JPH0413442A - Apparatus for continuously casting molten metal - Google Patents
Apparatus for continuously casting molten metalInfo
- Publication number
- JPH0413442A JPH0413442A JP11737290A JP11737290A JPH0413442A JP H0413442 A JPH0413442 A JP H0413442A JP 11737290 A JP11737290 A JP 11737290A JP 11737290 A JP11737290 A JP 11737290A JP H0413442 A JPH0413442 A JP H0413442A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- electromagnetic coil
- molten steel
- electromagnetic
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005266 casting Methods 0.000 title claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 11
- 239000002184 metal Substances 0.000 title claims abstract description 11
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 238000009749 continuous casting Methods 0.000 claims abstract description 10
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 22
- 230000010355 oscillation Effects 0.000 abstract description 7
- 238000005204 segregation Methods 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract 1
- 230000018109 developmental process Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000002474 experimental method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は溶融金属の連続鋳造に関し、特に、溶鋼に対し
てピンチ力を付与するために鋳型の外側に配置された電
磁コイルによって溶鋼に磁束を供給する設備に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the continuous casting of molten metal, and in particular to the continuous casting of molten metal, in which magnetic flux is applied to the molten steel by an electromagnetic coil placed outside the mold in order to apply a pinch force to the molten steel. Regarding equipment that supplies
[従来の技術]
溶融金属の連続鋳造設備においては、従来より、鋳型の
外側に配置した電磁コイルによって、鋳型内の溶鋼にピ
ンチ力と呼ばれる力を与えることが行なわれている。即
ち、電磁コイルに印加する交流電流により生じた交流磁
場によって溶鋼内の周方向に向かう渦電流が発生し、こ
の渦電流と外部磁界との相互作用によって、溶鋼が中心
側に向かう方向、即ち溶鋼を絞り込む方向にピンチ力を
与える。その結果、湯面では溶鋼の中央部が周囲に比べ
て盛り上がり、ドーム状に湾曲した湯面形状になる。こ
れによって、メニスカス周辺部の落ち込んだ部分と鋳型
内壁面との間の開口が広がるので、この部分にパウダー
が集積し、溶鋼と鋳型内壁面との境界にパウダーが流入
し易くなる。[Prior Art] In continuous casting equipment for molten metal, a force called a pinch force has been conventionally applied to the molten steel in the mold using an electromagnetic coil placed outside the mold. That is, an alternating current magnetic field generated by an alternating current applied to an electromagnetic coil generates an eddy current that goes in the circumferential direction in the molten steel, and the interaction between this eddy current and the external magnetic field causes the molten steel to move toward the center, that is, the molten steel. Apply a pinch force in the direction of narrowing down. As a result, the center of the molten steel swells up compared to the surrounding area, creating a dome-like curved surface. As a result, the opening between the depressed part around the meniscus and the inner wall surface of the mold is widened, so that powder accumulates in this part and it becomes easier for the powder to flow into the boundary between the molten steel and the inner wall surface of the mold.
このようなピンチ力の作用によって、高速鋳造を行なう
場合でも、比較的良好な鋳片表面品質が得られ、生産性
が向上する。Due to the action of such a pinch force, even when performing high-speed casting, relatively good surface quality of the slab can be obtained and productivity is improved.
また一般に、鋳型の上下振動によって鋳片の表面(&8
型壁と接触した部分)にはオツシレーションマーク(周
方向に延びるすし状の窪み)が生じ易いが、ピンチ力が
作用する場合には、メニスカスと鋳型との接触角が小さ
くなるので、オツシレーションマークの深さが浅くなり
、望ましい表面品質が得られる。Generally, the surface of the slab (&8) is caused by the vertical vibration of the mold.
Oscillation marks (sushi-shaped depressions extending in the circumferential direction) are likely to occur in the area (the part that made contact with the mold wall), but when a pinch force is applied, the contact angle between the meniscus and the mold becomes small, so oscillation marks The mark depth is reduced and the desired surface quality is achieved.
この種の技術については、例えば特公昭57−2140
8号公報に開示されている。Regarding this type of technology, for example, Japanese Patent Publication No. 57-2140
It is disclosed in Publication No. 8.
