JPH04135002U - Microstrip line cross circuit - Google Patents

Microstrip line cross circuit

Info

Publication number
JPH04135002U
JPH04135002U JP4110491U JP4110491U JPH04135002U JP H04135002 U JPH04135002 U JP H04135002U JP 4110491 U JP4110491 U JP 4110491U JP 4110491 U JP4110491 U JP 4110491U JP H04135002 U JPH04135002 U JP H04135002U
Authority
JP
Japan
Prior art keywords
transmission line
signal
high frequency
line
frequency signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4110491U
Other languages
Japanese (ja)
Inventor
日登志 鷲見
治夫 小島
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP4110491U priority Critical patent/JPH04135002U/en
Publication of JPH04135002U publication Critical patent/JPH04135002U/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】 【目的】この考案は、自動実装化と共に、共振の安定化
を図るために、マイクロストリップ線路で横断回路を形
成することにある。 【構成】第1の高周波信号を伝送する第1の伝送線路1
0と同一面上において、直流信号あるいは第1の高周波
信号に比して周波数帯が低い第2の高周波信号を伝送す
る第2の伝送線路11を、第1の伝送線路10に対して
略十字状に接続したマイクロストリップ線路で形成し、
その第1の伝送線路10との接点より第1の高周波信号
の中心周波数にとって1/4波長離れた位置で高周波的
に接地するように構成した。これによれり、第2の伝送
線路11が、第1の高周波信号の中心周波数において開
放状態となり、第2の伝送線路11に伝送される直流信
号あるいは第2の高周波信号が第1の伝送線路10に対
して影響を及ぼすことなく伝送可能となる。
(57) [Summary] [Purpose] The purpose of this invention is to form a crossing circuit using microstrip lines in order to achieve automatic mounting and to stabilize resonance. [Configuration] First transmission line 1 that transmits the first high frequency signal
0, the second transmission line 11 for transmitting a DC signal or a second high frequency signal having a lower frequency band than the first high frequency signal is placed approximately at a cross with respect to the first transmission line 10. It is formed by microstrip lines connected in a shape,
It is configured to be grounded in terms of high frequency at a position 1/4 wavelength away from the contact point with the first transmission line 10 with respect to the center frequency of the first high frequency signal. As a result, the second transmission line 11 becomes open at the center frequency of the first high frequency signal, and the DC signal or the second high frequency signal transmitted to the second transmission line 11 is transmitted to the first transmission line. It becomes possible to transmit the data without affecting 10.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、例えばマイクロ波帯、ミリ波帯等で使用されるマイクロ波集積回 路装置に係り、特にその信号を伝送するのに用いられるマイクロストリップ線路 形横断回路に関する。 This idea is based on microwave integrated circuits used in the microwave band, millimeter wave band, etc. A microstrip line related to road equipment, especially used for transmitting signals. Concerning shape crossing circuits.

【0002】0002

【従来の技術】[Conventional technology]

従来、この種のマイクロストリップ線路形横断回路は、図9に示すように第1 の高周波信号の伝送される第1の伝送線路1がマイクロストリップ線路で形成さ れ、この第1の伝送線路1に対して直流信号あるいは第1の高周波信号に比べて 十分に低い第2の高周波信号の伝送される第2の伝送線路2a,2bがマイクロ ストリップ線路で該第1の伝送線路1に対して先端部を所定の間隔離間させて略 十字状に形成される。そして、この第2の伝送線路の第1の伝送線路に対向する 先端部にはランド3a,3bがそれぞれ形成される。このランド3a,3b間に は導線が第1の伝送線路1に対して立体交差させて架設され、この導線4の端部 が半田接続される。また、ランド3a,3bには高周波短絡用コンデンサ5の一 端が接続され、このコンデンサ5の他端は接地スルーホール6a,6bに接続さ れる。 Conventionally, this type of microstrip line cross circuit has a first circuit as shown in FIG. The first transmission line 1 through which the high-frequency signal is transmitted is formed of a microstrip line. , compared to the DC signal or the first high frequency signal to this first transmission line 1. The second transmission lines 2a and 2b, through which a sufficiently low second high frequency signal is transmitted, are micro A strip line whose tip end is spaced apart from the first transmission line 1 by a predetermined distance. Formed in the shape of a cross. Then, this second transmission line faces the first transmission line. Lands 3a and 3b are formed at the tip, respectively. Between this land 3a and 3b A conducting wire is installed to intersect with the first transmission line 1, and the end of this conducting wire 4 is are connected by soldering. Also, one part of the high frequency short circuit capacitor 5 is connected to the lands 3a and 3b. The other end of this capacitor 5 is connected to the grounding through holes 6a and 6b. It will be done.

