JPH0413476B2 - - Google Patents

Info

Publication number
JPH0413476B2
JPH0413476B2 JP7185089A JP7185089A JPH0413476B2 JP H0413476 B2 JPH0413476 B2 JP H0413476B2 JP 7185089 A JP7185089 A JP 7185089A JP 7185089 A JP7185089 A JP 7185089A JP H0413476 B2 JPH0413476 B2 JP H0413476B2
Authority
JP
Japan
Prior art keywords
pulp
bleaching
added
sodium silicate
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7185089A
Other languages
Japanese (ja)
Other versions
JPH02251692A (en
Inventor
Iwahiro Uchimoto
Tetsuya Shibata
Michio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Original Assignee
Honshu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP7185089A priority Critical patent/JPH02251692A/en
Publication of JPH02251692A publication Critical patent/JPH02251692A/en
Publication of JPH0413476B2 publication Critical patent/JPH0413476B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はパルプの漂白方法に関し、特に過酸化
物を用いた漂白方法に関する。 [従来の技術] 近年木材パルプ例えば砕木パルプ(GP)、リフ
アイナー砕木パルプ(RGP)、サーモメカニカル
パルプ(TMP)などの機械パルプ(MP)、ケミ
グランドパルプ(CGP)、セミケミカルパルプ
(SCP)などのいわゆる高歩留パルプ、ソーダパ
ルプ(AP)、クラフトパルプ(KP)などの化学
パルプ(CP)更に古紙の脱墨パルプ(DIP)な
ど、ほとんどのパルプについて過酸化水素などの
過酸化物による漂白法の採用が増加している。こ
れは近年の紙の高白色度化の要求並びに排水負荷
増等の環境問題等の事情から従来のナトリウムハ
イドロサルフアイトなどを用いる還元漂白法及び
二酸化塩素などの塩素系漂白剤を過酸化物系漂白
剤に切替えているためとみられる。 ここでは機械パルプを例にとつて過酸化物漂白
の事情と問題点を説明する。 従来は大部分の機械パルプが中低白色度の抄物
に使用されていたが、現在は新聞、中質紙の高
白色度化クラフトパルプの代替としての機械パ
ルプの使用により、機械パルプの需要が増加し、
且つ高白色度のものが要求されるようになつてい
る。 従つて、機械パルプの効率的な漂白法の探索は
紙・パルプ産業における重要な課題の一つであ
る。 機械パルプの白色度の向上が大きい漂白方法と
しては、第一に過酸化水素に代表される過酸化物
漂白法があげられる。 過酸化水素漂白は白色度の向上が大きいほかに
他の漂白剤に比ベリグニンの流出が少ないため、
漂白歩留が良く、不透明度も良好等の特徴があ
る。 しかしながら、過酸化水素は金属イオンの存在
下では、金属イオンが触媒として働き、下記の式
のように反応して分解するという性質を持つてい
る。 H2O2+M*→H2O+1/2O2 M*は金属イオン 機械パルプ製造工程における金属イオンは、外
部からは主として木材チツプより流入し、工程内
では循環白水中に多量に含まれている。従つて、
漂白時、一部の過酸化水素は分解され漂白能力を
失つていることになる。 従来過酸化水素分解による漂白能力の減少制御
には、有機キレート剤(以下キレート剤と略記)
及び珪酸ソーダ(Na2SiO3)が使用されてきた。
この理由はキレート剤には金属イオンをキレート
化し、不活性化する作用があり、珪酸ソーダには
過酸化水素が最も効果を発揮するPHを維持する
緩衝作用とともに、キレート剤と同様金属イオン
を不活性化する作用があるからである。 従来このキレート剤と珪酸ソーダの添加場所
は、図面に示した工程の漂白ミキサーに他の漂白
剤とほぼ同時に添加されるのが普通であつた。 しかしながら、従来の漂白ミキサーへの添加で
は キレート剤と過酸化水素の添加がこぼ同時で
あるため金属イオンとキレート剤、金属イオン
と過酸化水素の競争反応となりキレート剤の能
力が充分に発揮されていない。 キレート剤がパルプ濃度10〜30重量%という
中、高濃度パルプ分散液中への添加となるた
め、金属イオンとの接触が不完全となる。 金属イオンを不活性化する能力を有する珪酸
ソーダが活用されていない。 などの問題点があつた。 これら機械パルプの過酸化物漂白における問題
点は、他のパルプの過酸化物漂白においても共通
の問題であり、これが解決の必要性に迫られてい
た。 [発明が解決しようとする課題] 本発明は、上述の問題点を解消し、パルプの過
酸化物漂白において、金属イオンを不活性化する
ために添加されるキレート剤及び珪酸ソーダが、
それぞれ有効に働いて過酸化物の分解による無効
分解を減らし、高白色度パルプが得られるパルプ
の漂白方法を提供することを目的とする。 [課題を解決するための手段] 本発明者等は上述の問題点について種々研究の
結果、パルプの過酸化物漂白におけるキレート剤
の添加場所を中、高濃度パルプ中から低濃度パル
プ中に変更し、且つ珪酸ソーダを分割添加するこ
とにより、キレート剤及び珪酸ソーダが有効に働
き、過酸化物の無効分解を大幅に減少させ、パル
プの白色度を向上することを見出し、本発明を完
成するに至つた。 すなわち本発明は、パルプ化工程、除塵精選工
程、脱水工程、漂白工程の順に処理する晒パルプ
の製造工程において、有機キレート剤を前記除塵
精選工程で添加し、珪酸ソーダを脱水工程終了後
および漂白工程の2箇所に分けて添加することを
特徴とするパルプの漂白方法である。また、前記
した晒パルプの製造工程において、未晒パルプの
脱水工程で発生する白水を、除塵精選工程に循環
して使用し、その未晒循環白水に対し有機キレー
ト剤を添加し、更に珪酸ソーダを脱水工程終了後
および漂白工程の2箇所に分けて添加することを
特徴とするパルプの漂白方法をも発明範囲に含む
ものである。 図面は一般的な機械パルプ製造工程の中の除
塵・精選工程、脱水工程、漂白工程のフローシー
トの概略を示すもので、このフローシートは他の
化学パルプ、古紙DIPでもほぼ同様である。 機械パルプにおいてはチツプをリフアイナーで
離解してリフアイナーグランドパルプ(RGP)
としたパルプ低濃度分散液をスクリーン、クリー
ナの除塵・精選工程で処理して、除塵・精選した
後、脱水工程で脱水機にかけて高濃度になるよう
に脱水し、次の漂白ミキサーで従来は漂白剤と共
にキレート剤、珪酸ソーダが添加され、漂白タワ
ーで漂白された後、漂白されたパルプ(晒パル
プ)は調成工程へ送られていた。 本発明では、パルプの製造工程の除塵・精選工
程、脱水工程、漂白工程において、キレート剤と
珪酸ソーダをそれぞれ別の工程に添加するもので
ある。具体的にはキレート剤を除塵・精選工程に
添加し、珪酸ソーダを脱水工程の脱水後と漂白ミ
キサーに分割添加する漂白方法であり、また、キ
レート剤を未晒循環白水に添加し、珪酸ソーダを
脱水工程の脱水後と漂白ミキサーに分割添加する
漂白方法である。 珪酸ソーダを脱水工程の脱水後に添加する場
合、脱水機の出口に添加するのが好ましいが、漂
白ミキサーに入るできるだけ前であれば差し支え
ない。 本発明のパルプの漂白方法は、例示の機械パル
プはもちろん、CGP、SCPなどの高収率パルプ、
KP、APなどの化学パルプ、古紙のDIPなどの過
酸化物漂白に適用できる。 過酸化物漂白剤としては、過酸化水素、過酸化
ナトリウム、過炭酸塩、過ホウ酸塩、過酢酸、オ
ゾンなどを用いることができる。過酸化物の添加
量としては公知の添加量でよく、たとえば過酸化
水素では絶乾パルプに対し、0.5〜5%
(H2O2100%換算)程度添加される。 キレート剤としては、特に制限はなく、公知の
ジエチレントリアミンペンタ酢酸塩(DTPA)、
エチレンジアミン・テトラ酢酸塩(EDTA)、ヒ
ドロキシエチレンジアミン・テトラ酢酸塩
(HEDTA)等の有機キレート剤が用いられる。 キレート剤の添加率は絶乾パルプに対し0.05重
量%(40%原液として、以下同様)以上でよい
が、好ましくは0.05〜1.00重量%、より好ましく
は0.20〜0.50重量%である。0.05重量%未満では
金属イオン封鎖効果がなく1.00重量%を越えると
添加量増加に対する顕着な比例効果がえられない
からである。 珪酸ソーダは通常の市販品が用いられ、添加量
は通常の過酸化物漂白に使用する添加量と同一で
よく、たとえば過酸化水素漂白の場合は過酸化水
素1に対し、珪酸ソーダ0.4〜1の比率でよい。 珪酸ソーダは未晒パルプの脱水後と漂白ミキサ
ーに分割添加されるが、分割比率には特に制限は
ない。好ましくは脱水後に1/3〜2/3、漂白
ミキサーに2/3〜1/3である。 [作用] キレート剤を漂白剤添加前の比較的パルプ濃度
が低い除塵・精選工程又は金属イオンを多量に含
む未晒循環白水に添加することにより 金属イオンとキレート剤の接触が良好とな
る。 金属イオンと過酸化物との反応よりも金属イ
オンとキレート剤との反応が優先するため、過
酸化物の分解が抑制される。 等の理由によりキレート剤が有効に使用される。 また、珪酸ソーダを分割添加により、一部を過
酸化物漂白剤添加前(未晒パルプ脱水後)に添加
することで、金属イオンを不活性化する珪酸ソー
ダの能力が生かされ、且つ後で漂白ミキサーに添
加する珪酸ソーダにより漂白時のPHを維持する
緩衝作用も保持される。 上述の理由から過酸化物の無効分解が抑制され
(残過酸化物率増)、白色度の向上が達成されたと
考えられる。 一方、珪酸ソーダの未晒パルプ脱水後への全量
添加はアルカリ焼けにより未晒白色度が低下する
ため好ましくない。 また、珪酸ソーダの除塵・精選工程又は循環白
水系への添加は、 漂白時のPHの維持が困難(脱水工程におい
て珪酸ソーダがパルプから抜けるため) アルカリ焼けによる未晒白色度の低下 白水系でのスケーリングの問題 等が生じるので好ましくない。 従つて、本発明においては、珪酸ソーダの添加
