JPH04135343A - Light receiving system - Google Patents

Light receiving system

Info

Publication number
JPH04135343A
JPH04135343A JP2203098A JP20309890A JPH04135343A JP H04135343 A JPH04135343 A JP H04135343A JP 2203098 A JP2203098 A JP 2203098A JP 20309890 A JP20309890 A JP 20309890A JP H04135343 A JPH04135343 A JP H04135343A
Authority
JP
Japan
Prior art keywords
level
signal light
signal
light
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2203098A
Other languages
Japanese (ja)
Inventor
Takashi Mizuochi
隆司 水落
Tadayoshi Kitayama
北山 忠善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2203098A priority Critical patent/JPH04135343A/en
Publication of JPH04135343A publication Critical patent/JPH04135343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain high reception sensitivity even in the receiving state where an optimum threshold value considerably fluctuating by generating a threshold voltage set in advance corresponding to the level of a signal beam and executing automatic control so that the threshold value of an identifying circuit can be set at the optimum value. CONSTITUTION:A light amplifier 10 inputs and amplifies signal light 1, the signal light amplified by a light amplifier element 2a is converted to an electric signal, the electric signal is amplified to a prescribed voltage level by amplifiers 3 and 4, and the amplified output is compared with a set threshold voltage so as to identify the mark and space of the signal light by an identifying circuit 8. When the level detecting value of the input signal light is low, a threshold value control circuit 18 variably controls the threshold voltage, which is set to the identifying circuit 8, in a direction close to an intermediate level between the mark level of the signal light and a space level and when the signal light level is high, the threshold voltage is controlled in a direction close to the space level of the signal light. Thus, even in the receiving state where the optimum threshold value fluctuates considerably, high reception sensitivity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分里〒〕 この発明は、強度変調方式を用いた光通信システムにお
ける光受信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to an optical reception method in an optical communication system using an intensity modulation method.

〔従来の技術〕[Conventional technology]

従来、この種の装置として、第8図に示すようなものが
あった。この図はJ、Boggis他”Broad−b
and、旧gh  5ensitivity  Erb
ium  Amplifier  Re−caiver
  for  0peration  over  W
ide  WavelengthRange、   、
Electronics  Lettersvol、2
6.No、8.pp、532−533.1990に示さ
れたものを詳しく書き直したもので、図において(0)
は光受信器、(10)は光増幅器、(1)は信号光であ
る。
Conventionally, there has been a device of this type as shown in FIG. This figure is from J. Boggis et al. “Broad-b
and, old gh 5ensitivity Erb
ium Amplifier Re-caiver
for 0operation over W
ide WavelengthRange, ,
Electronics Lettersvol.2
6. No, 8. This is a detailed rewrite of the one shown in pp. 532-533.1990, and in the figure (0)
is an optical receiver, (10) is an optical amplifier, and (1) is a signal light.

光受信器(0)において、(2a)は信号光受光用受光
器、(3)はプリアンプ、(4)は利得可変アンプ、(
5)は低域通過フィルタ、(6)はクロック再生回路、
(7)はAGC回路(自動利得調整回路)、(8)は識
別回路、(9)はデータ信号、(80)は閾値電圧であ
る。
In the optical receiver (0), (2a) is a receiver for receiving signal light, (3) is a preamplifier, (4) is a variable gain amplifier, (
5) is a low-pass filter, (6) is a clock recovery circuit,
(7) is an AGC circuit (automatic gain adjustment circuit), (8) is an identification circuit, (9) is a data signal, and (80) is a threshold voltage.

また、光増幅器(10)において、(11)は励起光源
、(12)は励起光、(13)は合波器、(14)はエ
ルビウムドーブファイハ、(15)は光アイソレータ、
(16)は帯域通過光フィルタである。
In the optical amplifier (10), (11) is a pumping light source, (12) is a pumping light, (13) is a multiplexer, (14) is an erbium dove fiber, (15) is an optical isolator,
(16) is a bandpass optical filter.