【0003】 上記構成により、導線は第2の伝送線路2a,2bに伝送される直流信号ある いは第2の高周波信号と、第1の伝送線路1に伝送される第1の高周波信号との 横断回路を構成する。0003 With the above configuration, the conductor has a DC signal transmitted to the second transmission lines 2a and 2b. Or the second high frequency signal and the first high frequency signal transmitted to the first transmission line 1. Configure a crossing circuit.

【0004】 ところが、上記マイクロストリップ線路形横断回路は導線4を第1の伝送線路 1に対して立体交差状に配線しなければならないことにより、その作業が手作業 となるために、実装位置の変動し易く、高精度な実装が困難であると共に、取付 作業に多くの時間を費やすという問題を有していた。また、これによれば、導線 4が第1の伝送線路1から漏れてくる高周波電磁界中を横断することとなるため に、予測の困難な共振が発生する虞を有する。0004 However, in the above microstrip line cross circuit, the conductor 4 is connected to the first transmission line. 1, the work has to be done manually. As a result, the mounting position is likely to fluctuate, making it difficult to perform high-precision mounting. The problem was that it took a lot of time to do the work. Also, according to this, the conductor 4 will cross the high frequency electromagnetic field leaking from the first transmission line 1. However, there is a risk that resonance that is difficult to predict may occur.

【0005】[0005]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

以上述べたように、従来のマイクロストリップ線路形横断回路では、高精度な 実装が困難で、作業に多くの時間を費やすと共に、予測の困難な共振が発生し易 いという問題を有していた。 As mentioned above, conventional microstrip line crossing circuits have high accuracy. Difficult to implement, time consuming, and prone to unpredictable resonances There was a problem with this.

【0006】 この考案は上記の事情に鑑みてなされたもので、構成簡易にして、自動実装化 を実現し得、且つ、共振の安定化を図り得るようにしたマイクロストリップ線路 形横断回路を提供することを目的とする。[0006] This idea was made in view of the above circumstances, and it simplified the configuration and enabled automatic implementation. A microstrip line that achieves this and stabilizes resonance. The purpose is to provide a cross-sectional circuit.

【0007】[0007]

【課題を解決するための手段】[Means to solve the problem]

この考案は第1の信号を伝送するマイクロストリップ線路で形成された第1の 伝送線路と、直流あるいは前記第1の信号に比して周波数帯が低い第2の信号を 伝送するもので、前記第1の伝送線路と同一面上において、該第1の伝送線路に 対して略十字状に接続され、前記第1の伝送線路との接点より前記第1の信号の 中心周波数にとって略1/4波長離れた点が高周波的に接地されるマイクロスト リップ線路で形成された第2の伝送線路とを備えてマイクロストリップ線路形横 断回路を構成したものである。 This idea is based on a first line formed of a microstrip line that transmits the first signal. a transmission line and a direct current or a second signal having a lower frequency band than the first signal. on the same surface as the first transmission line, and on the same surface as the first transmission line. are connected in a substantially cross shape to the first transmission line, and the first signal is transmitted from the contact point with the first transmission line. A microstrike where a point approximately 1/4 wavelength away from the center frequency is grounded at a high frequency. A microstrip line type horizontal transmission line with a second transmission line formed of a lip line. This constitutes a disconnection circuit.

【0008】[0008]

【作用】[Effect]

上記構成によれば、第2の伝送線路は第1の伝送線路との接点から前記第1の 信号の中心周波数にとって略1/4波長の位置が接地されていることにより、第 1の信号の中心周波数において開放状態となる。従って、第2の伝送線路に伝送 される第2の信号は、第1の伝送線路に対して影響を及ぼすことなく、該第2の 伝送線路に伝送される。 According to the above configuration, the second transmission line extends from the contact point with the first transmission line to the first transmission line. Since the position approximately 1/4 wavelength from the center frequency of the signal is grounded, the It becomes an open state at the center frequency of the signal No. 1. Therefore, the transmission to the second transmission line is The second signal sent to the second transmission line is transmitted through the second transmission line without affecting the first transmission line. transmitted to the transmission line.