は未晒パルプの脱水後と漂白ミキサーと分割添加
するのが好ましいのである。 [実施例] 以下本発明の実施例を示す。なお、例中の%は
すべて重量%を示す。 実施例 1 針葉樹(道内材25%、外材75%)より製造した
未晒機械パルプRGPを使用し、パルプ濃度1.5%
(対絶乾パルプ、以下同様につき省略)のパルプ
懸濁液(除塵・精選工程内パルプに相当する)を
作つた。 このパルプ懸濁液にDTPA(ダウケミカル社
製・バーセネツクス80)を0.20%添加し、温度80
℃にて3分間撹拌した。これをブフナロート(40
メツシユワイヤーがはつてある)にて吸引濾過
し、パルプ濃度17%のパルプ懸濁液(以下高濃度
パルプと称し、未晒パルプ脱水機出口のパルプに
相当する)を調製した。 この高濃度パルプに1回目(未晒パルプ脱水機
出口に相当する)の珪酸ソーダを1.5%添加し混
合した。その後苛性ソーダを4.3%、2回目(漂
白ミキサー相当する)の珪酸ソーダを1.5%、過
酸化水素を5.5%添加し、パルプ濃度15%とし、
混合後80℃の温度で120分間漂白を行つた。 漂白後パルプ濃度1.0%とし硫酸にてPHを5.0に
調整した。 次いでこのパルプスラリーをTappi標準法試験
用手抄機を用いて常法により坪量100g/m2とな
るように抄紙した。 漂白前後のPH、漂白後の残過酸化水素(H2O2
として)率、白色度を表に示した。 試験方法 PH JIS Z8802に準して測定 残H2O2キングゼツト法(ヨウ素酸還元滴定法)
により測定 白色度 JIS P8123に準じて測定 実施例 2 実施例1においてDTPAを0.50%添加する以外
は実施例1と全く同様にして行つた。結果を表に
示した。 実施例 3 実施例1において、1回目の珪酸ソーダを0.75
%、2回目の珪酸ソーダを2.25%添加する以外は
実施例1と全く同様にして行つた。結果を表に示
した。 実施例 4 実施例1において、1回目の珪酸ソーダを2.25
%、2回目の珪酸ソーダを0.75%添加する以外は
実施例1と全く同様にして行つた。結果を表に示
した。 実施例 5 実施例1においてDTPAを0.10%添加する以外
は実施例1と全く同様にして行つた。結果を表に
した。 実施例 6 実施例1において、DTPAを1.10%添加する以
外は実施例1と全く同様にして行つた。結果を表
に示した。 実施例 7 実施例1において、除塵・精選工程内パルプに
相当する濃度1.5%のパルプに代えて、下記のよ
うにして調製した未晒循環白水にDTPAを添加
して、温度80℃にて10秒間撹拌後、再び濃度8%
パルプに戻し、脱水前のパルプに加える以外は実
施例1と全く同様にして行つた。結果を表に示し
た。未晒循環白水の調製 実施例1において製造した濃度1.5%のパルプ
懸濁液をブフナロート(40メツシユワイヤーがは
つてある)にてパルプ濃度が8%になるまで吸引
濾過し、この時の濾液を未晒白水とする。 従来例 1 実施例1においてDTPAを添加せず、珪酸ソ
ーダの分割添加を行なわず、2回目(漂白ミキサ
ーに相当)の所で一度に3.0%添加する以外は実
施例1と全く同様にして行つた。結果を表に示し
た。 従来例 2 実施例1においてDTPA0.20%を除塵・精選工
程のパルプに相当する濃度1.5%のパルプ懸濁液
に添加するのに代えて、未晒パルプ脱水後の高濃
度パルプに添加し、同時に珪酸ソーダを1回目に
1度に3.0%添加した以外は実施例1と全く同様
にして行つた。結果を表に示した。 比較例 1 実施例1においてDTPAの添加を行わない以
外は、実施例1と全く同様にして行つた。結果を
表に示した。 比較例 2 実施例1においてDTPAを0.02%添加する以外
は、実施例1と全く同様にして行つた。 比較例 3 実施例1において1回目で珪酸ソーダの全量
3.0%添加してしまう以外は、実施例1と全く同
様にして行つた。結果を表に示した。 比較例 4 実施例1において1回目のNa2SiO3の添加は行
わず、2回目のNaSiO3を3.0%添加した以外は実
施例1と全く同様にして行つた。結果を表に示し
た。 比較例 5 実施例1において1回目の珪酸ソーダの添加を
未晒パルプ脱水後のパルプに相当する濃度17%の
パルプ懸濁液に添加するのに代えて、実施例6で
得た未晒白水に添加し、温度80℃にて10秒間撹拌
後、再び濃度8%のパルプ懸濁液に戻して、脱水
前のDTPAを添加したパルプに加える以外は、
実施例1と全く同様にして行つた。 結果は表に示した。
[Industrial Field of Application] The present invention relates to a pulp bleaching method, and particularly to a bleaching method using peroxide. [Prior art] In recent years, wood pulps such as groundwood pulp (GP), refined groundwood pulp (RGP), mechanical pulp (MP) such as thermomechanical pulp (TMP), chemical ground pulp (CGP), semi-chemical pulp (SCP), etc. Most pulps, including so-called high-yield pulps, chemical pulps (CP) such as soda pulp (AP) and kraft pulp (KP), as well as deinked pulp (DIP) made from waste paper, are bleached with peroxides such as hydrogen peroxide. Adoption of the law is increasing. Due to the recent demand for high whiteness of paper and environmental problems such as increased wastewater load, this method has been replaced by conventional reductive bleaching method using sodium hydrosulfite and chlorine bleaching agent such as chlorine dioxide by peroxide bleaching method. This appears to be due to switching to bleach. Here, the circumstances and problems of peroxide bleaching will be explained using mechanical pulp as an example. In the past, most mechanical pulp was used for papermaking with medium to low brightness, but now the demand for mechanical pulp is increasing due to its use as an alternative to high brightness kraft pulp for newspapers and medium-quality paper. increases,
In addition, there is a growing demand for materials with high whiteness. Therefore, the search for an efficient bleaching method for mechanical pulp is one of the important issues in the paper and pulp industry. The first bleaching method that greatly improves the whiteness of mechanical pulp is peroxide bleaching, typified by hydrogen peroxide. In addition to greatly improving whiteness, hydrogen peroxide bleaching produces less verignin than other bleaching agents.
It has the characteristics of good bleaching yield and good opacity. However, hydrogen peroxide has the property that in the presence of metal ions, the metal ions act as a catalyst and react and decompose as shown in the following formula. H 2 O 2 +M * →H 2 O + 1/2O 2 M * is a metal ion Metal ions in the mechanical pulp manufacturing process mainly flow in from the outside through wood chips, and are contained in large amounts in the circulating white water within the process. . Therefore,
During bleaching, some hydrogen peroxide is decomposed and loses its bleaching ability. Conventionally, organic chelating agents (hereinafter abbreviated as chelating agents) have been used to control the decrease in bleaching ability due to hydrogen peroxide decomposition.
and sodium silicate (Na 2 Si O 3 ) have been used.
