JPH04133643A - Commutator device - Google Patents
Commutator deviceInfo
- Publication number
- JPH04133643A JPH04133643A JP25098590A JP25098590A JPH04133643A JP H04133643 A JPH04133643 A JP H04133643A JP 25098590 A JP25098590 A JP 25098590A JP 25098590 A JP25098590 A JP 25098590A JP H04133643 A JPH04133643 A JP H04133643A
- Authority
- JP
- Japan
- Prior art keywords
- commutator
- heat
- heat pipe
- cooling
- commutator piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 241000239290 Araneae Species 0.000 abstract description 4
- 230000017525 heat dissipation Effects 0.000 description 21
- 239000012530 fluid Substances 0.000 description 12
- 239000012777 electrically insulating material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Motor Or Generator Cooling System (AREA)
- Motor Or Generator Current Collectors (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は回転電機の整流子装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a commutator device for a rotating electric machine.
(従来の技術)
従来の回転電機の整流子装置の一例を第8図に示す。整
流子は運転の除熱を発生し、各々の整流子片(1)が温
度上昇する為、電機子冷却用の矢印で示す冷却風を電機
子スパイダ(2)を介し、ライザ(3)側から整流子片
(1)外周面に吹き付け、各々の整流子片(1)を冷却
していた。尚、(4)は電機子鉄心、(5)は電機子コ
イルである。(Prior Art) An example of a conventional commutator device for a rotating electric machine is shown in FIG. The commutator generates heat removal during operation, and the temperature of each commutator piece (1) rises. Therefore, the cooling air shown by the arrow for armature cooling is sent to the riser (3) side through the armature spider (2). was sprayed onto the outer circumferential surface of the commutator pieces (1) to cool each commutator piece (1). In addition, (4) is an armature core, and (5) is an armature coil.
(発明が解決しようとする課題)
整流子部に発生した損失は熱エネルギとなり、一部は整
流子外周面へ熱伝達され、残りはライザ(3)まで熱伝
導し、冷却風により冷却されるが、上記の従来構造の場
合、各々の整流子片(1)においてライザ(3)側は発
生熱が整流子片(1)がらライザ(3)まで熱伝導され
ること、及び電機子スパイダ(2)を通過した直後の冷
却風にて冷却されることにより、比較的冷却環境がよく
温度上昇が小さくなるが、一方、反ライザ側整流子片部
は、整流子片外周面に吹き付けられた冷却風により冷却
されるのみで、且つ、冷却風そのものもライザ側より整
流子片外周面を徐々に冷却した後の比較的高温状態のも
のであり、又、直流機の構造上、冷却風を整流子片外局
面に効率よく強力に吹き付けることが難しい為、整流子
片各部の温度上昇はライザ部より離れるに従い大きくな
る欠、点を有していた。第8図に示した整流子表面の温
度上昇状態を第9図に示すが、第9図で明らかなように
同−瞥流子片表面においても、温度上昇状態が不均一で
、特に反ライザ側程冷却が不充分である事がわかる。(Problem to be solved by the invention) The loss generated in the commutator section becomes thermal energy, and part of the heat is transferred to the outer circumferential surface of the commutator, and the rest is conducted to the riser (3) where it is cooled by cooling air. However, in the case of the above conventional structure, the heat generated on the riser (3) side of each commutator piece (1) is conducted from the commutator piece (1) to the riser (3), and the armature spider ( 2) By being cooled by the cooling air immediately after passing through, the cooling environment is relatively good and the temperature rise is small. It is only cooled by the cooling air, and the cooling air itself is in a relatively high temperature state after gradually cooling the outer circumferential surface of the commutator piece from the riser side. Also, due to the structure of the DC machine, the cooling air cannot be used. Since it is difficult to efficiently and powerfully spray the outer surfaces of the commutator pieces, the temperature rise in each part of the commutator pieces increases as the distance from the riser part increases. Figure 9 shows the state of temperature rise on the surface of the commutator shown in Figure 8.As is clear from Figure 9, the temperature rise state is uneven even on the surface of the commutator piece, especially on the anti-riser surface. It can be seen that the side cooling is insufficient.
以上説明したように従来の直流機においては、(1)整
流子部冷却構造改良が難しく、各々の整流子片の冷却が
不充分であった事。As explained above, in conventional DC machines, (1) it was difficult to improve the cooling structure of the commutator section, and each commutator segment was insufficiently cooled;
(2)整流子片の温度上昇が不均一で特に反ライザ側程
温度上昇が大きく、その為、直流機の運転中の整流状態
の安定・均一性を悪化させる一因となると共に、ブラシ
摩耗の不均一化によりブラシ材質選定への配慮ならびに
ブラシ保守作業の複雑さ等直流機の運転環境・保守性を
悪化させる事。(2) The temperature rise of the commutator pieces is uneven, and the rise in temperature is particularly large on the side opposite the riser. Therefore, this causes deterioration of the stability and uniformity of the commutation state during operation of the DC machine, and causes brush wear. The non-uniformity of the brush material may worsen the operating environment and maintainability of the DC machine, such as the need for consideration in brush material selection and the complexity of brush maintenance work.