[発明が解決しようとする課題]
ところで、前述のようなピンチ力を与える場合において
も、鋳片の表面で部分的にオツシレーションマークが顕
著に現われたり、オツシレーションマークの谷部に成分
偏析等の欠陥が生じる場合がある。[Problems to be Solved by the Invention] By the way, even when the above-mentioned pinch force is applied, oscillation marks may appear partially on the surface of the slab, and component segregation may occur in the valleys of the oscillation marks. Defects may occur.
これの原因としては、ピンチ力が作用する時に、湯面(
溶鋼の上面)の形状が不安定になり、湯面に波立ちや湯
面レベルの変動が生じることが考えられている。The reason for this is that when the pinch force is applied, the hot water surface (
It is thought that the shape of the top surface of the molten steel becomes unstable, causing ripples and fluctuations in the molten metal level.
そこで本発明においては、ピンチ力が作用する時の湯面
の形状を安定化し、鋳片の表面品質を更に改善すること
を課題とする。Therefore, an object of the present invention is to stabilize the shape of the molten metal surface when a pinch force is applied, and to further improve the surface quality of the slab.
[課題を解決するための手段]
上記課題を解決するために、本発明においては、溶鋼が
注入される鋳型の外側にそれを囲む形で配置された電磁
コイルを備え、鋳型内の溶鋼に電磁力を付与しながら鋳
造を実施する、溶融金属の連続鋳造装置において:前記
鋳型の、前記電磁コイルと対向する外周壁部分に、磁性
体で構成される凸部を形成するとともに、該凸部では鋳
型の高さ方向の電磁コイル中央部と対向する部分を電磁
コイルの上下端部と対向する部分よりも外側に突出する
形状に構成する。[Means for Solving the Problems] In order to solve the above problems, the present invention includes an electromagnetic coil disposed outside and surrounding the mold into which molten steel is injected, and an electromagnetic coil is provided to surround the molten steel in the mold. In a continuous casting device for molten metal that performs casting while applying force: a convex portion made of a magnetic material is formed on an outer peripheral wall portion of the mold facing the electromagnetic coil, and a convex portion made of a magnetic material is formed in the convex portion. The portion facing the center portion of the electromagnetic coil in the height direction of the mold is configured to protrude further outward than the portion facing the upper and lower ends of the electromagnetic coil.
[作用]
本発明者の実施した実験(溶鋼のかわりに水銀、鋳型の
かわりに透明なビー力を使用)によれば、従来装置の環
境では、電磁コイルを付勢してピンチ力を付与した状態
では、第4a図に示すように、溶鋼(実際は水銀)中に
電磁コイルの高さ方向の中央部から上方に向かう流動と
下方に向かう流動の両方が確認された。そして、上方に
向かう流動が湯面に波立ちや場面変動を及ぼすものと考
えられる。[Function] According to experiments conducted by the present inventor (using mercury instead of molten steel and transparent bead force instead of a mold), in the environment of a conventional device, the pinch force was applied by energizing the electromagnetic coil. In this state, as shown in FIG. 4a, both an upward flow and a downward flow from the center of the electromagnetic coil in the height direction were observed in the molten steel (actually mercury). The upward flow is thought to cause ripples and scene changes on the hot water surface.
ところで、従来より使用されている電磁コイルは、正確
に円筒形状になるように均一に巻線が巻かれた構成にな
っており、高さ方向(コイルの巻線周方向と直交する方
向)のどの位置においても、コイルの巻線の周回数は実
質上同一になっている。By the way, conventionally used electromagnetic coils have a structure in which the wires are evenly wound to form an accurate cylindrical shape, and the height direction (direction perpendicular to the circumferential direction of the coil windings) At any position, the number of turns of the coil is substantially the same.