なお、信号光受光用受光器(2a)としては例えば高速
のフォトダイオードが用いられる。
Note that a high-speed photodiode, for example, is used as the signal light receiver (2a).

次に動作について説明する。Next, the operation will be explained.

信号光(1)は任意のデータ系列で強度変調されており
、光増幅器(10)で増幅された後、信号光受光用受光
器(2a)に入射し電気信号に変換される。
The signal light (1) is intensity-modulated with an arbitrary data sequence, is amplified by an optical amplifier (10), and then enters a signal light receiver (2a) where it is converted into an electrical signal.

その後プリアンプ(3)、利得可変アンプ(4)で増幅
され識別回路(8)に入力される。識別回路(8)には
予め設定された基準電圧である閾値電圧(80)が入力
されており、この電圧と信号電圧との大小関係からデー
タを再生する。なお、AGC回路(7)は低域通過フィ
ルタ(5)通過後の信号振幅を検出することにより、利
得可変アンプ(4)の平均出力が一定になるように利得
可変アンプ(4)の利得を制御している。またクロック
再生回路(6)は識別回路(8)が識別するタイミング
をとるためクロック再生している。
Thereafter, the signal is amplified by a preamplifier (3) and a variable gain amplifier (4) and input to an identification circuit (8). A threshold voltage (80), which is a preset reference voltage, is input to the identification circuit (8), and data is reproduced based on the magnitude relationship between this voltage and the signal voltage. The AGC circuit (7) detects the signal amplitude after passing through the low-pass filter (5) and adjusts the gain of the variable gain amplifier (4) so that the average output of the variable gain amplifier (4) is constant. It's in control. Further, the clock regeneration circuit (6) regenerates the clock in order to obtain the timing for identification by the identification circuit (8).

光増幅器(10)の動作を説明する。本従来例では光増
幅器としてエルビウムトープ光ファイバ増1i器を用い
た例を示す(これに関しては島田禎晋”Erトープファ
イバー光増幅器が光通信に与えるインパクト” Opl
ug  E、no、113.pp、75−82.198
9年に詳しく述へられている)。励起光源(11)から
出力される数十mWの励起光(12)を合波器(13)
を通じてエルビウムドープ光ファイバ(14)に入力す
ると、エルビウムドープ光ファイバ(14)は反転分布
状態となり、合波器(13)から入力された、波長1.
535μmもしくは1.5529 mの信号光(1)が
M先導放出作用によって増幅される。なお、光アイソレ
ータ(15)は反射による発振を防止するため設けられ
ている。帯域通過光フィルタ(16)は波長1.535
 p mもしくは1.552 a mの信号光(1)を
通過させ、波長148μmの励起光を遮断し除去する役
目を果たしている。
The operation of the optical amplifier (10) will be explained. In this conventional example, an example is shown in which an erbium-tope optical fiber amplifier is used as an optical amplifier.
ug E, no, 113. pp, 75-82.198
(described in detail in 1999). A multiplexer (13) combines several tens of mW of pump light (12) output from a pump light source (11).
When the erbium-doped optical fiber (14) is input to the erbium-doped optical fiber (14) through the erbium-doped optical fiber (14), the erbium-doped optical fiber (14) becomes in a population inversion state, and the wavelength 1.
Signal light (1) of 535 μm or 1.5529 m is amplified by M leading emission. Note that the optical isolator (15) is provided to prevent oscillation due to reflection. The bandpass optical filter (16) has a wavelength of 1.535
It plays the role of passing the signal light (1) of pm or 1.552 am and blocking and removing the excitation light of wavelength 148 μm.

本従来例において、信号電力を×1′(マーク)、×0
2(スペース)、雑音の分散を01′(マーク)、σo
2(スペース)とおくと、識別回路(8)において符号
誤り率を最小にする最適閾値レベルD。ptは次式で与
えられる(信号電力で規格化している)。
In this conventional example, the signal power is ×1' (mark), ×0
2 (space), the variance of the noise is 01' (mark), σo
2 (space), the optimal threshold level D that minimizes the bit error rate in the identification circuit (8). pt is given by the following equation (normalized by signal power).

cOXI  十 〇 l  x。cOXI x.