The reason for this is that chelating agents have the effect of chelating and inactivating metal ions, and sodium silicate has a buffering effect that maintains the pH at which hydrogen peroxide is most effective. This is because it has an activating effect. Conventionally, the chelating agent and sodium silicate were added to the bleaching mixer in the process shown in the drawings at almost the same time as other bleaching agents. However, in conventional bleach mixers, the chelating agent and hydrogen peroxide are added at the same time, resulting in competitive reactions between the metal ions and the chelating agent, and between the metal ions and hydrogen peroxide, which prevents the chelating agent from fully demonstrating its ability. Not yet. Since the chelating agent is added to a high-concentration pulp dispersion with a pulp concentration of 10 to 30% by weight, contact with metal ions is incomplete. Sodium silicate, which has the ability to deactivate metal ions, is underutilized. There were other problems. These problems in peroxide bleaching of mechanical pulp are common problems in peroxide bleaching of other pulps, and there has been an urgent need to solve these problems. [Problems to be Solved by the Invention] The present invention solves the above-mentioned problems, and in peroxide bleaching of pulp, the chelating agent and sodium silicate added to inactivate metal ions are
The object of the present invention is to provide a method for bleaching pulp that works effectively to reduce ineffective decomposition due to decomposition of peroxide, and which can yield pulp with high whiteness. [Means for Solving the Problems] As a result of various studies regarding the above-mentioned problems, the present inventors changed the addition location of the chelating agent in peroxide bleaching of pulp from medium and high concentration pulp to low concentration pulp. In addition, they discovered that by adding sodium silicate in portions, the chelating agent and sodium silicate work effectively, significantly reducing the ineffective decomposition of peroxide, and improving the whiteness of the pulp, and completed the present invention. It came to this. That is, in the bleached pulp manufacturing process, which is performed in the order of pulping process, dust removal and selection process, dehydration process, and bleaching process, the present invention adds an organic chelating agent in the dust removal and selection process, and adds sodium silicate to the bleaching process after the dehydration process and after the bleaching process. This is a method for bleaching pulp, which is characterized in that it is added at two separate points in the process. In addition, in the bleached pulp manufacturing process described above, the white water generated in the dehydration process of unbleached pulp is circulated and used in the dust removal and cleaning process, and an organic chelating agent is added to the unbleached circulating white water, and then a sodium silicate The scope of the invention also includes a pulp bleaching method characterized in that the pulp is added in two parts: after the dehydration step and in the bleaching step. The drawing shows an outline of the flow sheet for the dust removal/selection process, dewatering process, and bleaching process in the general mechanical pulp manufacturing process, and this flow sheet is almost the same for other chemical pulps and waste paper DIP. In mechanical pulping, chips are disintegrated with a refiner to produce refined ground pulp (RGP).
The low-concentration pulp dispersion liquid is processed through the dust removal and selection process using a screen and cleaner, and after dust removal and selection, it is dehydrated by a dehydrator in the dehydration process to achieve a high concentration, and then the next bleaching mixer is used to bleach the liquid. A chelating agent and sodium silicate were added together with the bleaching agent, and after bleaching in a bleaching tower, the bleached pulp (bleached pulp) was sent to a preparation process. In the present invention, the chelating agent and the sodium silicate are added in separate steps in the dust removal/selection step, dehydration step, and bleaching step of the pulp manufacturing process. Specifically, this is a bleaching method in which a chelating agent is added to the dust removal/selection process, and sodium silicate is added separately after dehydration in the dehydration process and to the bleaching mixer. This is a bleaching method in which it is added separately after the dehydration process and to the bleach mixer. When sodium silicate is added after dehydration in the dehydration step, it is preferably added at the outlet of the dehydrator, but it may be added as far as possible before entering the bleach mixer. The pulp bleaching method of the present invention can be applied not only to the exemplified mechanical pulp, but also to high-yield pulp such as CGP and SCP.