このような電磁コイルを円筒形状の鋳型を囲むように配
置した装置において、鋳型内部の高さ方向の磁束密度分
布を測定したところ、第3図に示す結果が得られた。つ
まり、コイルの中央部が最も磁束密度が大きく、両端部
に近づくにつれて磁束密度が小さくなる。また、溶鋼に
作用するピンチ力の大きさは、溶鋼中の渦電流の大きさ
と磁束密度の大きさの両者に比例する。従って従来の装
置では、電磁コイルの中央部分の高さで最も大きな力が
溶鋼に作用し、その位置から上及び下に離れるにつれて
力が小さくなる。このため、力の大きな中央部分から力
の小さな上下の両方向に向かう第4a図に示すような流
動が発生するものと考えられる。When the magnetic flux density distribution in the height direction inside the mold was measured in an apparatus in which such an electromagnetic coil was arranged to surround a cylindrical mold, the results shown in FIG. 3 were obtained. That is, the magnetic flux density is highest at the center of the coil, and decreases as it approaches both ends. Further, the magnitude of the pinch force acting on the molten steel is proportional to both the magnitude of the eddy current and the magnitude of the magnetic flux density in the molten steel. Therefore, in conventional devices, the greatest force acts on the molten steel at the height of the central portion of the electromagnetic coil, and the force decreases upward and downward from that point. For this reason, it is thought that a flow as shown in FIG. 4a occurs from the central portion where the force is large to the upward and downward directions where the force is small.
しかし本発明においては、鋳型外壁の電磁コイルと対向
する部分に、磁性体で構成される凸部を形成するととも
に、該凸部では鋳型の高さ方向の電磁コイル中央部と対
向する部分を電磁コイルの上下端部と対向する部分より
も外側に突出する形状に構成しである。一般に磁束は磁
気抵抗が同一であれば最も距離の近い通路を通る性質が
ある。However, in the present invention, a convex portion made of a magnetic material is formed on a portion of the outer wall of the mold that faces the electromagnetic coil, and in the convex portion, a portion that faces the center portion of the electromagnetic coil in the height direction of the mold is electromagnetic. The coil is configured to have a shape that projects outward from the portions facing the upper and lower ends of the coil. Generally, magnetic flux has the property of passing through the path closest to it if the magnetic resistance is the same.
従って、鋳型壁(一般に銅で構成される)中の電気コイ
ルと対向する部分においては、中央部の外側に突出した
部分が最も磁束が通り易く、その上下部分では比較的磁
束が通りにくい。しかし電気コイルから出入りする磁束
の総量は一定であるので、鋳型壁を通る磁束が増加する
ため鋳型内部の溶鋼中を通る磁束が減小する。このため
、鋳型内部の溶鋼中においては、電磁コイルの高さ方向
の中央部で、磁束密度が上下部分よりも低下し、その結
果磁束密度の高さ方向の分布が第2図のように均一にな
る。これにより、高さ方向の位置に応じたピンチ力の分
布も均一化し、上向きの溶鋼流動を抑えることができる
ので、第4b図に示すように湯面の形状及び湯面レベル
を安定化することができる。Therefore, in the part of the mold wall (generally made of copper) that faces the electric coil, the magnetic flux is most likely to pass through the outwardly protruding part of the central part, and it is relatively difficult for the magnetic flux to pass through the parts above and below that part. However, since the total amount of magnetic flux flowing in and out of the electric coil is constant, the magnetic flux passing through the mold wall increases and the magnetic flux passing through the molten steel inside the mold decreases. Therefore, in the molten steel inside the mold, the magnetic flux density is lower in the center of the electromagnetic coil in the height direction than in the upper and lower parts, and as a result, the distribution of magnetic flux density in the height direction is uniform as shown in Figure 2. become. As a result, the distribution of the pinch force according to the position in the height direction can be made uniform and the upward flow of molten steel can be suppressed, so that the shape and level of the molten metal surface can be stabilized as shown in Figure 4b. I can do it.
本発明の他の目的及び特徴は、以下の、図面を参照した
実施例説明により明らかになろう。Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
[実施例コ
第1図に実施例の連続鋳造装置の鋳型部分の縦断面を示
す。この例では、鋳型3は概略で円筒形状に構成されて
いる。鋳型3の材質は銅である。[Example 1] Fig. 1 shows a longitudinal section of a mold portion of a continuous casting apparatus according to an example. In this example, the mold 3 has a roughly cylindrical shape. The material of the mold 3 is copper.