Dopt=                 (X 
o  + X + )σ0 + σ I 第9図は識別回路に入力された信号の雑音確率密度分布
と最適閾値レベルを表している。一般的な、光増幅器を
備えない光受信器では、アンプ(3) 、 (4)の雑
音が支配的であるため、マーク時とスペース時の雑音は
ほぼ均等に分布し、最適閾値レベルは0.5である。こ
のため、本従来例でも閾値電圧(80)はこの付近に固
定されていた。
Dopt= (X
o + X + ) σ0 + σ I Figure 9 shows the noise probability density distribution of the signal input to the identification circuit and the optimal threshold level. In a typical optical receiver without an optical amplifier, the noise from the amplifiers (3) and (4) is dominant, so the mark and space noises are almost evenly distributed, and the optimal threshold level is 0. It is .5. For this reason, the threshold voltage (80) was also fixed in this vicinity in this conventional example.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光受信方式は以上のように識別回路に設定された
閾値電圧が予め固定された状態であるので、雑音の確率
密度が変化するような受信状態、つまり最適閾値が大き
く変動するような受信状態では受信感度の劣化を招くと
いう問題点があった。
As described above, in conventional optical reception systems, the threshold voltage set in the identification circuit is fixed in advance. In this case, there was a problem that reception sensitivity deteriorated.

この発明は上記のような問題点を解決するためになされ
たもので、受信状態によって上記閾値電圧を制御し、常
に高い受信感度が得られる光受信方式を得ることを目的
とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain an optical reception system that can always obtain high reception sensitivity by controlling the threshold voltage according to reception conditions.

(i!題を解決するための手段〕 この発明に係る光受信方式は、信号光を入力し増幅する
光増幅器と、増幅された信号光を電気信号に変換する光
電変換素子と、変換された電気信号を所定の電圧レベル
に増幅する増幅器と、増幅出力を設定された閾値電圧と
比較し、信号光のマーク、スペースを識別する識別回路
と、該識別回路に設定される閾値電圧を、上記入力信号
光のレベル検出値が低い場合は上記信号光のマークレベ
ルとスペースレベルの中間レベルに近づく方向に、また
上記信号光レベルが高い場合は上記信号光のスペースレ
ベルに近づく方向に可変制御する閾値制御回路とを設け
たものである。
(Means for solving the i! problem) The optical receiving system according to the present invention includes an optical amplifier that inputs and amplifies signal light, a photoelectric conversion element that converts the amplified signal light into an electrical signal, and a photoelectric conversion element that converts the amplified signal light into an electrical signal. An amplifier that amplifies an electrical signal to a predetermined voltage level, an identification circuit that compares the amplified output with a set threshold voltage and identifies marks and spaces in the signal light, and a threshold voltage set in the identification circuit, as described above. When the detected level of the input signal light is low, variable control is performed in the direction of approaching the intermediate level between the mark level and the space level of the signal light, and when the signal light level is high, the control is performed in the direction of approaching the space level of the signal light. A threshold control circuit is provided.

〔作用〕[Effect]

この発明によれば、識別回路の閾値は閾値制御回路によ
って信号光レベルが低い場合は閾値を信号光のマークレ
ベルとスペースレベルの中間レベルに近づく方向に、ま
た信号光レヘルが高い場合は閾値を信号光のスペースレ
ベルに近づく方向に自動制御することで信号光レベルに
応じた最適値の閾値か設定される。
According to this invention, the threshold value of the identification circuit is controlled by the threshold value control circuit so that when the signal light level is low, the threshold value is set closer to the intermediate level between the mark level and the space level of the signal light, and when the signal light level is high, the threshold value is adjusted. By automatically controlling in a direction approaching the space level of the signal light, an optimum threshold value is set according to the signal light level.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すブロック図であり、
(0)〜(16)は第8図に示した従来装置と同一のも
のである。
FIG. 1 is a block diagram showing one embodiment of the present invention,
(0) to (16) are the same as the conventional device shown in FIG.

