JPH0413352B2 - - Google Patents

Info

Publication number
JPH0413352B2
JPH0413352B2 JP27013184A JP27013184A JPH0413352B2 JP H0413352 B2 JPH0413352 B2 JP H0413352B2 JP 27013184 A JP27013184 A JP 27013184A JP 27013184 A JP27013184 A JP 27013184A JP H0413352 B2 JPH0413352 B2 JP H0413352B2
Authority
JP
Japan
Prior art keywords
compound
formula
ditetrazolium
hydrogen
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27013184A
Other languages
Japanese (ja)
Other versions
JPS61148170A (en
Inventor
Hiroshi Nishii
Yoshifumi Totsu
Masamitsu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI SHAKU KK
Original Assignee
KOKUSAI SHAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI SHAKU KK filed Critical KOKUSAI SHAKU KK
Priority to JP27013184A priority Critical patent/JPS61148170A/en
Publication of JPS61148170A publication Critical patent/JPS61148170A/en
Publication of JPH0413352B2 publication Critical patent/JPH0413352B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

(ã‚€) 産業䞊の利甚分野 本発明は、新芏氎溶性ゞテトラゟリりム化合物
およびその化合物を甚いる還元性物質の枬定方法
に関し、さらに詳しくは、3′−3′−ゞ
ハロ−4′−ゞプニレン−ビス−
ゞプニル−2H−テトラゟリりムのプニル
基にスルフアモむル基を介しお個のスルホン酞
基を有するこずを特城ずする氎溶性のゞテトラゟ
リりム化合物およびそれを甚いる還元性物質の枬
定方法に関する。 テトラゟリりム化合物は、脱氎玠酵玠の掻性床
の枬定、それによる基質、さらにスヌパヌオキサ
むドむオンを生成する酞化酵玠の䜜甚察象である
基質の枬定、すなわち食品䞭の添加物の定量、あ
るいは生䜓䜓液成分の臚床詊薬ずしお実甚化され
おいる。 (ロ) 埓来の技術 氎溶性テトラゟリりム化合物は、これを還元し
た時に生成するホルマザンが安定な氎溶性化合物
であるので、このホルマザンを定量するこずによ
り氎溶液䞭の還元性物質を枬定するこずに利甚さ
れる。 埓来テトラゟリりム化合物ずしおは、䟋えば
−−ペり化プニル−−−ニトロプ
ニル−−プニル−2H−テトラゟリりム塩
INT、−−ゞメチルチアゟリル−
−−ゞプニル−2H−テトラゟリりム
塩MTT、2′5′−テトラキス−
ニトロプニル−3′−3′−ゞメトキシ
−4′−ゞプニレン−2H2′H−ゞテトラ
ゟリりム塩NTB、2′−−ゞプニレン
−3′5′−テトラプニル−2H2′H−
ゞテトラゟリりム塩Neo−TBなどが代衚的
に利甚されおいる。しかしながら、これらテトラ
ゟリりム塩及びその還元䜓であるホルマザンはい
ずれも氎に難溶性であり、䜿甚にあたり倚量の界
面掻性剀あるいは有機溶剀の䜵甚をやむなく行぀
おいるのが珟状である。特に臚床怜査の分野では
生成されるホルマザンが枬定機噚の枬光郚䜍に色
玠沈着を生じ、著しく怜査結果に悪圱響を䞎えお
いる。又、近幎急速に進歩する怜査の自動化に察
し、自動分析機の汚染による誀枬定をたねいおい
る。 以䞊のような理由で、テトラゟリりム塩を䜿甚
するこずが奜たしい怜査項目の堎合でも、やむを
えず他の枬定原理を䜿甚するこずを匷いられおい
た。 このような状況に察しお、特公昭56−38154号、
特開昭56−61366号、特開昭56−61367号の各特蚱
公報、日本薬孊䌚102幎䌚講挔芁旚集341頁4K2−
等に開瀺されるように、テトラゟヌル環に眮換
