JPH04134202A - Visual coordinate, object coordinate system calibration method - Google Patents

Visual coordinate, object coordinate system calibration method

Info

Publication number
JPH04134202A
JPH04134202A JP25851790A JP25851790A JPH04134202A JP H04134202 A JPH04134202 A JP H04134202A JP 25851790 A JP25851790 A JP 25851790A JP 25851790 A JP25851790 A JP 25851790A JP H04134202 A JPH04134202 A JP H04134202A
Authority
JP
Japan
Prior art keywords
axis
holes
visual
gravity
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25851790A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suganuma
孫之 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP25851790A priority Critical patent/JPH04134202A/en
Publication of JPH04134202A publication Critical patent/JPH04134202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To convert positional information between a visual sensor coordinate system and an object coordinate system by taking the two dimensional position information of a fixture placed inside TV camera vision into a memory of a picture image processing device to obtain the centers of gravity of the four holes in the fixture and using the distances among the centers. CONSTITUTION:Fixture picture image is memorized in the memory of a picture image processing device 6 through vision 2. Center of gravity of two fixture holes which face x-axis and y-axis of the vision coordinate are placed so as to be in parallel to each other. With this constitution, the center of gravity is calculated by the picture image processing device by using a known algorithm, indicated in the respective holes on a TV monitor, and the fixture is moved so that the x-axis and the y-axis of the facing holes may be equal. The distance between the holes which are parallel to the x-axis and y-axis are obtained respectively. Besides, the value is substituted in the following formula. X = xcosbeta-zsinalpha Y = xsinalphasinbeta+ycosalpha-zsinalphasinbeta Z = -xsinbeta-cosalpha+ysinalpha+zcosalphacosbetaz = 0DELTAX(known distance between holes of fixture) = (x center of gravity of hole 4 - x center of gravity of hole 3). beta is determined from cosbeta. 'alpha' is determined by using the formula in the same manner. Accordingly '' for rotational angle of the coordinate axis can be determined. Besides, it is thus possible to calibrate the arbitrary coordinate value of the visual coordinate system into an objective coordinate value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は2次元の視覚装置を用いて物体の計測を行う場
合に、視覚座標平面と物体座標平面が平行であるが、実
際には座標平面が傾く場合があり、この場合には物体の
計測において誤差が生ずるためにこの様な場合の座標系
較正方法に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a method for measuring an object using a two-dimensional visual device, even though the visual coordinate plane and the object coordinate plane are parallel. In reality, there are cases where the coordinate plane is tilted, and in this case, an error occurs in the measurement of the object, so the present invention relates to a method for calibrating the coordinate system in such a case.

(従来技術) 本発明に係る従来技術としては(1)特開昭60−25
2914号公報及び(2)特開昭60151712号公
報がある。
(Prior art) As the prior art related to the present invention, (1) Japanese Patent Application Laid-Open No. 60-25
No. 2914 and (2) Japanese Unexamined Patent Publication No. 60151712.

前記(1)に示すものは視覚センサ座標情報とロボット
基準座標系報の換算方式に関するもので、少なくとも3
点の視覚センサ座標系における座標値と、そのロボット
基準座標系における座標値とを教示し、視覚センサ座標
系の位置情報をロボ・ントの基準座標の位置情報に換算
するものである。
What is shown in (1) above is related to the conversion method of visual sensor coordinate information and robot reference coordinate system information, and there are at least three
It teaches the coordinate value of a point in the visual sensor coordinate system and its coordinate value in the robot reference coordinate system, and converts the position information in the visual sensor coordinate system to the position information in the robot robot's reference coordinate system.

又(2)に示すものはロボット視覚座標系較正方式に関
するものであり、固定視覚をロボット座標系に固定する
際に生じる3次元的な取り付は誤差をロボットを移動す
ることにより求めるものである。
Furthermore, what is shown in (2) is related to the robot visual coordinate system calibration method, and the three-dimensional attachment that occurs when fixing the fixed visual field to the robot coordinate system is determined by moving the robot. .

(発明が解決しようとする課題) しかし前記(1)及び(2)に示すものは、いづれもロ
ボットを使用して座標の換算を行うために、処理機構と
も複雑であり、誤差を生じたり、処理ユニコスト時間か
かかるという問題点つ)ある。
(Problems to be Solved by the Invention) However, in both of the above (1) and (2), since the coordinates are converted using a robot, the processing mechanism is complicated, and errors may occur. There is a problem that processing time is unicost.

特2こ前記(1)に示す換算方式はカメラ(視覚)の取
付誤差やあるいはワーク設置平面の傾きを考慮巳ていな
いため、座標換算を行っても誤差を生しハンドリングミ
スを起こすという問題点がある。
In particular, the conversion method shown in (1) above does not take into account mounting errors of the camera (visual) or the inclination of the workpiece installation plane, so there is a problem that even if the coordinates are converted, errors will occur and handling errors will occur. There is.