It can be applied to peroxide bleaching of chemical pulp such as KP and AP, and DIP of waste paper. As the peroxide bleaching agent, hydrogen peroxide, sodium peroxide, percarbonate, perborate, peracetic acid, ozone, etc. can be used. The amount of peroxide to be added may be a known amount; for example, hydrogen peroxide may be added in an amount of 0.5 to 5% based on bone dry pulp.
(calculated as 100% H 2 O 2 ). There are no particular limitations on the chelating agent, and known diethylenetriaminepentaacetate (DTPA),
Organic chelating agents such as ethylenediamine tetraacetate (EDTA) and hydroxyethylenediamine tetraacetate (HEDTA) are used. The addition rate of the chelating agent may be 0.05% by weight or more (as a 40% stock solution, the same applies hereinafter) to the bone dry pulp, but preferably 0.05 to 1.00% by weight, more preferably 0.20 to 0.50% by weight. This is because if it is less than 0.05% by weight, there is no effect of sequestering metal ions, and if it exceeds 1.00% by weight, no noticeable proportional effect can be obtained as the amount added increases. A commercially available commercially available sodium silicate product may be used, and the amount added may be the same as that used for normal peroxide bleaching. For example, in the case of hydrogen peroxide bleaching, 1 part hydrogen peroxide to 0.4 to 1 part sodium silicate. The ratio of Sodium silicate is added in portions to the unbleached pulp after dehydration and to the bleaching mixer, but there is no particular restriction on the dividing ratio. Preferably, the amount is 1/3 to 2/3 after dehydration, and 2/3 to 1/3 in the bleach mixer. [Function] By adding the chelating agent to the dust removal/selection process where the pulp concentration is relatively low before adding bleach or to unbleached circulating white water containing a large amount of metal ions, good contact between the metal ions and the chelating agent is achieved. Since the reaction between the metal ions and the chelating agent has priority over the reaction between the metal ions and the peroxide, decomposition of the peroxide is suppressed. Chelating agents are effectively used for these reasons. In addition, by adding sodium silicate in portions and adding a portion before adding peroxide bleach (after dehydrating the unbleached pulp), the ability of sodium silicate to inactivate metal ions can be utilized, and the ability of sodium silicate to inactivate metal ions can be utilized. The sodium silicate added to the bleach mixer also maintains a buffering effect that maintains the pH during bleaching. It is believed that for the above-mentioned reasons, the ineffective decomposition of peroxide was suppressed (residual peroxide ratio increased), and the whiteness was improved. On the other hand, adding the entire amount of sodium silicate to the unbleached pulp after dehydration is not preferred because the unbleached whiteness decreases due to alkali burning. In addition, adding sodium silicate to the dust removal/selection process or circulating white water system makes it difficult to maintain the pH during bleaching (because sodium silicate comes out of the pulp during the dehydration process).Decrease in unbleached whiteness due to alkali burning. This is not preferable because problems such as scaling may occur. Therefore, in the present invention, it is preferable that sodium silicate is added in parts after the unbleached pulp is dehydrated and after the bleaching mixer is added. [Example] Examples of the present invention will be shown below. In addition, all % in an example shows weight %. Example 1 Unbleached mechanical pulp RGP made from softwood (25% wood from Hokkaido, 75% wood from outside) was used, and the pulp concentration was 1.5%.
A pulp suspension (corresponding to the pulp in the dust removal and selection process) was made. 0.20% of DTPA (Versenex 80 manufactured by Dow Chemical Company) was added to this pulp suspension, and the temperature was 80°C.
The mixture was stirred at ℃ for 3 minutes. Add this to Buchnarot (40