等の欠点を有していた。It had the following drawbacks.
本発明はこのような点に鑑み、構造が簡単で冷却性能を
向上させ、且つ、軸方向温度分布を均一化させた整流子
装置を提供することを目的とする。In view of these points, it is an object of the present invention to provide a commutator device that has a simple structure, improved cooling performance, and uniform axial temperature distribution.
(課題を解決するための手段)
上記目的を達成するために、本発明においては、軸方向
に中空化した整流子片と、整流子片中空部に受熱部を挿
入するか又は中空部そのものを受熱部とし整流子片外部
の冷却風中に放熱部を設けたヒートパイプとを備えたこ
とを特徴とする整流子装置を提供する。(Means for Solving the Problems) In order to achieve the above object, the present invention includes a commutator piece that is hollow in the axial direction, and a heat receiving part is inserted into the hollow part of the commutator piece, or the hollow part itself is There is provided a commutator device characterized in that it is equipped with a heat pipe having a heat receiving part and a heat dissipating part provided in the cooling air outside the commutator pieces.
尚、次のようにすることもできる。Note that the following can also be done.
(1)整流子片中空部に挿入するヒートパイプとして、
複数個の流れ方向規制手段を有するループ形細管ヒート
パイプを用い、整流子片外部のヒートパイプ放熱部にて
整流子の発生熱をおびた気液混合状態の作動液を冷却さ
せる。(1) As a heat pipe inserted into the hollow part of the commutator piece,
Using a loop-shaped thin tube heat pipe having a plurality of flow direction regulating means, a working fluid in a gas-liquid mixed state, which is saturated with the heat generated by the commutator, is cooled in a heat radiating section of the heat pipe outside the commutator piece.
(2)整流子片の一つおきのヒートパイプ受熱部と整流
子片中空部内壁に空隙をもたせ、その空隙に熱伝導性の
良好な電気絶縁材(例えばエポキシのような合成樹脂)
を充てんする。(2) A gap is provided between every other heat pipe heat receiving part of the commutator piece and the inner wall of the hollow part of the commutator piece, and the gap is filled with an electrically insulating material with good thermal conductivity (for example, synthetic resin such as epoxy).
Fill it with.
(3)整流子片の一つおきのヒートパイプ放熱部に熱伝
導性の良好な電気絶縁材を被覆する。(3) Cover every other heat pipe heat radiation part of the commutator piece with an electrical insulating material having good thermal conductivity.
(4)整流子片の一つおきのヒートパイプの受熱部と放
熱部間のコンテナ部を電気絶縁材にて形成し、且つ、ヒ
ートパイプ作動液は電気絶縁性を有するものとし、受熱
部と放熱部とを電気的に絶縁する。(4) The container part between the heat receiving part and the heat radiating part of every other heat pipe of the commutator segment is made of an electrically insulating material, and the heat pipe working fluid has electrical insulation properties, and the heat receiving part and Electrically insulate the heat dissipation part.
(5)整流子片の−っおきの整流子片一体形ヒートパイ
プの放熱部に熱伝導性の良好な電気絶縁材を被覆する。(5) Covering the heat dissipation portion of the commutator piece integrated heat pipe every other commutator piece with an electrical insulating material having good thermal conductivity.
(6)整流子片の−っおきの整流子片一体形のビー1〜
パイプの受熱部と放熱部間のコンテナ部を電気絶縁材に
て形成し、且っヒートパイプ作動液として電気絶縁性を
有するものとし、受熱部と放熱部とを電気的に絶縁する
。(6) Bea 1 with integrated commutator strips placed apart from the commutator strips
The container part between the heat receiving part and the heat radiating part of the pipe is formed of an electrically insulating material, and the heat pipe working fluid is electrically insulating, so that the heat receiving part and the heat radiating part are electrically insulated.
(7)整流子片の−っおきのヒートパイプ受熱部と整流
子片中空部内壁に空隙をもたせ、その空隙に熱伝導性の
良好な電気絶縁材を充てんする。(7) Gaps are provided between the heat-receiving portions of the heat pipes at intervals of the commutator pieces and the inner walls of the hollow portions of the commutator pieces, and the gaps are filled with an electrical insulating material having good thermal conductivity.
(8)整流子片の−っおきのヒートパイプ放熱部に熱伝
導性の良好な電気絶縁材を被覆する。(8) Cover the heat pipe heat dissipating portions of every commutator piece with an electrical insulating material having good thermal conductivity.
(9)MA子片の−っおきのヒートパイプの受熱部と放
熱部間のコンテナ部を電気絶縁材にて形成し且つヒート
パイプ作動液として電気絶縁性を有するものとし、受熱
部と放熱部とを電気的に絶縁する。(9) The container part between the heat receiving part and the heat radiating part of the heat pipe in the MA piece is made of an electrically insulating material and has electrical insulation properties as the heat pipe working fluid, and the heat receiving part and the heat radiating part are made of an electrically insulating material. electrically insulate the
(10)整流子片中空部に配したループ形細管ヒートパ
イプの両端を整流子片外部軸方向両側に引き出し、2ケ
所のヒートパイプ放熱部を有するようにする。(10) Both ends of the loop-shaped thin tube heat pipe arranged in the hollow part of the commutator piece are pulled out to both sides in the axial direction of the outside of the commutator piece, so that two heat pipe heat radiation parts are provided.
(作 用)
ヒートパイプの挿入された整流子片中空部或いはヒート
パイプの受熱部とされた中空部において、整流子片中空
部軸方向全体がヒートパイプの受熱部となり、極めて温
度勾配の少ない事を特徴とするヒートパイプの温度均一
化作用により、整流子片中空部は軸方向温度分布が均一
化され、それにともない整流子片表面温度も均一化する
ことが可能となると共に、ヒートパイプ放熱部を容易に
整流子片外部に自由に引き出すことが可能となる為、電
機子冷却用の冷却風を有効に吹き付けることが可能とな
り、冷却性能をも向上させることができる。(Function) In the hollow part of the commutator piece into which the heat pipe is inserted or the hollow part that is used as the heat receiving part of the heat pipe, the entire axial direction of the hollow part of the commutator piece becomes the heat receiving part of the heat pipe, so that the temperature gradient is extremely small. Due to the temperature uniformity effect of the heat pipe, the temperature distribution in the axial direction of the hollow part of the commutator piece is made uniform, and accordingly, the surface temperature of the commutator piece can also be made uniform. Since it is possible to easily and freely draw out the air to the outside of the commutator piece, it becomes possible to effectively blow cooling air for armature cooling, and the cooling performance can also be improved.
(実施例)
以下、本発明の整流子装置の実施例について図面を参照
して説明する。(Example) Hereinafter, an example of the commutator device of the present invention will be described with reference to the drawings.
実施例1
第1図は本発明の第1の実施例を示す縦断面図、第2図
は第1図のA−A線に沿う要部矢視図であて整流子片(
1)に接続される。複数の整流子片(1)は絶縁マイカ
(8)を介して円筒状に組立てられ、整流子胴絶縁部材
(7)を介して整流子胴に円筒状に取り付けられること
は従来例と同様である。Embodiment 1 FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of the present invention, and FIG. 2 is a view of the main part taken along line A-A in FIG.
1). Similar to the conventional example, the plurality of commutator pieces (1) are assembled into a cylindrical shape through insulating mica (8), and are attached to the commutator body in a cylindrical shape through the commutator body insulating member (7). be.
整流子装置の各々の整流子片(])を中空とし、整流子
片中空部(6)に複数のヒートパイプ(7)を挿入し、
ヒートパイプ(7)の受熱部(7a)を整流子片中空部
(6)内壁全面とする。ヒートパイプの他端即ちヒート
パイプの放熱部(7b)を整流子片外部に引き出し、電
機子冷却用の冷却風が吹き出す電機子スパイダ(2)の
出口風路に配設する。Each commutator piece (]) of the commutator device is made hollow, and a plurality of heat pipes (7) are inserted into the commutator piece hollow part (6),
The heat receiving part (7a) of the heat pipe (7) is the entire inner wall of the commutator piece hollow part (6). The other end of the heat pipe, ie, the heat dissipation part (7b) of the heat pipe, is drawn out to the outside of the commutator piece and placed in the outlet air path of the armature spider (2) from which cooling air for cooling the armature is blown.
次にこの実施例1の作用を説明する。Next, the operation of this first embodiment will be explained.
ヒートパイプ(7)は、密閉されたコンテナと称する容
器内に低沸点冷媒を作動液として封入し、その作動液の
蒸発・凝縮作用を利用し、受熱部(7a)から放熱部(
7b)まで自己作用により熱伝達するものであり、受熱
部(7a)と放熱部(7b)の温度勾配が極めて少ない
特徴を有している事は衆知のことであるが1本発明にお
いては、前記ヒートパイプ(7)の特徴を有効活用する
ことにより、!1流子片中空部(6)の内壁温度を均一
化させ、それに応じ整流子片(1)の外周表面温度を均
一化させることが可能となる。The heat pipe (7) has a low boiling point refrigerant sealed as a working fluid in a sealed container, and utilizes the evaporation and condensation action of the working fluid to transfer heat from a heat receiving part (7a) to a heat radiating part (
7b), and it is well known that the temperature gradient between the heat receiving part (7a) and the heat dissipating part (7b) is extremely small. By effectively utilizing the features of the heat pipe (7),! It becomes possible to equalize the inner wall temperature of the single commutator piece hollow portion (6) and accordingly equalize the outer circumferential surface temperature of the commutator piece (1).