本発明は2次元の視覚を用いて、物体の計測を行う場合
に実際の工程に於いて座標平面が傾斜していて位置誤差
が生しる場合に座標系を簡単Qこ較正できる方法を技術
的課題とするものである。
The present invention uses two-dimensional vision to provide a technology for easily calibrating the coordinate system when the coordinate plane is tilted in the actual process and a position error occurs when measuring an object. This is a major issue.

〔発明の構成] (課題を解決するための手段) 前記課題を解決するために講した技術的手段発議のよう
である。すなわち、 TV左カメラりなる視覚センサと視覚センサの位置情報
を処理する画像処理装置と、視覚センサ情報を表示する
モニタテレビより成り、前記TVカメラ視野内に置かれ
た治具の2次元位置情報を画像処理装置のメモリに取り
込み、前記治具の4つの穴の重心を求め、その重心の距
離により、視覚センサ座標系と物体の座標系の位置情報
の換算を行う2次元座標系構成方式である。
[Structure of the invention] (Means for solving the problem) This seems to be a proposal for a technical means to solve the problem. That is, it consists of a visual sensor that is the TV left camera, an image processing device that processes the position information of the visual sensor, and a monitor TV that displays the visual sensor information, and the two-dimensional position information of the jig placed within the field of view of the TV camera. is loaded into the memory of the image processing device, the center of gravity of the four holes of the jig is determined, and the position information of the visual sensor coordinate system and the coordinate system of the object is converted based on the distance between the centers of gravity. be.

(作用) 第3図:ま視覚座標と物体座標の関係を示す概念図で、
x、y、zは視覚座標で第2図シこ於けるTV左カメラ
座標であり、χ、y、zは物体座標で第2図のワークの
座標を表す。
(Function) Figure 3: A conceptual diagram showing the relationship between visual coordinates and object coordinates.
x, y, z are visual coordinates, which are the coordinates of the left TV camera in FIG. 2, and χ, y, z are object coordinates, which represent the coordinates of the workpiece in FIG.

x、y、zの原点Oを13、物体座標の原点O“を12
で示し、視覚座標と物体座標の原点の変位0−0′をヘ
クトル11で示す。
The origin O of x, y, z is 13, the origin O" of object coordinates is 12
The displacement 0-0' of the origin of visual coordinates and object coordinates is indicated by hector 11.

視覚座標に対し物体座標が傾斜を有し、又は平行でない
場合には物体座標は視覚座標に対し、χ軸、y軸及びχ
軸についてそれぞれ回転角α、β。
If the object coordinates have an inclination or are not parallel to the visual coordinates, the object coordinates are inclined to the visual coordinates, and the object coordinates are
rotation angles α and β about the axes, respectively.

Tを有することになり、この場合αを14、βを15、
Tを16で示す。前記回転角α、β、Tが0の場合は両
座標は平行移動の関係を示すものである。
In this case, α is 14, β is 15,
T is indicated by 16. When the rotation angles α, β, and T are 0, both coordinates indicate a relationship of parallel movement.

ここで前記視覚座標X、Y、Zと物体座標χ。Here, the visual coordinates X, Y, Z and the object coordinate χ.

y、zの関係は次の式で表される。The relationship between y and z is expressed by the following formula.

ここてMα1Mβ、MTは両座標間の回転変位を表す行
列で、第3図に示す様に回転角をα2 β。
Here, Mα1Mβ, MT is a matrix representing the rotational displacement between both coordinates, and the rotation angle is α2β as shown in FIG.

Tとすると以下になる。If it is T, it becomes the following.

(COSβ Osinβ) Mβ=臣   1 01 ’sinβ Q  cosβJ 前記の0式は一般式であるため、2次元視覚に応用する
ために式を簡略化する。すなわち、2次元視覚ではZ−
0であり、又、TばOと考えても全く誤差は生じないた
めr=oとし、又物体、視覚原点も一致するとする。以
上の簡略化により0式は以下になる。
(COSβ Osinβ) Mβ=Omi 1 01 'sinβ Q cosβJ Since the above equation 0 is a general equation, the equation is simplified in order to apply it to two-dimensional vision. In other words, in two-dimensional vision, Z-
0, and since there is no error at all even if it is assumed that T is O, it is assumed that r=o, and that the object and the visual origin are also coincident. By the above simplification, the formula 0 becomes the following.

■弐を展開整理すると下式Sこなる。■If we expand and rearrange 2, we get the following formula S.