A pulp suspension with a pulp concentration of 17% (hereinafter referred to as high-concentration pulp, which corresponds to the pulp at the outlet of the unbleached pulp dehydrator) was prepared by suction filtration using a mesh wire (equipped with a mesh wire). To this high concentration pulp, 1.5% of sodium silicate was added for the first time (corresponding to the outlet of the unbleached pulp dehydrator) and mixed. After that, 4.3% caustic soda, 1.5% sodium silicate (corresponding to a bleach mixer) for the second time, and 5.5% hydrogen peroxide were added to make the pulp concentration 15%.
After mixing, bleaching was carried out at a temperature of 80°C for 120 minutes. After bleaching, the pulp concentration was adjusted to 1.0% and the pH was adjusted to 5.0 with sulfuric acid. Next, this pulp slurry was made into paper with a basis weight of 100 g/m 2 by a conventional method using a Tappi standard method test hand paper machine. PH before and after bleaching, residual hydrogen peroxide (H 2 O 2
) and whiteness are shown in the table. Test method PH Measured according to JIS Z8802 Residual H 2 O 2 Kingset method (iodate reduction titration method)
Measured by Whiteness Measurement according to JIS P8123 Example 2 The same procedure as in Example 1 was carried out except that 0.50% of DTPA was added. The results are shown in the table. Example 3 In Example 1, the first sodium silicate was added to 0.75
Example 1 was carried out in exactly the same manner as in Example 1, except that 2.25% of sodium silicate was added for the second time. The results are shown in the table. Example 4 In Example 1, the first sodium silicate was 2.25
Example 1 was carried out in exactly the same manner as in Example 1 except that 0.75% of sodium silicate was added for the second time. The results are shown in the table. Example 5 The same procedure as in Example 1 was carried out except that 0.10% of DTPA was added. The results were tabulated. Example 6 The same procedure as in Example 1 was carried out except that 1.10% of DTPA was added. The results are shown in the table. Example 7 In Example 1, instead of using pulp with a concentration of 1.5%, which corresponds to the pulp in the dust removal and screening process, DTPA was added to unbleached circulating white water prepared as follows, and the mixture was heated at a temperature of 80°C for 10 minutes. After stirring for seconds, the concentration is 8% again.
The same procedure as in Example 1 was carried out except that the mixture was returned to the pulp and added to the pulp before dehydration. The results are shown in the table. Preparation of unbleached circulating white water The pulp suspension with a concentration of 1.5% produced in Example 1 was suction filtered using a Buchner funnel (equipped with 40 mesh wires) until the pulp concentration reached 8%, and the filtrate at this time was is unbleached white water. Conventional Example 1 The process was carried out in exactly the same manner as in Example 1, except that DTPA was not added in Example 1, sodium silicate was not added in portions, and 3.0% was added at once in the second time (corresponding to a bleach mixer). Ivy. The results are shown in the table. Conventional Example 2 In Example 1, instead of adding 0.20% DTPA to the pulp suspension with a concentration of 1.5% corresponding to the pulp in the dust removal and sorting process, it was added to the high concentration pulp after dehydration of the unbleached pulp, At the same time, the same procedure as in Example 1 was carried out except that 3.0% of sodium silicate was added at one time. The results are shown in the table. Comparative Example 1 The same procedure as in Example 1 was carried out except that DTPA was not added. The results are shown in the table. Comparative Example 2 The same procedure as in Example 1 was carried out except that 0.02% of DTPA was added. Comparative Example 3 In Example 1, the entire amount of sodium silicate was
The procedure was carried out in exactly the same manner as in Example 1, except that 3.0% was added. The results are shown in the table. Comparative Example 4 The same procedure as in Example 1 was carried out except that the first addition of Na 2 Si O 3 in Example 1 was not performed, and 3.0% of NaSi O 3 was added in the second time. The results are shown in the table. Comparative Example 5 Instead of adding sodium silicate for the first time in Example 1 to a pulp suspension with a concentration of 17% corresponding to the pulp after dehydration of the unbleached pulp, the unbleached white water obtained in Example 6 was added. After stirring for 10 seconds at a temperature of 80°C, the suspension was returned to a pulp suspension with a concentration of 8% and added to the pulp to which DTPA had been added before dehydration.
It was carried out in exactly the same manner as in Example 1. The results are shown in the table.