一方、ヒートパイプ放熱部(7b)を整流子片(1)外
部の通風冷却環境の良い所に位置させることにより、冷
却環境を改善させると共に回転電機の運転により、整流
子片(1)から突出した放熱部(7b)自身が回転し、
回転電機内部空気を攪拌させる等により空気を乱流させ
自冷する効果も生じ、整流子の冷却効率は第3図に示す
温度分布曲線のように飛躍的に向上する。On the other hand, by locating the heat pipe heat dissipation part (7b) outside the commutator piece (1) in a place with a good ventilation cooling environment, the cooling environment can be improved and the heat pipe can be protruded from the commutator piece (1) during operation of the rotating electric machine. The heat dissipating part (7b) itself rotates,
By stirring the air inside the rotating electrical machine, etc., the air becomes turbulent and has the effect of self-cooling, and the cooling efficiency of the commutator is dramatically improved as shown in the temperature distribution curve shown in FIG.
以上説明した通り、中空化した整流子片(1)にヒート
パイプ(7)を挿入し、ヒートパイプ放熱部を整流子片
外部に導くことに、従来問題視されていた整流子片冷却
効率の改善並びに整流子片表面温度の均一化が可能とな
り、回転電機の運転環境の向上につながる。As explained above, inserting the heat pipe (7) into the hollow commutator piece (1) and guiding the heat dissipation part of the heat pipe to the outside of the commutator piece improves the cooling efficiency of the commutator piece, which has been considered a problem in the past. This makes it possible to improve the commutator piece surface temperature and improve the operating environment of rotating electric machines.
尚1本発明の整流子装置を作製する際、整流子片(1)
は同一機種においては、同一形状のものが多数使用され
る為、中空整流子片を製作する場合、鋼材を引き抜き製
作することが可能であり、製作上の難点はない。又、整
流子片(1)にヒートパイプ(7)の受熱部(7a)を
挿入させたのみでは、受熱部(7a)と整流子片中空部
(6)の内壁との密着状態が悪いとか、或いは伝熱面積
不足となる場合には。Note that when manufacturing the commutator device of the present invention, the commutator piece (1)
Since many pieces of the same shape are used in the same model, when manufacturing hollow commutator pieces, it is possible to make them by drawing out the steel material, and there are no manufacturing difficulties. Furthermore, if the heat receiving part (7a) of the heat pipe (7) is simply inserted into the commutator piece (1), the adhesion between the heat receiving part (7a) and the inner wall of the commutator piece hollow part (6) is poor. , or when the heat transfer area is insufficient.
両者の間隙にハンダ等の熱伝導性の良好な材料を流し込
み両者の間隙をなくす手段をとればよい。What is necessary is to fill the gap between the two with a material having good thermal conductivity, such as solder, to eliminate the gap between the two.
そして5本実施例1において注意すべき点は、従来から
隣接する整流子片は絶縁マイカ(8)並びに整流子胴絶
縁部材(9)により相互に絶縁されており、隣接する整
流子片(1,)、(1)のヒートパイプの放熱部(7b
)相互の絶縁に対する配慮を要することであり、この解
決手段として次に述べる(イ)、(ロ)、(A)の手段
がある。5. What should be noted in Embodiment 1 is that conventionally adjacent commutator pieces are insulated from each other by insulating mica (8) and commutator body insulating member (9), and adjacent commutator pieces (1 ), (1) heat dissipation part (7b
) It is necessary to consider mutual insulation, and the following methods (a), (b), and (A) are available as means for solving this problem.
(イ)ヒートパイプの受熱部(7a)と整流子片中空部
(6)内壁に空隙をもたせその空隙に熱伝導性の良好な
電気絶縁材(例えばエポキシのような合成樹脂)を充て
んする手段(課題を解決するための手段の前書きの第2
項、第7項に記載の手段を用いる)がある。(a) Means for providing a gap between the heat receiving part (7a) of the heat pipe and the inner wall of the commutator piece hollow part (6), and filling the gap with an electrically insulating material having good thermal conductivity (for example, a synthetic resin such as epoxy). (Second Preface of Means to Solve Problems)
(using the means described in Section 7).
(ロ)ヒートパイプの放熱部(7b)に熱伝導性の良好
な電気複縁材を被覆する手段(前記前書きの第3項、第
5項、第8項に記載の手段を用いる)がある。(b) There is a means for coating the heat dissipation part (7b) of the heat pipe with an electrically composite material having good thermal conductivity (using the means described in Items 3, 5, and 8 of the Preface). .
(A)ヒートパイプの受熱部(7a)と放熱部(7b)
の間のコンテナ部を電気絶縁材とし、ヒートパイプ作動
液として電気絶縁性を有する作動液例えばフロンを使用
し、受熱部(7a)と放熱部(7b)とを電気的に絶縁
する手段(前記前書きの第4項、第6項、第9項に記載
の手段を用いる)がある。(A) Heat receiving part (7a) and heat dissipating part (7b) of heat pipe
A means for electrically insulating the heat receiving part (7a) and the heat dissipating part (7b) by using an electrically insulating material as the container part between them, and using an electrically insulating working fluid, such as Freon, as the heat pipe working fluid. (using the means described in Sections 4, 6, and 9 of the Preface).
そして、上記の隣接する整流子片間を電気的に絶縁する
手段は、全ての整流子片に対して行う必要はなく、少く
とも隣接する一方の整流子片に対して行えばよく、要求
される絶縁条件並びに整流子片相互距離に応じ、使用方
法を選択すればよい。The above-mentioned means for electrically insulating between adjacent commutator segments does not need to be applied to all commutator segments, but may be applied to at least one adjacent commutator segment, and is not required. The method of use can be selected depending on the insulation conditions and the distance between the commutator pieces.
又、ヒートパイプ放熱部の相互距離が確保し得る場合、
構造上配慮がなし得る場合にはこれらの絶縁対策処置を
とらなくてもよい。In addition, if the mutual distance between the heat pipe heat dissipation parts can be ensured,
If structural considerations are possible, these insulation measures may not be required.
実施例2 次に第2の実施例について第4図を参照して説明する。Example 2 Next, a second embodiment will be described with reference to FIG.
中空部を有する整流子片(1)自身をヒートパイプ受熱
部コンテナとし、中空部の一端を外蓋(10)でふさぎ
、他端にヒートパイプ放熱部(7b)を接続し、密閉容
器となし、密閉容器内に作動液(11)を封入すること
により、整流子片(1)とその冷却用ヒートパイプの受
熱部(7a)とを一体化したものである。この構造によ
るヒートパイプ一体形整流子においても前述の実施例1
と同様の作用・効果が生じる。The commutator piece (1) itself having a hollow part is used as a heat pipe heat receiving part container, one end of the hollow part is closed with an outer lid (10), and the heat pipe heat radiating part (7b) is connected to the other end to form an airtight container. , the commutator piece (1) and the heat receiving part (7a) of its cooling heat pipe are integrated by sealing a working fluid (11) in a closed container. In the heat pipe integrated commutator with this structure, the above-mentioned Example 1 is also used.
The same action and effect will occur.
尚、ヒートパイプの熱伝達効率向上並びに受熱部熱抵抗
低減の為、ヒートパイプの受熱部並びに放熱部のいずれ
か一方或いは両方の内壁に表面積拡大手段を採ること或
いは多数の毛細条溝を設けることさらには、ヒートパイ
プの受熱部並びに放熱部のいずれか一方或いは両方の外
壁に表面積拡大手段を取ること、及び整流子片中空部内
壁に多数の毛細条溝を設けること等は従来のヒートパイ
プ並びにヒートパイプ応用製品の改良において衆知であ
るので図示は省略する。In addition, in order to improve the heat transfer efficiency of the heat pipe and reduce the thermal resistance of the heat receiving part, a surface area expanding means or a large number of capillary grooves may be provided on the inner wall of either or both of the heat receiving part and the heat dissipating part of the heat pipe. Furthermore, it is possible to increase the surface area on the outer wall of one or both of the heat receiving section and the heat dissipating section of the heat pipe, and to provide a large number of capillary grooves on the inner wall of the commutator piece hollow section. Since this is well known in the field of improving heat pipe application products, illustration is omitted.
実施例3
第5図は本発明による第3の実施例を示す整流子部拡大
縦断面図である。第5図は、例えば逆止弁のような複数
個の流れ方向規制手段(12)を有するループ形細管ヒ
ートパイプ(13)を用いたもので、ヒートパイプの受
熱部(13a)を整流子片(1)の中空部(6)に位置
させ、ヒートパイプの両端部を整流子片外部まで導き、
各々ヒートパイプの第1の放熱部(13b)及びヒート
パイプの第2の放熱部(13c)とし、ループ形細管ヒ
ートパイプ(13)の両端部をヒートパイプ放熱部とし
たものである。Embodiment 3 FIG. 5 is an enlarged vertical sectional view of a commutator section showing a third embodiment of the present invention. FIG. 5 uses a loop-shaped thin tube heat pipe (13) having a plurality of flow direction regulating means (12) such as check valves, and the heat receiving part (13a) of the heat pipe is connected to a commutator piece. (1) in the hollow part (6), and guide both ends of the heat pipe to the outside of the commutator piece.
A first heat radiating part (13b) and a second heat radiating part (13c) of the heat pipe are used, respectively, and both ends of the loop-shaped thin tube heat pipe (13) are used as heat pipe heat radiating parts.
複数個の流れ方向規制手段を有するループ形細管ヒート
パイプについては、特開昭63−318493号公報に
て説明されているが、その特性として、従来のヒートパ
イプと異り、流れ方向規制手段の働きによるポンプ作用
を用い、内部作動液を気液混合状態にて一定方向に圧送
する働きを有しており、従来のヒートパイプで生じる恐
れのあったバーンアウト現象がほとんど無く、且つ、ヒ
ートパイプ受熱部並びに放熱部を自在に選択しうる利点
を有している。A loop-shaped thin tube heat pipe having a plurality of flow direction regulating means is described in Japanese Patent Application Laid-Open No. 63-318493. It has the function of pumping the internal working fluid in a fixed direction in a gas-liquid mixed state, and almost eliminates the burnout phenomenon that can occur with conventional heat pipes. It has the advantage that the heat receiving part and the heat radiating part can be freely selected.
第1図並びに第4図の本発明になる実施例1並びに2で
は従来型のヒートパイプを利用した例をのべたが、この
場合、回転軸へのヒートパイプの適用例にて公知の如く
、ヒートパイプコンテナ内壁に傾斜を設けるか或いは、
内壁に多数の毛細条溝を設ける等の手段を講じないと、
ヒートパイプ放熱部で冷却され凝縮した作動液が、回転
体の回転に伴う遠心力によりヒートパイプ受熱部まで戻
ることができず、第1図及び第4図のヒートパイプにつ
いては、上述の配慮を要する。第5図においては、流れ
方向規制手段を有するループ形細管ヒートパイプの特性
を利し熱伝達を行う為、ヒートパイプの内部構造をより
単純化することができ、ヒートパイプの製作そのものも
容易となる。Embodiments 1 and 2 according to the present invention shown in FIGS. 1 and 4 are examples in which a conventional heat pipe is used, but in this case, as is known in the application of a heat pipe to a rotating shaft, Provide a slope on the inner wall of the heat pipe container, or
Unless measures are taken such as providing a large number of capillary grooves on the inner wall,
The working fluid cooled and condensed in the heat pipe heat dissipation section cannot return to the heat pipe heat reception section due to the centrifugal force caused by the rotation of the rotating body, so the above consideration is applied to the heat pipes shown in Figs. 1 and 4. It takes. In Fig. 5, heat transfer takes advantage of the characteristics of a loop-shaped thin tube heat pipe with a flow direction regulating means, so the internal structure of the heat pipe can be further simplified, and the production of the heat pipe itself is easier. Become.
本実施例においても、その作用・効果は、前記第一の実
施例にて説明の作用・効果と同様・類似のものとなるが
、ヒートパイプ放熱部を整流子片(1)の軸方向両側に
配することが可能となり、ヒートパイプ(13)の冷却
効率の向上即ち、整流子片の冷却効率のさらなる向上並
びに整流子片の温度上昇の一層の低減・安定に結びつく
。In this embodiment as well, the functions and effects are the same as and similar to those explained in the first embodiment, but the heat pipe heat dissipation section is connected to both sides of the commutator piece (1) in the axial direction. This makes it possible to further improve the cooling efficiency of the heat pipe (13), that is, further improve the cooling efficiency of the commutator pieces, and further reduce and stabilize the temperature rise of the commutator pieces.
第6図は第5図に示した整流子表面の温度上昇分布を示
したもので、ヒートパイプ受熱部である整流子片中央が
やや高くなるものの、整流子全域に対して温度分布がほ
ぼ均一となり、第3図に示す例よりさらに整流子表面温
度状態が均一化する。Figure 6 shows the temperature rise distribution on the commutator surface shown in Figure 5. Although the center of the commutator piece, which is the heat pipe heat receiving part, is slightly higher, the temperature distribution is almost uniform over the entire commutator area. Therefore, the commutator surface temperature condition becomes more uniform than in the example shown in FIG.
尚、第1図並びに第4図の実施例1並びに2の場合も同
様であるが、第5図の実施例3において。The same applies to the first and second embodiments shown in FIGS. 1 and 4, but the same applies to the third embodiment shown in FIG.
整流子片中空部に配するヒートパイプの数は1個でも複
数個でも良く、ヒートパイプの製作の容易性、ヒートパ
イプ1個の熱輸送量限界さらにはヒートパイプ取付の容
易性等からヒートパイプの取付数を選択すればよい。The number of heat pipes arranged in the hollow part of the commutator piece may be one or more.The number of heat pipes arranged in the hollow part of the commutator piece may be one or more. All you have to do is select the number of installations.
実施例4
第7図は、第4の実施例を示す整流子部拡大縦断面図で
ある。整流子片(1)の中空部(6)にループ形ヒート
パイプを配し、ヒートパイプ放熱部(13b。Embodiment 4 FIG. 7 is an enlarged vertical cross-sectional view of a commutator section showing a fourth embodiment. A loop-shaped heat pipe is arranged in the hollow part (6) of the commutator piece (1), and a heat pipe heat dissipation part (13b) is provided.
13c)を両端に設けている点については、第5図に示
す実施例3と同一構成であるが、第1の放熱部(1,3
b)には放熱部冷却効率促進手段としてプレートフィン
(14)を取付けてあり、他方の第2の放熱部(1,3
c)には、放熱部冷却効率促進手段として金属メツシュ
(15)を取付けて構成している。13c) are provided at both ends, the structure is the same as that of the third embodiment shown in FIG.
b) is equipped with a plate fin (14) as a heat dissipation part cooling efficiency promoting means, and the other second heat dissipation part (1, 3
In c), a metal mesh (15) is attached as a means for promoting cooling efficiency of the heat dissipation part.
一般の空気冷却器等でも公知の通り、伝熱管に各種形状
のフィン等の冷却効率促進手段を設けることにより冷却
効率向上が計れる如く、本構造においてもヒートパイプ
放熱部の冷却効率が向上することはまちがいない。尚、
第1の放熱部にはごく一般的なプレートフィンを用いて
おり、他方の第2の放熱部(1,3c)には金属細線を
からませたデミスタ−状の金属メツシュを用いている実
施例を示したが、逆にするか又は両方を同じにしてもよ
い。As is well known in general air coolers, cooling efficiency can be improved by providing cooling efficiency promoting means such as fins of various shapes on heat transfer tubes, and in this structure as well, the cooling efficiency of the heat pipe heat dissipation section can be improved. There is no doubt about it. still,
An embodiment in which a very common plate fin is used for the first heat dissipation part, and a demister-shaped metal mesh intertwined with thin metal wires is used for the other second heat dissipation part (1, 3c). are shown, but they may be reversed or both may be the same.
以上説明したように、本発明によれば、従来技術にて問
題視されていた事を解決することが可能となり、整流子
片の温度上昇の均一化が飛躍的に計れ、整流子を有する
回転電機例えば直流機における最も重要なる技術課題の
一つとされている冷却性能を向上させ、且つ、軸方向温
度分布を均一化させ、整流状態の著しい改善ができ、直
流機の運転環境・保守性向上に結びつく。又、ヒートパ
イプを用いる事により整流子冷却部を整流子部外部に移
行させることが可能となり、従来必要とされていた整流
子片外周面に冷却風を吹き付ける必要がなく、その為、
冷却風による整流子片表面の汚れの恐れもなく、整流子
装置そのものをコンパクト化でき、場合によっては、整
流子装置の気密・密閉化も可能となる。As explained above, according to the present invention, it is possible to solve the problems seen in the conventional technology, and the temperature rise of the commutator pieces can be dramatically uniformized, and the rotating electric machine having a commutator can be For example, it improves cooling performance, which is considered to be one of the most important technical issues in DC machines, and also makes the axial temperature distribution uniform, significantly improving the rectification state, and improving the operating environment and maintainability of DC machines. Connect. In addition, by using a heat pipe, it is possible to move the commutator cooling part to the outside of the commutator part, and there is no need to blow cooling air onto the outer circumferential surface of the commutator piece, which was required in the past.
There is no fear that the surfaces of the commutator pieces will be contaminated by the cooling air, and the commutator device itself can be made more compact, and in some cases, it is also possible to make the commutator device airtight and hermetically sealed.
第1図は本発明の整流子装置の第1の実施例を示す縦断
面図、第2図は第1図のA、 −A線に沿う要部矢視図
、第3図は第1図に示した整流子表面の温度上昇分布を
示す曲線図、第4図は第2の実施例を示す縦断面図、第
5図は第3の実施例を示す縦断面図、第6図は第5図に
示した整流子表面の温度上昇分布を示す曲線図、第7図
は第4の実施例を示す縦断面図、第8図は従来例を示す
縦断面図、第9図は第8図に示した整流子表面の温度上
昇分布を示す曲線図である。
1 ・整流子片、6・・整流子片中空部。
7・・ヒートパイプ、7a・・・ヒートパイプ受熱部。
7b・ヒートパイプ放熱部、11・・・作動液、12・
流れ方向規制手段、
13・・ループ形細管ヒートパイプ、
13a・・受熱部(ループ形細管ヒートパイプ)、]、
3b・・・第1の放熱部(ループ形細管ヒートパイプ)
、13c・・・第2の放熱部(ループ形細管ヒートパイ
プ)。
14・・・プレートフィン(放熱部冷却効率促進手段)
、15・・金属メツシュ(放熱部冷却効率促進手段)。
代理人 弁理士 大 胡 典 夫
第2図
度」糺±片住A1
第
図
第
図
1し−フ゛」≧a田liし叶パ1フ。
つイfロー−」
改う1す”匈1」
埒四E胤丁)W4iLffi二
第
図
!1K ;P、 ′3rと! イjコニ1第
図FIG. 1 is a vertical sectional view showing a first embodiment of the commutator device of the present invention, FIG. 2 is a view taken along line A and -A in FIG. 1, and FIG. 3 is a view similar to that shown in FIG. 4 is a longitudinal sectional view showing the second embodiment, FIG. 5 is a longitudinal sectional view showing the third embodiment, and FIG. 6 is a longitudinal sectional view showing the third embodiment. Fig. 5 is a curve diagram showing the temperature rise distribution on the commutator surface, Fig. 7 is a longitudinal sectional view showing the fourth embodiment, Fig. 8 is a longitudinal sectional view showing the conventional example, and Fig. 9 is a longitudinal sectional view showing the 8th embodiment. FIG. 3 is a curve diagram showing a temperature rise distribution on the surface of the commutator shown in the figure. 1. Commutator piece, 6... Commutator piece hollow part. 7... Heat pipe, 7a... Heat pipe heat receiving section. 7b・Heat pipe heat dissipation part, 11... Working fluid, 12.
Flow direction regulating means, 13...Loop-shaped capillary heat pipe, 13a...Heat receiving part (loop-shaped capillary heat pipe), ],
3b...First heat dissipation part (loop-shaped thin tube heat pipe)
, 13c... second heat radiation section (loop-shaped thin tube heat pipe). 14... Plate fin (heat dissipation part cooling efficiency promotion means)
, 15...Metal mesh (heat dissipation part cooling efficiency promotion means). Agent Patent Attorney Norihiro Ogo 2nd degree ``Tsu + Katazumi A1 Figure 1 Figure 1 - Figure 1'' ≧A field lishi Kano P1F. ``Tsui f low-'' change 1su ``匈1'' 埒四E胤 TING) W4iLffi 2nd figure! 1K ;P, '3r! Ijkoni 1st figure
Claims (1)
流子片と、整流子片中空部に受熱部を挿入するか又は中
空部そのものを受熱部とし整流子片外部の冷却風中に放
熱部を設けたヒートパイプとを備えたことを特徴とする
整流子装置。In a commutator device for a rotating electrical machine, a commutator piece is hollowed in the axial direction, and a heat receiving part is inserted into the hollow part of the commutator piece, or the hollow part itself is used as a heat receiving part and a heat radiating part is placed in the cooling air outside the commutator piece. A commutator device comprising: a heat pipe provided with a heat pipe;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25098590A JPH04133643A (en) | 1990-09-20 | 1990-09-20 | Commutator device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25098590A JPH04133643A (en) | 1990-09-20 | 1990-09-20 | Commutator device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04133643A true JPH04133643A (en) | 1992-05-07 |
Family
ID=17215959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25098590A Pending JPH04133643A (en) | 1990-09-20 | 1990-09-20 | Commutator device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04133643A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012022622A1 (en) * | 2010-08-18 | 2012-02-23 | BSH Bosch und Siemens Hausgeräte GmbH | Electric machine with a commutator |
-
1990
- 1990-09-20 JP JP25098590A patent/JPH04133643A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012022622A1 (en) * | 2010-08-18 | 2012-02-23 | BSH Bosch und Siemens Hausgeräte GmbH | Electric machine with a commutator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10566876B2 (en) | Axial gap rotary electric machine | |
US10734867B2 (en) | High thermal conductivity stator component for vehicle motor based on 3D phase change heat pipe technology | |
US6809441B2 (en) | Cooling of electrical machines | |
US9373988B2 (en) | Assemblies and methods for cooling electric machines | |
CN105305667A (en) | Electric machine | |
US9163885B2 (en) | Cooler and refrigerating apparatus including the same | |
KR101971550B1 (en) | Thermal sync structure by hair-cell | |
EP3091642B1 (en) | End winding support and heat sink for liquid-cooled generator | |
JP3692281B2 (en) | High frequency transformer | |
KR101981661B1 (en) | Heat sink apparatus for armature of electric motor and electric motor using the same | |
JP4277126B2 (en) | Heat transfer cable, heat transfer cable unit, heat transfer system, and heat transfer system construction method | |
US10879771B2 (en) | Cooling system and method for electric rotating machine | |
JPH04133643A (en) | Commutator device | |
CN115833486B (en) | In-tank direct-cooling generator based on heat pipe cooling | |
CN209786900U (en) | Electric machine | |
JPH10174371A (en) | Cooler of motor | |
CN110581625A (en) | heat radiation structure of motor stator winding | |
CN210380544U (en) | Heat radiation structure of motor stator winding | |
US10763727B2 (en) | Heat exchanger for electric machines with double end to center cooling | |
CN110784069A (en) | Motor stator core cooling structure based on gas-liquid phase change, stator core, motor and motor cooling method | |
CN212627456U (en) | Brushless motor easy to dissipate heat | |
US2269237A (en) | Cooling arrangement for dynamoelectric machines | |
CN209526574U (en) | A kind of electric machine iron core | |
US6459178B1 (en) | Forced-convection heat exchanger for a rotary electrical machine | |
JP2010226918A (en) | Motor stator |