X−1cos3〜zsinα Y−χsinαsinβ±y cosα−ZSjnα5
inB  f■Z−1sInβcos a + y s
in αA−z cos αcosβ J2=0 以上より未知数α、βを予め求めておけば任意の視覚座
標値が物体座標に較正できることになる。
X-1cos3~zsinα Y-χsinαsinβ±y cosα-ZSjnα5
inB f■Z-1sInβcos a + y s
in αA-z cos αcosβ J2=0 From the above, if the unknowns α and β are obtained in advance, any visual coordinate value can be calibrated to the object coordinate.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

第1図は視覚計測システム構成図で、作業台8上の視覚
取付台を1には視覚(TV左カメラ2が取り付けられ、
その視覚内に置かれた計測対象物(ワーク)4の計測を
行いそのデータはケーブル5を通じて画像処理装置6に
送られ、計測等を行う。又その処理内容はTVモニタに
表示される。
Figure 1 is a diagram showing the configuration of the visual measurement system, in which the visual mount on the workbench 8 is attached to the visual (TV left camera 2);
A measurement object (work) 4 placed within the visual field is measured, and the data is sent to an image processing device 6 via a cable 5, where measurements and the like are performed. Further, the processing contents are displayed on the TV monitor.

第2図は物体と視覚座標の説明図で、9は視覚座標で、
10は物体座標であり、視覚の取付が物体座標に対して
正常(回転がない)の場合を示している。
Figure 2 is an explanatory diagram of objects and visual coordinates, 9 is the visual coordinate,
Reference numeral 10 indicates object coordinates, and indicates a case where the visual attachment is normal (no rotation) with respect to the object coordinates.

第4〜5図は本実施例の較正の手順について説明する。4 and 5 explain the calibration procedure of this embodiment.

第4図は較正用の治具てあり、4つの同径の穴を持ちそ
の対向する大間距離は一定であり、又直交している。こ
の治具を用い次の手順で較正を行つ。
FIG. 4 shows a calibration jig, which has four holes with the same diameter, the distance between the opposing holes being constant, and the holes being perpendicular to each other. Calibrate using this jig as follows.

(1)治具を第1図に示す視覚処理エリアへ置く。(1) Place the jig in the visual processing area shown in FIG.

(2)視覚(TVカメラ)より治具画像を画像処理装置
のメモリに記憶する。
(2) Store the jig image visually (TV camera) in the memory of the image processing device.

(3)この時−船釣には第5図の23の様に穴は傾いて
記憶されるが、視覚座標のχ軸、y軸と対向する2つの
穴の重心が各々平行になる様に置く。
(3) At this time - For boat fishing, the holes are stored as being tilted as shown in 23 in Figure 5, but the centers of gravity of the two holes facing the χ and y axes of the visual coordinates are parallel to each other. put.

この場合重心は公知のアルゴリズムも用いて画像処理装
置により計算し、TVモニタに各々の穴に表示し、対向
する穴のχ座標、あるいはy座標が同しになる様に治具
を移動する。
In this case, the center of gravity is calculated by an image processing device using a known algorithm, and displayed for each hole on a TV monitor, and the jig is moved so that the χ or y coordinates of the opposing holes are the same.

(4)χ、y軸に平行に大間距離を各々求める。(4) Calculate the distances parallel to the χ and y axes.

(5)前記0式へ値を代入する。(5) Assign a value to the 0 expression.

(6)△X(予めわかっている治具の大間距離)−(穴
4のχ重心−穴3のχ重心) cosβよりβを求める
(6) ΔX (distance between jigs known in advance) - (χ center of gravity of hole 4 - χ center of gravity of hole 3) Find β from cos β.

(7)同様に■弐より(6)と全で同様に′−てαを求
める。
(7) Similarly, from ■2, calculate α using (6).

以上の求めにより座標軸の回転角度のβを求めることが
できる。又これによって視覚座標系の任意の座標値を物
体座標値乙こ較正できることになる。
By the above calculation, β of the rotation angle of the coordinate axes can be calculated. Also, this allows any coordinate value of the visual coordinate system to be calibrated with respect to the object coordinate value.

又式■でZ−Oと置いた物体の高さが予めわかっている
様な場合は、その高さ情報を用いて2−〇と全く同様の
方法で簡単に較正できるものである。
In addition, if the height of the object placed at Z-O in equation (2) is known in advance, it can be easily calibrated using the height information in exactly the same manner as in (2-0).