【表】 表に示す結果から、本発明のキレート剤を除
塵・精選工程に添加し、珪酸ソーダを未晒パルプ
脱水機出口と漂白ミキサーに分割添加した実施例
1〜6は、珪酸ソーダのみを添加した場合(従来
例1)、漂白ミキサーでキレート剤を珪酸ソーダ
を一度に添加した場合(従来例2)よりはもちろ
ん、キレート剤を添加せずに、珪酸ソーダを分割
添加した場合(比較例1)、除塵・精選工程でキ
レート剤を添加して、後の漂白ミキサーで珪酸ソ
ーダを一度に添加した場合(比較例4)のいずれ
の方法よりも、漂白して得られるパルプの白色度
が向上し、残H2O2率も実施例1〜5がいずれも
高く、過酸化水素の無効分解が少ないことを裏付
けている。 また、実施例7の結果は、キレート剤を未晒循
環白水に添加しても、除塵・精選工程に添加した
場合と同様な結果が得られることを示している。 比較例2はキレート剤の添加量が少なすぎると
白色度向上の効果が得られないことを示し、比較
例3はキレート剤を添加しても珪酸ソーダを未晒
パルプの脱水機出口で一度に添加してしまうと同
様に白色度の向上の効果が期待できないことを示
している。 比較例5は珪酸ソーダの1回目の添加を未晒循
環白水に行うと白色度が急激に低下することを示
している。 [発明の効果] 以上詳述したように、本発明のパルプの漂白方
法は、過酸化物漂白に際し、パルプ製造工程の除
塵・精選工程又は未晒循環白水中にキレート剤を
添加し、且つ珪酸ソーダを未晒パルプ脱水後と漂
白ミキサーへ分割添加することにより、キレート
剤及び珪酸ソーダがそれぞれ金属イオンに対して
有効に作用して、過酸化物の分解による無効分解
を減らし、高白色度パルプが得られる。
[Table] From the results shown in the table, it can be seen that in Examples 1 to 6, in which the chelating agent of the present invention was added to the dust removal/selection process, and sodium silicate was added dividedly to the outlet of the unbleached pulp dehydrator and the bleaching mixer, only sodium silicate was added. (Conventional Example 1), when adding the chelating agent and sodium silicate at once using a bleach mixer (Conventional Example 2), and when adding the sodium silicate in portions without adding the chelating agent (Comparative Example) 1) The whiteness of the pulp obtained by bleaching is higher than either method (Comparative Example 4) in which a chelating agent is added in the dust removal/selection process and sodium silicate is added all at once in the subsequent bleaching mixer. The residual H 2 O 2 ratio was also high in Examples 1 to 5, which proves that there is little ineffective decomposition of hydrogen peroxide. Furthermore, the results of Example 7 show that even when a chelating agent is added to unbleached circulating white water, the same results as when added to the dust removal/selection process can be obtained. Comparative Example 2 shows that if the amount of chelating agent added is too small, the effect of improving whiteness cannot be obtained, and Comparative Example 3 shows that even if a chelating agent is added, sodium silicate is not added at once to the unbleached pulp at the dehydrator outlet. This shows that if it is added, the effect of improving whiteness cannot be expected. Comparative Example 5 shows that when the first addition of sodium silicate is made to unbleached circulating white water, the whiteness decreases rapidly. [Effects of the Invention] As detailed above, the pulp bleaching method of the present invention includes adding a chelating agent to the dust removal/selection step of the pulp manufacturing process or unbleached circulating white water during peroxide bleaching, and By adding soda separately to the unbleached pulp after dehydration and to the bleaching mixer, the chelating agent and sodium silicate each act effectively on metal ions, reducing ineffective decomposition caused by peroxide decomposition, and producing high whiteness pulp. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は一般的な機械パルプ製造工程の内本発明
の方法を適用する部分の工程を示すフローシート
の概略図である。
The drawing is a schematic diagram of a flow sheet showing a part of a general mechanical pulp manufacturing process to which the method of the present invention is applied.