第1図を参照すると、鋳型の外側にそれを囲む形で2つ
の電磁コイル1及び2が配置されている。Referring to FIG. 1, two electromagnetic coils 1 and 2 are placed outside the mold and surrounding it.
電磁コイル1及び2は、−殻内な円筒形状のコイルであ
り、コイル巻線(4,5)の周方向の巻回数がどの高さ
位置でも同一になるように構成しである。2つの電磁コ
イル1,2は、互いに隣り合うように上下に重ねて配置
されている。この例では、鋳型3の内径は約190mm
である。電磁コイル1及び2は鋳型3内部に充填される
溶鋼6にピンチ力を付与するために使用される。なおこ
れらの電磁コイルは単一のもので構成することもできる
。The electromagnetic coils 1 and 2 are in-shell cylindrical coils, and are configured so that the number of turns in the circumferential direction of the coil windings (4, 5) is the same at any height position. The two electromagnetic coils 1 and 2 are arranged one above the other so as to be adjacent to each other. In this example, the inner diameter of mold 3 is approximately 190 mm.
It is. The electromagnetic coils 1 and 2 are used to apply a pinch force to the molten steel 6 filled inside the mold 3. Note that these electromagnetic coils can also be configured as a single one.
鋳型3の周壁は、電磁コイル1,2と対向する部分が特
殊な形状になっている。具体的に言えば2つの電磁コイ
ル1,2で構成されるコイル全体に関してその高さ方向
の中央部に対向する部分、つまり電磁コイル1の下端と
電磁コイル2の上端とに対向する部分が外側に膨らんで
おり、この突出部3aでは鋳型の肉厚が厚くなっている
。またこの突出部3aは鋳型3の全周に渡って均一に形
成されており、かつその外表面は第1図に示されるよう
に高さ方向に対して滑らかな曲線を描く形状に構成され
ている。The peripheral wall of the mold 3 has a special shape at the portion facing the electromagnetic coils 1 and 2. Specifically, regarding the whole coil composed of two electromagnetic coils 1 and 2, the part facing the center in the height direction, that is, the part facing the lower end of the electromagnetic coil 1 and the upper end of the electromagnetic coil 2 is the outer side. The mold is thicker at this protrusion 3a. Further, the protrusion 3a is formed uniformly over the entire circumference of the mold 3, and its outer surface is formed into a shape that draws a smooth curve in the height direction, as shown in FIG. There is.
電磁コイル1及び2はそれぞれ1本のコイル巻線4及び
5で構成されており、電磁コイル1及び2の両端は交流
電源に対して並列に接続されている。The electromagnetic coils 1 and 2 each include one coil winding 4 and 5, and both ends of the electromagnetic coils 1 and 2 are connected in parallel to an AC power source.
連続鋳造に実施例の鋳型3を用いた場合と従来の鋳型を
用いた場合との差を明らかにするための実験を実施した
。この実験の条件は次の通りである。An experiment was conducted to clarify the difference between the case where the mold 3 of Example was used for continuous casting and the case where a conventional mold was used. The conditions for this experiment were as follows.
鋼種 :5US304 (18Cr−8Ni)磁束
密度: 0 、1000.2000.3000.400
0 (ガウス)鋳造速度:2000mm/分
突出部3aの厚み:9mm(最大)
鋳型壁3の厚み:6mm
従来の鋳型壁厚み:6mm
この実験の結果を第5a図及び第5b図に示す。Steel type: 5US304 (18Cr-8Ni) Magnetic flux density: 0, 1000.2000.3000.400
0 (Gauss) Casting speed: 2000 mm/min Thickness of protrusion 3a: 9 mm (maximum) Thickness of mold wall 3: 6 mm Thickness of conventional mold wall: 6 mm The results of this experiment are shown in Figures 5a and 5b.