【0009】[0009]

【実施例】【Example】

以下、この考案の実施例について、図面を参照して詳細に説明する。 Hereinafter, embodiments of this invention will be described in detail with reference to the drawings.

【0010】 図1はこの考案の一実施例に係るマイクロストリップ線路形横断回路を示すも ので、図中10は第1の高周波信号の伝送される第1の伝送線路で、マイクロス トリップ線路で形成される。この第1の伝送線路10の中間部における同一面上 には直流信号あるいは第1の高周波信号に比べて十分に低い第2の高周波信号の 伝送されるマイクロストリップ線路で第2の伝送線路11が略十字状に接続配置 される(図2参照)。そして、この第2の伝送線路11には第1の伝送線路10 との接点から第1の高周波信号の中心周波数にとって略1/4波長の位置が高周 波短絡用コンデンサ12を介して接地用スルーホール13a,13bに接続され て接地される。0010 FIG. 1 shows a microstrip line type crossing circuit according to an embodiment of this invention. Therefore, 10 in the figure is the first transmission line through which the first high-frequency signal is transmitted, and the microscopy Formed by trip lines. On the same plane in the middle part of this first transmission line 10 is a DC signal or a second high frequency signal that is sufficiently lower than the first high frequency signal. The second transmission line 11 is connected in a substantially cross shape on the microstrip line for transmission. (See Figure 2). The second transmission line 11 is connected to the first transmission line 10. The high frequency is approximately 1/4 wavelength from the point of contact with the center frequency of the first high frequency signal. It is connected to the grounding through holes 13a and 13b via the wave shorting capacitor 12. and grounded.

【0011】 上記構成において、第2の伝送線路11は第1の伝送線路10との接点から第 1の高周波信号の中心周波数にとって略1/4波長の位置が接地されていること により、第1の高周波信号の中心周波数において開放状態となる。これにより、 第2の伝送線路11に伝送される直流信号あるいは第2の高周波信号は、第1の 伝送線路10に対してほとんど影響を及ぼすことなく、該第2の伝送線路11に 伝送される。これは、実験的に挿入損失が図3中実線で示す特性Aを有し、その 反射損失が図4中実線で示す特性Bを有することが確認されている。[0011] In the above configuration, the second transmission line 11 is connected to the first transmission line 10 from the contact point with the first transmission line 10. The position of approximately 1/4 wavelength for the center frequency of the high frequency signal of 1 is grounded. This results in an open state at the center frequency of the first high frequency signal. This results in The DC signal or the second high frequency signal transmitted to the second transmission line 11 is to the second transmission line 11 without having almost any effect on the transmission line 10. transmitted. This experimentally shows that the insertion loss has a characteristic A shown by the solid line in Figure 3, and that It has been confirmed that the reflection loss has characteristic B shown by the solid line in FIG.

【0012】 このように、上記マイクロストリップ線路形横断回路は第1の高周波信号を伝 送する第1の伝送線路10と同一面上において、直流信号あるいは第1の高周波 信号に比して周波数帯が低い第2の高周波信号を伝送する第2の伝送線路11を 、第1の伝送線路10に対して略十字状に接続したマイクロストリップ線路で形 成し、その第1の伝送線路10との接点より第1の高周波信号の中心周波数にと って略1/4波長離れた位置で高周波的に接地するように構成した。これによれ ば、第2の伝送線路11は第1の伝送線路10との接点から第1の高周波信号の 中心周波数にとって略1/4波長の位置が接地されていることにより、第1の高 周波信号の中心周波数において開放状態となり、第2の伝送線路11に伝送され る直流信号あるいは第2の高周波信号が第1の伝送線路10に対して影響を及ぼ すことなく伝送可能となる。この結果、従来のような手作業となる導線の配線作 業のない、マイクロストリップ線路を用いた第2の伝送線路11の形成が可能と なることにより、自動実装化が実現され、しかも同一平面上での構成が可能とな ることにより、その立体交差による予測の困難な共振の防止が図れて共振の安定 化が実現される。0012 In this way, the microstrip line type crossing circuit transmits the first high frequency signal. On the same plane as the first transmission line 10 to be transmitted, the DC signal or the first high frequency signal is A second transmission line 11 that transmits a second high frequency signal whose frequency band is lower than that of the signal. , a microstrip line connected to the first transmission line 10 in a substantially cross shape. from the contact point with the first transmission line 10 to the center frequency of the first high frequency signal. It was configured to be grounded at a high frequency at a position approximately 1/4 wavelength away. Thanks to this For example, the second transmission line 11 receives the first high-frequency signal from the contact point with the first transmission line 10. Since the center frequency is grounded at a position approximately 1/4 wavelength, the first high It becomes an open state at the center frequency of the frequency signal and is transmitted to the second transmission line 11. The direct current signal or the second high frequency signal influences the first transmission line 10. It becomes possible to transmit data without As a result, the conventional manual wiring work for conductors has been eliminated. It is possible to form the second transmission line 11 using a microstrip line without any hassle. This makes it possible to realize automatic mounting and also to configure on the same plane. By doing so, it is possible to prevent resonance that is difficult to predict due to the three-dimensional intersection, and stabilize the resonance. will be realized.