Claims (1)

【特許請求の範囲】 1 パルプ化工程、除塵精選工程、脱水工程、漂
白工程の順に処理する晒パルプの製造工程におい
て、有機キレート剤を前記の除塵精選工程で添加
し、珪酸ソーダを脱水工程終了後および漂白工程
の2箇所に分けて添加することを特徴とするパル
プの漂白方法。 2 パルプ化工程、除塵精選工程、脱水工程、漂
白工程の順に行う晒パルプの製造工程において、
未晒パルプの脱水工程で発生する白水を除塵精選
工程に循環して使用し、その未晒循環白水に有機
キレート剤を添加し、珪酸ソーダを脱水工程終了
後及び漂白工程の2箇所に分けて添加することを
特徴とするパルプの漂白方法。
[Scope of Claims] 1. In the manufacturing process of bleached pulp, which is processed in the order of pulping process, dust removal and selection process, dehydration process, and bleaching process, an organic chelating agent is added in the dust removal and selection process, and sodium silicate is added at the end of the dehydration process. A pulp bleaching method characterized in that the pulp is added in two parts: after the bleaching process and after the bleaching process. 2. In the bleached pulp manufacturing process, which is performed in the order of pulping process, dust removal and selection process, dehydration process, and bleaching process,
The white water generated in the dehydration process of unbleached pulp is circulated to the dust removal and cleaning process, an organic chelating agent is added to the unbleached circulating white water, and the sodium silicate is divided into two parts: after the dehydration process and in the bleaching process. A pulp bleaching method characterized by adding the following:
JP7185089A 1989-03-27 1989-03-27 Bleaching method for wood pulp Granted JPH02251692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185089A JPH02251692A (en) 1989-03-27 1989-03-27 Bleaching method for wood pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185089A JPH02251692A (en) 1989-03-27 1989-03-27 Bleaching method for wood pulp