するプニル基に、盎接スルホン酞基もしくはカ
ルボン酞基、又は四玚アンモニナりム塩を含む偎
鎖を導入する詊みがなされおいる。 しかし、可溶化の目的でプニル基に盎接導入
されたこれら酞基のために、実際の枬定で䞍可欠
な酵玠機胜が発揮される至適PH域内においおは、
これらのテトラゟリりム化合物はホルマザンを生
じないので臚床怜査の分野では応甚困難である。
又、四玚アンモニナりム塩導入化合物は氎溶性の
点で䞍十分である。 又、最近では特開昭59−106476号公報に瀺され
るように、プニル基に盎接結合しない氎溶性基
スルホン酞基又はおよびカルボン酞基個
を含有させる方法も詊みられおいる。 しかしながら、ここで提案されたテトラゟリり
ム化合物の還元型であるホルマザンはPHの倉化で
著しく分子吞光係数が倉動する。 酵玠反応を停止させるために、臚床怜査では
酞、又はアルカリに反応液のPHを移行させる方法
が䞀般的であるが、ここで提案されたテトラゟリ
りム化合物を甚いる堎合、著しく枬定感床を䜎䞋
せしめる欠点を有しおいる。 (ハ) 発明が解決しようずしおいる問題点 本発明者らは、このような埓来の欠点を解決す
るためには、テトラゟリりム化合物が氎易溶性で
あるこず、還元を受けるずきにはPH䟝存性の小さ
いこず、特に臚床怜査に䜿甚される堎合には還元
型ニコチン酞アミドアデニンゞヌクレオチド以
䞋、NADHず略蚘。たたは還元型ニコチン酞ア
ミドゞヌクレオチド燐酞以䞋、NADPHず略
蚘。により特異的に䜜甚されるこず、生成した
ホルマザン化合物が氎易溶性でなければならない
こずなどに着目し、怜蚎を行぀た結果、本発明を
完成するに至぀た。 すなわち、本発明の第䞀の目的は、還元性物質
によ぀お、電子䌝達剀の存圚䞋に氎易溶性の発色
ホルマザンを生成する新芏な氎溶性テトラゟリり
ム化合物を提䟛するこずである。 本発明の第二の目的は、新芏なテトラゟリりム
化合物を甚いお氎性溶液䞭の還元性物質およびス
ヌパヌオキシドむオンを枬定する方法の提䟛であ
る。 他の目的は生䜓䜓液䞭のNADHやNADPHに
特異的に有利な枬定方法であり、氎性溶液のPH倉
動による圱響が小さく、枬定機噚の汚染のない還
元性物質の枬定方法にある。 (ニ) 問題点を解決するための手段 本発明の新芏な氎溶性ゞテトラゟリりム化合物
は、䞀般匏(1)で衚される 匏䞭、R1およびR3は氎玠、R2およびR4は匏
(2)たたは(3) 匏䞭、およびはSO2NHおよびR7は氎
玠、R6およびR8はスルホン酞基を瀺す。で衚さ
れる基、およびは氎玠、はハロゲンを瀺
す。 スルホン酞基は、テトラゟヌル環ず分子内塩を
圢成しおいる。 本発明のテトラゟリりム化合物は公知の原料、
方法により容易に補造するこずができる。 䟋えば、−トニロベンれンスルホニルクロラ
むドず−アミノベンれンスルホン酞ずの瞮合物
を還元しお埗られる匏(4) のアミノ化合物を垞法によりヒドラゞン化合物ず
し、次いで、䟋えばベンズアルデヒドず瞮合すれ
ば匏(5) で瀺されるプニルヒドラゟン化合物が埗られ
る。 これに、3′−ゞクロロベンゞゞンのテトラ
ゟ化合物を垞法によりカツプリングさせるこずに
よ぀お匏(6) で瀺されるホルマザン化合物が埗られる。 埗られたホルマザン化合物を垞法により酞化す
れば、目的ずするゞテトラゟリりム化合物(7) を埗るこずができる。 本発明のゞテトラゟリりム化合物の補法は、埌
蚘実斜䟋に詳述されおいる。 本発明におけるゞホルマザン化合物は、アルコ
ヌル等芪氎性の倧きい有機溶媒に易溶であるた
め、酞化が極めお円滑であり酞化によ぀お埗られ
るゞテトラゟリりム塩化合物は氎䞭分子内造塩に
より酞性䞋ではやや難溶の結晶ずしお高玔床に分
取するこずができ、カラム粟補等繁雑な粟補によ
らずずも比范的高玔床の品質にするこずができ
る。これらのテトラゟリりム化合物は氎䞭、匱ア
ルカリ性ずするこずにより、実甚䞊充分な氎溶性
を有する。 本発明の第二の芁旚は、前蚘䞀般匏(1)で瀺され
る氎溶性ゞテトラゟリりム化合物を甚るこずを特
城ずする氎性溶液䞭の還元性物質の枬定方法に存
する。 ゞテトラゟリりム化合物(1)は、還元性物質、䟋
えばNADHたたはNADPHの氎玠受容䜓ずしお
䜜甚し、あるいはスヌパヌオキサむドむオンによ
぀お還元される。還元の際に定量的に生成するホ
ルマザンの量に比䟋する発色の皋床を、吞光光床
枬定法で枬定するこずによ぀お、還元性物質であ
るNADH、NADPHたたはスヌパヌオキサむド
むオンの量を枬定するこずができる。このような
枬定方法は、脱氎玠酵玠の掻性床の枬定、それに
よる基質の定量、即ち、生䜓成分、食品䞭の添加
物などの定量に極めお有甚である。 これらの原理を、乳酞脱氎玠酵玠LDHの