(効果) 本発明は次の効果を有する。すなわち、視覚センサ(T
Vカメラ)取付時に、傾いたり、あるいはカメラに対し
てワークが傾いて置かれることは実際のラインにはしば
しば生じるが、本発明は比較的簡単な構成と方法により
2次元座標系の較正を行えるため、物体の正確な計測が
でき、ロボット系に把持を行う場合においても、チャッ
クミスを無くすることができる。
(Effects) The present invention has the following effects. That is, the visual sensor (T
V camera) When installed, workpieces are often tilted or placed at an angle with respect to the camera on actual lines, but the present invention can calibrate a two-dimensional coordinate system with a relatively simple configuration and method. Therefore, the object can be accurately measured and chuck errors can be eliminated even when gripping is performed by a robot system.

【図面の簡単な説明】[Brief explanation of drawings]

第1ズ(よ視覚計測システム構成図、第2図:よ物体座
標・視覚座標説明図、第3図:ま物体・視覚座標一般関
係図、第4図は座標較正用治具図、第5図は視覚画像説
明図である。 2・・・視覚センサ、4・  ・ワーク、6・・・画像
処理装置、7・・・モニタテレビ、17・・・治具。
Figure 1 is a visual measurement system configuration diagram, Figure 2 is an explanatory diagram of object coordinates and visual coordinates, Figure 3 is a general relationship diagram of object and visual coordinates, Figure 4 is a diagram of a coordinate calibration jig, and Figure 5 is a diagram of the coordinate calibration jig. The figure is a visual image explanatory diagram. 2... Visual sensor, 4... Work, 6... Image processing device, 7... Monitor television, 17... Jig.

Claims (1)

【特許請求の範囲】[Claims]  TVカメラよりなる視覚センサと視覚センサの位置情
報を処理する画像処理装置と、視覚センサ情報を表示す
るモニタテレビより成り、前記TVカメラ視野内に置か
れた治具の2次元位置情報を画像処理装置のメモリに取
り込み、前記治具の4つの穴の重心を求め、その重心の
距離により、視覚センサ座標系と物体の座標系の位置情
報の換算を行う2次元座標系較正方式。
It consists of a visual sensor consisting of a TV camera, an image processing device that processes the positional information of the visual sensor, and a monitor television that displays the visual sensor information, and processes the two-dimensional positional information of the jig placed within the field of view of the TV camera. A two-dimensional coordinate system calibration method that is loaded into the memory of the device, determines the center of gravity of the four holes of the jig, and converts position information between the visual sensor coordinate system and the coordinate system of the object based on the distance between the centers of gravity.
JP25851790A 1990-09-27 1990-09-27 Visual coordinate, object coordinate system calibration method Pending JPH04134202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25851790A JPH04134202A (en) 1990-09-27 1990-09-27 Visual coordinate, object coordinate system calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25851790A JPH04134202A (en) 1990-09-27 1990-09-27 Visual coordinate, object coordinate system calibration method

Publications (1)

Publication Number Publication Date
JPH04134202A true JPH04134202A (en) 1992-05-08

Family

ID=17321313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25851790A Pending JPH04134202A (en) 1990-09-27 1990-09-27 Visual coordinate, object coordinate system calibration method

Country Status (1)

Country Link
JP (1) JPH04134202A (en)

Similar Documents

Publication Publication Date Title
US7324217B2 (en) Device and method for measuring components
US5239855A (en) Positional calibration of robotic arm joints relative to the gravity vector
US8874406B2 (en) Optical measurement system
US8290618B2 (en) Determining positions
US6854193B2 (en) Rotating swivel unit for sensors of a coordinate measuring apparatus and method for determining corrective parameters of the rotating swivel unit
CA2555159C (en) Method for determining the position of an object in a space
US5828566A (en) Vision assisted fixture construction
JP4868235B2 (en) CMM arm apparatus and method
JP4015161B2 (en) Industrial robot controller
CN210819622U (en) Large-scale space high-precision online calibration system of mobile operation robot
US11002529B2 (en) Robot system with supplementary metrology position determination system
TWM516714U (en) Angular error correction device for machine tools
TW201711796A (en) Angular error correction device and method for machine tools
CN115179323A (en) Machine end pose measuring device based on telecentric vision constraint and precision improving method
Driels et al. Robot calibration using an automatic theodolite
US20200408914A1 (en) Static six degree-of-freedom probe
JPH03161223A (en) Fitting of work
JPH04134202A (en) Visual coordinate, object coordinate system calibration method
Sklar Metrology and calibration techniques for the performance enhancement of industrial robots
JPH0774964B2 (en) Robot positioning error correction method
JPH012104A (en) Robot positioning error correction method
JPH01153907A (en) Visual sensor attitude correction system utilizing image processor
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
JP3196145B2 (en) Contact point and contact normal detection method for machining / assembly equipment
JP3553887B2 (en) Apparatus and method for determining the position and orientation of a first axis of a part relative to a known reference frame