Publications (2)

Publication Number Publication Date
JPH02251692A JPH02251692A (en) 1990-10-09
JPH0413476B2 true JPH0413476B2 (en) 1992-03-09

Family

ID=13472427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185089A Granted JPH02251692A (en) 1989-03-27 1989-03-27 Bleaching method for wood pulp

Country Status (1)

Country Link
JP (1) JPH02251692A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914646B2 (en) * 2006-07-21 2011-03-29 Nalco Company Compositions and processes for paper production

Also Published As

Publication number Publication date
JPH02251692A (en) 1990-10-09

Similar Documents

Publication Publication Date Title
CA2652325C (en) Process for producing bleached pulp
US5639348A (en) Bleaching compositions comprising sulfamates and borates or gluconates and processes
EP0464059B1 (en) Method of de-inking waste paper materials
EP0466411A1 (en) Two-stage peroxide bleaching process
JPH0860574A (en) Method for decreasing fluorescence in deinked pulp
CA2669032C (en) An improved bleaching process with at least one extraction stage
RU2439232C2 (en) Method of bleaching paper pulp by final ozone treatment at high temperature
US20080087390A1 (en) Multi-step pulp bleaching
JPH0413476B2 (en)
US20110240238A1 (en) Process of bleaching hardwood pulps in a D1 or D2 stage in a presence of a weak base
JP5285896B2 (en) Process for producing bleached alkaline chemical pulp
JP5471050B2 (en) TCF bleaching method
US4132589A (en) Delignification and bleaching of cellulose pulp
JP3325324B2 (en) Method for delignification of crude cellulose
EP0639666A1 (en) Quaternary compounds as brightness enhancers
EP0670929A1 (en) Process for bleaching of lignocellulose-containing pulp.
US2001268A (en) Pulp treating process
CA1274655A (en) Process for the bleaching of ns-aq or sap pulp
RU2516846C2 (en) Silicon oxide-containing composition
JP4304392B2 (en) Non-wood pulp bleaching method
JP3237681B2 (en) Method for producing thiourea dioxide and method for bleaching paper pulp using thiourea dioxide by the method
JP3478335B2 (en) Method for bleaching paper pulp
JPH076148B2 (en) Bleaching method for lignocellulosic material
JP2005240188A (en) Method for producing waste paper pulp and waste paper pulp
SK117593A3 (en) Process for bleaching of lignocellulose containing pulp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees