135617A (en) Dry desulfurizing method with spout fluidized bed
US5034204A (en) Flue gas desulfurization process
JP2002542924A (en) Flue gas cleaning equipment
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JP3068452B2 (en) Wet flue gas desulfurization equipment
JP3823203B2 (en) Semi-dry exhaust gas desulfurization / desalination method
JP2695988B2 (en) Waste gas purification method
JPH06205931A (en) Combustion equipment and flue gas desulfurization method
GB2030469A (en) Cooling and neutralising acid gases