即ち、第5a図はオツシレーションマークの深さを各々
の磁束密度において測定した結果であり、第5b図は鋳
片の成分偏析の深さを各々の磁束密度において測定した
結果を示しており、黒丸が本発明例の電磁コイルの場合
を示し、白丸が従来の電磁コイルの場合を示している。That is, Fig. 5a shows the results of measuring the depth of the oscillation mark at each magnetic flux density, and Fig. 5b shows the results of measuring the depth of component segregation of the slab at each magnetic flux density. The black circles indicate the case of the electromagnetic coil of the example of the present invention, and the white circles indicate the case of the conventional electromagnetic coil.
いずれの結果からも、特に磁束密度が大きい条件におい
て本発明例の鋳型の方が、はるかに好ましい鋳造結果が
得られることが分かる。From all the results, it can be seen that the mold of the present invention provides much more favorable casting results, especially under conditions where the magnetic flux density is high.
変形実施例を第6a図及び第6b図にそれぞれ示す。こ
れらの実施例においては、鋳型3B自体には一般の鋳型
と同様に周壁厚が均一なものを用いである。そのかわり
、第6a図及び第6b図の実施例では、それぞれ、環状
の導電体(銅で構成)7及び8を鋳型3Bの外周を囲む
形で配置しである。第6a図の例では、磁性体7の断面
の厚みが一定であり、磁性体7によって鋳型の外周に段
差が形成されている。これによって前記実施例の第1図
の突出部3aと同様の作用が生じるので、溶鋼中の磁束
密度分布を均一化することができる。Modified embodiments are shown in Figures 6a and 6b, respectively. In these embodiments, the mold 3B itself has a uniform peripheral wall thickness like a general mold. Instead, in the embodiment of FIGS. 6a and 6b, annular conductors (composed of copper) 7 and 8 are arranged around the outer periphery of mold 3B, respectively. In the example shown in FIG. 6a, the cross-sectional thickness of the magnetic body 7 is constant, and the magnetic body 7 forms a step on the outer periphery of the mold. This produces the same effect as the protrusion 3a in FIG. 1 of the embodiment described above, so that the magnetic flux density distribution in the molten steel can be made uniform.
この例では磁束密度分布は、第1図の実施例のように平
担にはならないが、溶鋼中の上方向の流動を防止するの
には充分な効果がある。第6b図の実施例では、磁性体
8の厚みを中央部分が大きく両端に向かって徐々に小さ
くなるように形成しであるので、第1図の実施例と同様
に磁束密度の分布を平担にすることができる。Although the magnetic flux density distribution in this example is not as flat as in the embodiment shown in FIG. 1, it is sufficiently effective in preventing upward flow in the molten steel. In the embodiment shown in FIG. 6b, the thickness of the magnetic body 8 is formed so that it is large in the center and gradually decreases toward both ends, so that the distribution of magnetic flux density is flattened as in the embodiment shown in FIG. It can be done.
[発明の効果]
以上のとおり本発明によれば、鋳型の電磁コイル(1,
2)と対向する部分に、凸部(3a、7゜8)を形成す
るので、鋳型内での磁束密度分布を従来よりも平担にす
ることができ、それによって鋳片上でのオツシレーショ
ンマークや成分偏析の発生を抑え、鋳造の品質を大幅に
改善することができる。[Effect of the invention] As described above, according to the present invention, the electromagnetic coil (1,
Since a convex portion (3a, 7°8) is formed in the part facing 2), the magnetic flux density distribution within the mold can be made flatter than before, thereby reducing oscillation marks on the slab. The quality of casting can be greatly improved by suppressing the occurrence of component segregation.