(2b)は光レベルモニタ用受光器であり、例えば低速
のアバランシェフォトダイオードが用いられている。(
16)は一定周波数帯域の信号光を光レベルモニタ用受
光器(2b)に入光する帯域通過光フィルタ、(18)
は閾値電圧制御回路である。
(2b) is a light receiver for monitoring optical level, and uses a low-speed avalanche photodiode, for example. (
16) is a band-pass optical filter that inputs the signal light in a certain frequency band to the light level monitoring receiver (2b); (18)
is a threshold voltage control circuit.

次に、動作原理について説明する。Next, the principle of operation will be explained.

ある程度以上の信号光レベルでは、光増幅器(10)の
発生する雑音はその殆どが信号光と自然放出光の干渉雑
音である。この雑音電力は信号光レベルに比例するため
、スペース時の雑音に比べてマーク時の雑音の方が大き
い(このことは例えば大越孝敬他著゛コヒーレント光通
信工学”′、オム社、東京、第6章、1989年に詳し
く述べられている)。第2図に雑音確率密度の一例を示
す。第9図と異なり、雑音はその殆どがマーク側に分布
している。従って光増幅器を用いない光受信器で通常0
.5付近か最適であった閾値はさらに低いレベルに径行
する。
At a signal light level above a certain level, most of the noise generated by the optical amplifier (10) is interference noise between the signal light and spontaneous emission light. Since this noise power is proportional to the signal light level, the noise at the mark time is larger than the noise at the space time. (Chapter 6, 1989). Figure 2 shows an example of the noise probability density. Unlike Figure 9, most of the noise is distributed on the mark side. Therefore, no optical amplifier is used. Normally 0 on optical receiver
.. The optimal threshold value, which is around 5, is gradually reduced to a lower level.

第3図は最適閾値を信号光レベルを横軸に計算したもの
である。例えばゲイン10dBの光増幅器を用いた場合
、信号光レベルが −35dBmから15dBmまで変
化した時最適閾値も04からOlまて変化する。従って
常に高い受信感度を得るためには信号光レベルに応じて
識別回路(8)に与える閾値電圧を変化させる必要があ
る。
FIG. 3 shows the calculation of the optimum threshold value with the signal light level on the horizontal axis. For example, when using an optical amplifier with a gain of 10 dB, when the signal light level changes from -35 dBm to 15 dBm, the optimum threshold value also changes from 04 to 10 dBm. Therefore, in order to always obtain high reception sensitivity, it is necessary to change the threshold voltage applied to the identification circuit (8) according to the signal light level.

次に、上記動作原理を踏まえて本実施例の動作について
説明する。
Next, the operation of this embodiment will be explained based on the above operating principle.

第1図において、合波器(13)の一方の出力を通して
、光増幅器(lO)に入力される信号光(1)のレベル
をモニタする。帯域通過光フィルタ(16)は不要な励
起光を除去するためのものである。閾値電圧制御回路(
18)は、光レベルモニタ用受光器(2b)でモニタさ
れた信号光(1)のレベルに応じて予め第3図に示すよ
うに設定された闇値電圧を発生する。信号光(1)のレ
ベルが小さい場合は閾値は0.5に近づけ、レベルが犬
ぎくなると閾値を0に近づける制御をする。
In FIG. 1, the level of the signal light (1) input to the optical amplifier (lO) is monitored through one output of the multiplexer (13). The bandpass optical filter (16) is for removing unnecessary excitation light. Threshold voltage control circuit (
18) generates a dark value voltage set in advance as shown in FIG. 3 in accordance with the level of the signal light (1) monitored by the light level monitoring receiver (2b). When the level of the signal light (1) is low, the threshold value is controlled to be close to 0.5, and when the level becomes too high, the threshold value is controlled to be close to 0.

なお、第3図は信号光の消光比(マークとスペースのレ
ベル比)が艶の場合の例である。消光比が小さくなると
、最適閾値の信号光レベル依存性は小さくなる。
Incidentally, FIG. 3 shows an example in which the extinction ratio (level ratio between mark and space) of the signal light is glossy. As the extinction ratio becomes smaller, the dependence of the optimal threshold on the signal light level becomes smaller.

また第4図はこの発明の他の実施例を示すもので、(0
)〜(16)は上記実施例と同一のものである。
Further, FIG. 4 shows another embodiment of the present invention, in which (0
) to (16) are the same as in the above embodiment.

この実施例においては、信号光レベルのモニタをプリア
ンプ(3)の出力を用いて行う構成としたもので、第1
図の実施例において必要であった帯域通過光フィルタ(
16)および光レベルモニタ用受光器(2b)が不要と
なり、部品点数を削減できるという効果がある。
In this embodiment, the signal light level is monitored using the output of the preamplifier (3).
The bandpass optical filter (
16) and the optical receiver for optical level monitoring (2b) are no longer necessary, resulting in the effect that the number of parts can be reduced.

第5図はさらに他の実施例を示すブロック図である。FIG. 5 is a block diagram showing still another embodiment.

図において、(50)は周波数弁別器、(51)は電圧
制御発振器である。第1図の実施例において信号光レベ
ルをモニタしたのと同様にここでも光レベルモニタ用受
光器(2b)で信号光レベルをモニタする。モニタ出力
は電圧制御発振器(51)に入力される。電圧制御発振
器(51)は第6図に示すように入力された電圧に比例
する周波数の信号を出力するものである。この場合、モ
ニタ電圧Oから最大のvIに応じて周波数f。からf、
の信号を発生ずるものとする。発生した信号を励起光源
(11)のバイアスに重畳することによフて励起光(1
2)は周波数f0からf、で微小強度変調される。励起
光(12)が微小強度変調されると、光増幅器(10)
のゲインが変調されるため、増幅された信号光も同様の
微小強度変調を受ける。−力先受信器(0)においで、
プリアンプ(3)の出力の一部を取出し、周波数弁別器
(50)に入力する。周波数弁別器(50)は第7図に
示すように入力された信号の周波数に比例した電圧を発
生ずるものである。これにより、励起光(12)に入力
された信号の周波数を知ることができる。
In the figure, (50) is a frequency discriminator, and (51) is a voltage controlled oscillator. In the same way as the signal light level was monitored in the embodiment shown in FIG. 1, the signal light level is also monitored here using the light level monitoring receiver (2b). The monitor output is input to a voltage controlled oscillator (51). The voltage controlled oscillator (51) outputs a signal with a frequency proportional to the input voltage as shown in FIG. In this case, the frequency f depends on the maximum vI from the monitor voltage O. from f,
The signal shall be generated. By superimposing the generated signal on the bias of the excitation light source (11), the excitation light (1
2) is subjected to minute intensity modulation at frequencies f0 to f. When the excitation light (12) is subjected to minute intensity modulation, the optical amplifier (10)
Since the gain of is modulated, the amplified signal light also undergoes similar minute intensity modulation. - At the destination receiver (0),
A part of the output of the preamplifier (3) is taken out and inputted to the frequency discriminator (50). The frequency discriminator (50) generates a voltage proportional to the frequency of the input signal, as shown in FIG. This makes it possible to know the frequency of the signal input to the excitation light (12).

つまり、信号光(1)のレベルを光受信器(0)側で知
ることかできる。その後、第1図、第4図の例と同様に
閾値電圧制御回路(18)が識別回路(8)に最適な閾
値電圧を与える。なお、ここで周波数f。
In other words, the level of the signal light (1) can be known on the optical receiver (0) side. Thereafter, the threshold voltage control circuit (18) provides the optimum threshold voltage to the identification circuit (8), as in the examples of FIGS. 1 and 4. Note that here the frequency f.

からflはデータ信号(9)の占有帯域より十分低い周
波数であるとする。
It is assumed that fl is a frequency sufficiently lower than the occupied band of the data signal (9).

以上のような構成にすれば、光増幅器(lO)と光受信
器(0)の間に特別に接続線を設けることなく、正確に
信号光(1)のレベルを知ることかできるという効果が
ある。
With the above configuration, the level of the signal light (1) can be accurately determined without providing a special connection line between the optical amplifier (lO) and the optical receiver (0). be.

なお、第5図において信号光(1)のレベルモニタは合
波器(13)の出力を用いて行ったが、これは光アイソ
レータ(15)に接続された帯域通過光フィルタ(16
)の出力を分岐し、モニタする構成としても上記実施例
と同様の効果が得られる。
In Fig. 5, the level of the signal light (1) was monitored using the output of the multiplexer (13), but this was done using the band-pass optical filter (16) connected to the optical isolator (15).
) can also be configured to branch and monitor the outputs, as well, the same effects as in the above embodiment can be obtained.

また以上の実施例では光増幅器としてエルビウムドープ
ファイバ増幅器を用いる例について示したが、これは半
導体光増幅器を用いる構成としても同様の効果が得られ
る。
Further, in the above embodiments, an example is shown in which an erbium-doped fiber amplifier is used as the optical amplifier, but the same effect can be obtained by using a configuration using a semiconductor optical amplifier.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、信号光のレベルに応じ
て予め設定された閾値電圧を発生し、識別回路の閾値が
最適値に設定されるように自動制御されることから、雑
音の確率密度が変化するような受信状態、つまり最適閾
値が大きく変動するような受信状態においても、常に高
い受信感度か得られる光受信方式が得られるという効果
がある。
As described above, according to the present invention, a preset threshold voltage is generated according to the level of signal light, and the threshold voltage of the identification circuit is automatically controlled to be set to the optimum value, so that the noise probability Even in reception conditions where the density changes, that is, in reception conditions where the optimal threshold value fluctuates greatly, an optical reception method that can always provide high reception sensitivity is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は本実施例の原理を説明する図、第3図は閾値電圧制御
回路の状態を示す図、第4図はこの発明の他の実施例を
示すブロック図、第5図はさらに他の実施例を示すブロ
ック図、第6図は電圧制御発振器の特性を示す図、第7
図は周波数弁別器の特性を示す図、第8図は従来の光受
信方式を示すブロック図、第9図は従来方式の動作原理
を説明する図である。 図において、(0)は光受信器、(10)は光増幅器、
(1)は信号光、(2a)は信号光受光用受光器、(2
b)は受光器、(3)はプリアンプ、(4)は利得可変
アンプ、(7)はAI、C回路(自動利得調整口路) 
、(8)は識別回路、(9)はデータ信号、(11)は
励起光源、(12)は励起光、(18)は閾値電圧制御
回路、(80)は閾値電圧。 なお、図中同一符号は同一または相当部分を示す。 0:光受信器 4:利得可変アンプ 10 光増幅器 16 合波器 18 閾値制御回路 スペースxO 雑音の確率密度
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram explaining the principle of this embodiment, FIG. 3 is a diagram showing the state of the threshold voltage control circuit, and FIG. 4 is a diagram showing the state of the threshold voltage control circuit. FIG. 5 is a block diagram showing another embodiment. FIG. 6 is a diagram showing characteristics of the voltage controlled oscillator.
FIG. 8 is a diagram showing the characteristics of a frequency discriminator, FIG. 8 is a block diagram showing a conventional optical reception system, and FIG. 9 is a diagram explaining the operating principle of the conventional system. In the figure, (0) is an optical receiver, (10) is an optical amplifier,
(1) is a signal light, (2a) is a receiver for signal light reception, (2
b) is a photoreceiver, (3) is a preamplifier, (4) is a variable gain amplifier, (7) is an AI, C circuit (automatic gain adjustment port)
, (8) is an identification circuit, (9) is a data signal, (11) is an excitation light source, (12) is an excitation light, (18) is a threshold voltage control circuit, and (80) is a threshold voltage. Note that the same reference numerals in the figures indicate the same or corresponding parts. 0: Optical receiver 4: Variable gain amplifier 10 Optical amplifier 16 Multiplexer 18 Threshold control circuit space xO Noise probability density

Claims (1)

【特許請求の範囲】[Claims] 信号光を入力し増幅する光増幅器と、増幅された信号光
を電気信号に変換する光電変換素子と、変換された電気
信号を所定の電圧レベルに増幅する増幅器と、増幅出力
を設定された閾値電圧と比較し、信号光のマーク、スペ
ースを識別する識別回路と、該識別回路に設定される閾
値電圧を、上記入力信号光のレベル検出値が低い場合は
上記信号光のマークレベルとスペースレベルの中間レベ
ルに近づく方向に、また上記信号光レベルが高い場合は
上記信号光のスペースレベルに近づく方向に可変制御す
る閾値制御回路とを備えたことを特徴とする光受信方式
An optical amplifier that inputs and amplifies signal light, a photoelectric conversion element that converts the amplified signal light into an electrical signal, an amplifier that amplifies the converted electrical signal to a predetermined voltage level, and a threshold value that sets the amplified output. An identification circuit that identifies the marks and spaces of the signal light by comparing the voltage and a threshold voltage set in the identification circuit, and when the level detection value of the input signal light is low, the mark level and space level of the signal light. and a threshold control circuit that performs variable control in a direction approaching an intermediate level of the signal light, or in a direction approaching a space level of the signal light when the signal light level is high.
JP2203098A 1990-07-31 1990-07-31 Light receiving system Pending JPH04135343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203098A JPH04135343A (en) 1990-07-31 1990-07-31 Light receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203098A JPH04135343A (en) 1990-07-31 1990-07-31 Light receiving system

Publications (1)

Publication Number Publication Date
JPH04135343A true JPH04135343A (en) 1992-05-08

Family

ID=16468349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203098A Pending JPH04135343A (en) 1990-07-31 1990-07-31 Light receiving system

Country Status (1)

Country Link
JP (1) JPH04135343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517552A (en) * 2005-08-19 2008-05-22 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Receiver having apparatus for changing judgment threshold level and optical transmission system having the receiver
JP2014068168A (en) * 2012-09-25 2014-04-17 Fujitsu Ltd Optical receiver, optical transmission system and span loss monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517552A (en) * 2005-08-19 2008-05-22 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Receiver having apparatus for changing judgment threshold level and optical transmission system having the receiver
JP2014068168A (en) * 2012-09-25 2014-04-17 Fujitsu Ltd Optical receiver, optical transmission system and span loss monitoring method

Similar Documents

Publication Publication Date Title
US5703711A (en) In-line optical amplifier
US5245690A (en) Optical fiber amplifier including rare earth doped fiber and feedback pump light source control
EP1564915B1 (en) Low relative intensity noise fiber grating type laser diode
US4344173A (en) Stabilization circuit for a digitally operated laser
JP5039037B2 (en) Multimode fiber optical amplifier and optical signal amplification method
GB2301723A (en) Optical receiver with optical pre-amplifier
US5809049A (en) Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter
JP2988261B2 (en) Optical receiving circuit
EP1289175A1 (en) Control circuit for controlling the extinction ratio of a semiconductor laser
US5379143A (en) Optical regenerative-repeater system
US7112777B2 (en) Method and apparatus for protecting optical receivers from overload optical signals
US6342959B1 (en) Transient suppression in an optical wavelength division multiplexed network
JPH04135343A (en) Light receiving system
JPH10150410A (en) Optical power monitor, optical amplifier and optical transmitter
US6646790B2 (en) Optical amplifier gain control monitoring
US6570148B2 (en) Signal input cutoff detector, photo receiver and signal input cutoff detecting method
US5557265A (en) Method and system for indicating an optical transmit amplifier fault
JP3268605B2 (en) Optical amplification repeater transmission system
JPH02273976A (en) Optical amplifier
US6553159B1 (en) Method and system for controlling the output of an optical pump energy source
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
US20030141876A1 (en) Circuit and method for measuring extinction ratio and controlling a laser diode transmitter based thereon
JP2003179552A (en) Light receiving device
JPH0519311A (en) Optical amplification system
JPH10303820A (en) Optical receiver using apd