【0013】 また、この考案は上記実施例に限ることなく、図5及び図6、図7及び図8に 示すように構成しても良い。但し、図5及び図6、図7及び図8において、上記 図1及び図2と同一部分について、ここでは、同一符号を付して、その説明を省 略する。[0013] Furthermore, this invention is not limited to the above embodiments, but is shown in FIGS. 5, 6, 7, and 8. It may be configured as shown. However, in Figures 5 and 6, Figures 7 and 8, the above The same parts as in Figures 1 and 2 are given the same reference numerals here, and their explanations are omitted. Omitted.

【0014】 図5及び図6の実施例は、第1の伝送線路10に対して第2の伝送線路11a ,11bを、例えば第1の伝送線路10を伝送する第1の高周波信号の中心周波 数にとって(略1/4+n/2)波長(n=正数)だけ離間した2位置より互い に逆方向に延出するように接続構成したものである(図6参照)。これによると 、第1の高周波信号の周波数が所定の中心周波数より若干変動した場合において も、第2の伝送線路11a,11bのサセプタンスを打ち消すことが可能となり 、図1及び図2の実施例に比して帯域を広く採ることが可能となるという利点を 有する。この実施例による挿入損失は、上記図3中破線で示す特性Cを有し、そ の反射損失は上記図4中破線で示す特性Dを有することが実験的に確認されてい る。[0014] In the embodiments of FIGS. 5 and 6, the second transmission line 11a is connected to the first transmission line 10. , 11b, for example, the center frequency of the first high frequency signal transmitted through the first transmission line 10. From two positions separated by a number (approximately 1/4 + n/2) wavelength (n = positive number) The connection structure is such that it extends in the opposite direction (see FIG. 6). according to this , when the frequency of the first high-frequency signal slightly fluctuates from the predetermined center frequency. Also, it becomes possible to cancel the susceptance of the second transmission lines 11a and 11b. , compared to the embodiments shown in FIGS. 1 and 2, the advantage is that it is possible to use a wider band. have The insertion loss according to this example has a characteristic C shown by the broken line in FIG. It has been experimentally confirmed that the reflection loss has the characteristic D shown by the broken line in Figure 4 above. Ru.

【0015】 図7及び図8の実施例は、第1の伝送線路10に対して第2の伝送線路11a ,11bを、例えば第1の伝送線路10を伝送する第1の高周波信号の中心周波 数にとって(略1/4+n/2)波長(n=正数)だけ離間した2位置より互い に逆方向に延出するように接続構成する。そして、第1の伝送線路10の入力側 及び出力側には直流信号と第1の高周波信号に比して周波数帯の低い第2の高周 波信号の伝送を阻止するコンデンサ14が配設される。このコンデンサ14は第 1の伝送線路10に対して直流信号及び第2の高周波信号が伝送されるのを確実 に阻止して、さらに安定した伝送を可能とする。[0015] In the embodiments of FIGS. 7 and 8, the second transmission line 11a is connected to the first transmission line 10. , 11b, for example, the center frequency of the first high frequency signal transmitted through the first transmission line 10. From two positions separated by a number (approximately 1/4 + n/2) wavelength (n = positive number) The connection is configured so that it extends in the opposite direction. And the input side of the first transmission line 10 And on the output side, there is a DC signal and a second high frequency signal whose frequency band is lower than that of the first high frequency signal. A capacitor 14 is provided which blocks the transmission of wave signals. This capacitor 14 is Ensure that the DC signal and the second high frequency signal are transmitted to the first transmission line 10. This enables even more stable transmission.

【0016】 上記第2の高周波信号の伝送を阻止するコンデンサ14としては、上記実施例 で第1の伝送線路10の入力側及び出力側の双方に配設するように構成したが、 これに限ることなく、第1の伝送線路10の入力側及び出力側の少なくとも一方 に配設することにより、略同様の効果が期待される。[0016] As the capacitor 14 for blocking the transmission of the second high frequency signal, the above embodiment However, the first transmission line 10 is arranged on both the input side and the output side of the first transmission line 10. Without being limited to this, at least one of the input side and output side of the first transmission line 10 Substantially the same effect can be expected by arranging it in .

【0017】 また、上記第2の伝送線路11a,11bの第1の伝送線路10との接点であ る2位置の間隔としては、第1の伝送線路10を伝送する第1の高周波信号の中 心周波数にとって(略1/4+n/2)波長(n=正数)だけ離間させたが、こ の離間間隔に限ることなく、必要に応じて適宜に設定しても良い。 よって、この考案は上記実施例に限ることなく、その他、この考案の要旨を逸 脱しない範囲で種々の変形を実施し得ることは勿論のことである。[0017] Also, it is a contact point between the second transmission lines 11a and 11b and the first transmission line 10. The interval between the two positions is determined by the distance between the first high-frequency signals transmitted through the first transmission line 10. For the heart frequency, they were separated by (approximately 1/4 + n/2) wavelength (n = positive number), but this The spacing is not limited to , and may be set appropriately as necessary. Therefore, this invention is not limited to the above-mentioned embodiments, and may be used in other ways that deviate from the gist of this invention. Of course, various modifications can be made without departing from the above.

【0018】[0018]

【考案の効果】[Effect of the idea]

以上詳述したように、この考案によれば、構成簡易にして、自動実装化を実現 し得、且つ、共振の安定化を図り得るようにしたマイクロストリップ線路形横断 回路を提供することができる。 As detailed above, this idea simplifies the configuration and realizes automatic implementation. Microstrip line cross section that can be used to stabilize resonance. The circuit can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この考案の一実施例に係るマイクロストリップ
線路形横断回路を示したの回路図。
FIG. 1 is a circuit diagram showing a microstrip line type crossing circuit according to an embodiment of the present invention.

【図2】図1の配置構成を示した平面図。FIG. 2 is a plan view showing the arrangement shown in FIG. 1;

【図3】図1及び図5の挿入損失の特性を示した図。FIG. 3 is a diagram showing the insertion loss characteristics of FIGS. 1 and 5. FIG.

【図4】図1及び図5の反射損失の特性を示した図。FIG. 4 is a diagram showing the reflection loss characteristics of FIGS. 1 and 5. FIG.

【図5】この考案の他の実施例を示した回路図。FIG. 5 is a circuit diagram showing another embodiment of the invention.

【図6】図5の配置構成を示した平面図。FIG. 6 is a plan view showing the arrangement shown in FIG. 5;

【図7】この考案の他に実施例を示した回路図。FIG. 7 is a circuit diagram showing an embodiment other than this invention.

【図8】図7の配置構成を示した平面図。FIG. 8 is a plan view showing the arrangement shown in FIG. 7;

【図9】従来のマイクロストリップ線路形横断回路の配
置構成を示した平面図。
FIG. 9 is a plan view showing the arrangement of a conventional microstrip line crossing circuit.

【符号の説明】[Explanation of symbols]

10…第1の伝送線路、11,11a,11b…第2の
伝送線路、12…高周波短絡用コンデンサ、13a,1
3b…接地用スルーホール、14…コンデンサ。
10...First transmission line, 11, 11a, 11b...Second transmission line, 12...High frequency short circuit capacitor, 13a, 1
3b...Through hole for grounding, 14...Capacitor.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 第1の信号を伝送するマイクロストリッ
プ線路で形成された第1の伝送線路と、直流あるいは前
記第1の信号に比して周波数帯が低い第2の信号を伝送
するもので、前記第1の伝送線路と同一面上において、
該第1の伝送線路に対して略十字状に接続され、前記第
1の伝送線路との接点より前記第1の信号の中心周波数
にとって略1/4波長離れた点が高周波的に接地される
マイクロストリップ線路で形成された第2の伝送線路と
を具備したことを特徴とするマイクロストリップ線路形
横断回路。
Claim 1: A first transmission line formed of a microstrip line for transmitting a first signal, and a second signal for transmitting direct current or a second signal having a lower frequency band than the first signal. , on the same plane as the first transmission line,
It is connected to the first transmission line in a substantially cross shape, and is grounded at a point approximately 1/4 wavelength away from the contact point with the first transmission line with respect to the center frequency of the first signal. A microstrip line type crossing circuit comprising a second transmission line formed of a microstrip line.
【請求項2】 前記第2の伝送線路は、前記第1の伝送
線路の中間部における所定の間隔離間した2位置から互
いに略逆方向に延出され、かつ前記接点より前記第1の
信号の中心周波数にとって略1/4波長離れた点が高周
波的に接地されるマイクロストリップ線路で形成されて
なることを特徴とする請求項1記載のマイクロストリッ
プ線路形横断回路。
2. The second transmission line extends in substantially opposite directions from two positions spaced apart by a predetermined distance in the middle of the first transmission line, and transmits the first signal from the contact point. 2. The microstrip line type crossing circuit according to claim 1, wherein the microstrip line crossing circuit is formed of a microstrip line which is grounded at high frequency at a point approximately 1/4 wavelength away from the center frequency.
【請求項3】 前記第1の伝送線路の入力側及び出力側
の少なくとも一方に前記第2の信号の伝送を阻止するコ
ンデンサを設けたことを特徴とする請求項1又は請求項
2記載のマイクロストリップ線路形横断回路。
3. The microcontroller according to claim 1, further comprising a capacitor provided on at least one of an input side and an output side of the first transmission line to prevent transmission of the second signal. Strip line type crossing circuit.
JP4110491U 1991-06-03 1991-06-03 Microstrip line cross circuit Pending JPH04135002U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4110491U JPH04135002U (en) 1991-06-03 1991-06-03 Microstrip line cross circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4110491U JPH04135002U (en) 1991-06-03 1991-06-03 Microstrip line cross circuit

Publications (1)

Publication Number Publication Date
JPH04135002U true JPH04135002U (en) 1992-12-16

Family

ID=31921968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4110491U Pending JPH04135002U (en) 1991-06-03 1991-06-03 Microstrip line cross circuit

Country Status (1)

Country Link
JP (1) JPH04135002U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153701A (en) * 1995-11-29 1997-06-10 Toshiba Corp Monolithic microwave integrated circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595347A (en) * 1979-01-12 1980-07-19 Nec Corp Bias power supply circuit for ultrahigh frequency semiconductor device
JPH02295202A (en) * 1989-05-09 1990-12-06 Nec Corp Direct current preventing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595347A (en) * 1979-01-12 1980-07-19 Nec Corp Bias power supply circuit for ultrahigh frequency semiconductor device
JPH02295202A (en) * 1989-05-09 1990-12-06 Nec Corp Direct current preventing circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153701A (en) * 1995-11-29 1997-06-10 Toshiba Corp Monolithic microwave integrated circuit

Similar Documents

Publication Publication Date Title
DE10239796B4 (en) High frequency line converter, component, module and communication device
JP3902072B2 (en) Dielectric waveguide filter and its mounting structure
DE69010726T2 (en) Filter device.
EP1993169A1 (en) Small-size wide-band antenna and radio communication device
US20140306776A1 (en) Planar rf crossover structure with broadband characteristic
KR20060045853A (en) Contact-free element of transition between a waveguide and a microstrip line
DE102005056263B4 (en) Electronic assembly with external impedance matching component connections with uncompensated leads and their method of manufacture
JP2002135003A (en) Waveguide-type dielectric filter
DE102005048274B4 (en) Fully integrated miniaturized radar sensor in LTCC multilayer technology with planar dual antenna device
DE19951371A1 (en) High-frequency circuit with a connector for a printed antenna
DE69829327T2 (en) Dielectric filter, transceiver, and communication device
DE60106510T2 (en) Connection structure for transmission line, high-frequency module and transmission device
EP1324646A2 (en) Jumper chip component and mounting structure therefor
JPH04135002U (en) Microstrip line cross circuit
KR100201742B1 (en) Signal transmission line
JP3008939B1 (en) High frequency circuit board
JP4687714B2 (en) Line converter, high-frequency module, and communication device
JP4271355B2 (en) High frequency line converter
JPH04115604A (en) Microwave circuit
WO2001003243A1 (en) Subassembly with an antenna
JP2828009B2 (en) Microwave / millimeter-wave integrated circuit substrate connection method and connection line
JPH0346563Y2 (en)
JPH0212725Y2 (en)
JP3192252B2 (en) Microwave power distribution circuit
JP2574310B2 (en) Microwave circuit