第1図は実施例の鋳造設備の主要部を示す縦断面図であ
る。
第2図及び第3図は、それぞれ実施例及び従来例の電気
コイルを用いた場合の磁束密度の分布状態を示すグラフ
である。
第4a図及び第4b図は、それぞれ従来例及び実施例の
溶鋼の流動状態を示す縦断面図である。
第5a図及び第5b図は実験の結果を示すグラフである
。
第6a図及び第6b図は、各々本発明の変形実施例を示
す縦断面図である。
1.2:電磁コイル 3:鋳型FIG. 1 is a longitudinal sectional view showing the main parts of the casting equipment of the embodiment. FIGS. 2 and 3 are graphs showing the distribution of magnetic flux density when using the electric coils of the example and the conventional example, respectively. FIG. 4a and FIG. 4b are longitudinal sectional views showing the flow state of molten steel in the conventional example and the example, respectively. Figures 5a and 5b are graphs showing the results of the experiment. FIGS. 6a and 6b are longitudinal sectional views each showing a modified embodiment of the present invention. 1.2: Electromagnetic coil 3: Mold
Claims (1)
た電磁コイルを備え、鋳型内の溶鋼に電磁力を付与しな
がら鋳造を実施する、溶融金属の連続鋳造装置において
: 前記鋳型の、前記電磁コイルと対向する外周壁部分に、
導電体で構成される凸部を形成するとともに、該凸部で
は鋳型の高さ方向の電磁コイル中央部と対向する部分を
電磁コイルの上下端部と対向する部分よりも外側に突出
する形状に構成したことを特徴とする、溶融金属の連続
鋳造装置。[Claims] A continuous casting device for molten metal, which includes an electromagnetic coil placed outside and surrounding a mold into which molten steel is poured, and performs casting while applying electromagnetic force to the molten steel in the mold. In: an outer peripheral wall portion of the mold facing the electromagnetic coil,
A convex portion made of a conductor is formed, and in the convex portion, the portion facing the center portion of the electromagnetic coil in the height direction of the mold is shaped to protrude further outward than the portion facing the upper and lower ends of the electromagnetic coil. A continuous casting device for molten metal, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11737290A JPH0413442A (en) | 1990-05-07 | 1990-05-07 | Apparatus for continuously casting molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11737290A JPH0413442A (en) | 1990-05-07 | 1990-05-07 | Apparatus for continuously casting molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0413442A true JPH0413442A (en) | 1992-01-17 |
Family
ID=14710028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11737290A Pending JPH0413442A (en) | 1990-05-07 | 1990-05-07 | Apparatus for continuously casting molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0413442A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040039690A (en) * | 2002-11-04 | 2004-05-12 | 기아자동차주식회사 | Apparatus for guiding under tray |
-
1990
- 1990-05-07 JP JP11737290A patent/JPH0413442A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040039690A (en) * | 2002-11-04 | 2004-05-12 | 기아자동차주식회사 | Apparatus for guiding under tray |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS645984B2 (en) | ||
US4215738A (en) | Anti-parallel inductors for shape control in electromagnetic casting | |
JPH0413442A (en) | Apparatus for continuously casting molten metal | |
JPS6227903B2 (en) | ||
JPH0413443A (en) | Apparatus for continuously casting molten metal | |
KR870000054B1 (en) | Continuous casting | |
JPH0413441A (en) | Apparatus for continuously casting molten metal | |
JP3088917B2 (en) | Continuous casting method of molten metal | |
JPH0413444A (en) | Apparatus for continuously casting molten metal | |
JPS61199557A (en) | Device for controlling flow rate of molten steel in mold for continuous casting | |
JPS61129261A (en) | Production of continuously cast steel ingot having less surface defect | |
JPS63119962A (en) | Rolling device for electromagnetic agitation | |
JP2008173644A (en) | Electromagnetic coil for continuous casting mold | |
GB2041803A (en) | Electromagnetic casting apparatus and process | |
JP3056657B2 (en) | Continuous casting method of molten metal | |
JP2940942B2 (en) | Electromagnetic casting of molten metal and its equipment. | |
JP2000042699A (en) | Mold for electromagnetic field casting | |
US4516627A (en) | Multi-turn coils of controlled pitch for electromagnetic casting | |
US4570699A (en) | Multi-turn coils of controlled pitch for electromagnetic casting | |
JPH09285854A (en) | Continuous casting method | |
JP3304884B2 (en) | Molten metal braking device and continuous casting method | |
JPH0413446A (en) | Apparatus and method for continuously casting molten metal | |
JPS5942199Y2 (en) | electromagnetic stirring device | |
JPS6258815B2 (en) | ||
JPH1085905A (en) | Equipment for continuously casting molten metal |