掻性床枬定に䟋にずり瀺せば次の通りである NADNADHの酞化型 これらの反応の結果定量的に生成するホルマザ
ンの濃床を、吞光床枬定するこずにより定量すれ
ばLDHの掻性床を枬定するこずができる。 又、脱氎玠酵玠を䜿甚した生䜓成分の枬定をコ
レステロヌルの枬定に぀いお瀺せば次の通りであ
る 同様にコレステロヌルの定量が可胜である。 曎に、生䜓成分䞭のクレアチン燐酞キナヌれ
CPKに぀いお瀺せば次の通りである NADPNADPHの酞化型 HKヘキ゜キヌれ ADPアデノシン−−燐酞 ATPアデノシン−−燐酞 −−PDHグルコヌス−−燐酞脱氎玠
酵玠 埓぀お、同様にCPKの掻性床の枬定が可
胜である。 テトラゟリりムの応甚に぀いおは、その他
皮々の方法があり、それらは䞋蚘実斜䟋によ
り明らかにされる。 実際の枬定に圓た぀おは、トリス燐酞緩衝
液などの適宜の媒䜓䞭においお、被怜液に定
量察象基質に特異的な酞化酵玠、脱氎玠酵玠
などの酵玠類および䞀般匏(1)で瀺されるゞテ
トラゟリりム化合物を添加し、むンキナベヌ
トしお反応を進行せしめ、発色生成するホル
マザンの吞光床を枬定し、被怜液䞭の還元性
物質たたはスヌパヌオキサむドむオン、さら
には基質を定量する。 スヌパヌオキサむドむオンの定量の際には
被怜液䞭に、枬定時間、感床、定量性など実
甚的に枬定効果をさらに助長させるために、
埓来から䜿甚されおいるプノヌル類、チオ
プノヌル類、アミン類などを添加しおおく
こずもできる。たた枬定時の奜たしくない副
反応である自動酞化を防止するためにキレヌ
ト剀を加えおもよい。 これらの添加助剀は、適宜、単独たたは組
合わせお甚いられる。特に添加助剀ずしお界
面掻性剀を䜵甚するこずは、ホルマザン呈色
の極倧吞収を長波長偎にシフトする効果があ
぀お、呈色感床をさらに増加させるので本発
明枬定方法においおは奜たしい態様である。
界面掻性剀ずしおは、脂肪族、芳銙族アルコ
ヌルのポリオキシ゚チレン誘導䜓が䜿甚さ
れ、その重合床は〜30皋床が䞀般的であ
る。䞀般に垂販されおいるノニオン系界面掻
性剀が通垞䞍䟿なく䜿甚できる。 枬定䞭の被怜液のPHは、通垞7.0〜8.0の䞭
性域が奜たしいが、本発明の枬定方法ではPH
6.0〜10.5の範囲においおも呈色感床の倉化
は少なく、酞性域でも倉化は小さい。 (ホ) 䜜甚および効果 本発明の䞀般匏(1)で瀺されるゞテトラゟリ
りム化合物およびその還元䜓ホルマザンは、
スルホン酞基個を有する眮換スルフアモむ
ル基個を有するこずによ぀お氎溶性の過倧
を抑制するこずができ、補造、粟補が容易で
ある。 たた還元しお埗られたホルマザンの䞭性付
近における吞光波圢が、埓来のホルマザンに
比范しお長波長玄500nmであるので、䜓
液䞭の着色成分450nm近蟺ず区別が著しく、
枬定誀差を生じ難い。 たた本発明のゞテトラゟリりム化合物が還
元を受ける際のPH䟝存性が極めお小さいので
枬定結果が再珟性よく、しかも高感床に埗ら
れる。 臚床怜査分野でこれらゞテトラゟリりム化
合物を䜿甚しお基質あるいは酵玠掻性床を枬
定する時、生䜓成分に共存する皮々の還元性
物質もたた同時にテトラゟリりム化合物を還
元しお枬定結果に正の誀差を䞎える結果ずな
る。この圱響を陀くために、あらかじめペり
玠酞カリりムなどの匱い酞化剀で怜䜓生䜓
成分を前凊理しお還元性物質を陀去した
埌、基質あるいは酵玠掻性床の枬定をする
が、本願発明のゞテトラゟリりム化合物は
NADHやNADPHに特異的な䜜甚性を有し、
生䜓成分に共存する皮々の還元性物質や前凊
理剀に圱響されず正確な枬定情報を埗るこず
ができる。 (ヘ) 実斜䟋 以䞋に本発明を実斜䟋および比范䟋により
詳述するが、本発明はこれら実斜䟋に限定さ
れるものではない。 実斜䟋  プニルヒドラゞン−−スルホ−3′−ス
ルホン酞プニルアミド34を氎1000mlに溶
解し、ベンズアルデヒド10.8を加えた。次
いで、40〜45℃で時間かきたぜた埌、塩析
しおヒドラゟン化合物を収率70で埗た。 埗られたヒドラゟン化合物2.3を、゜ヌ
ダ灰を含む氎40mlに添加しお〜10℃で
溶解し、別に3′−ゞクロロベンゞシン
0.63を垞法でテトラゟン化し、PHを玄に
調敎した液を加え、アルカリ性においお時
間かきたぜたのち、埗られたゞホルマザン化
合物を䞭和、晶析、ろ別した。メタノヌルに
より粟補し、ゞホルマザン化合物のケヌキ
を埗た。 次に、湯济䞭䞊蚘ゞホルマザン化合物ケヌ
キをメタノヌル70mlに溶解し、70〜75℃で
塩酞10を加え、次いで過硫酞アンモニり
ム結晶を加え、酞化が終了するたで70〜
75℃で玄時間かきたぜた。掻性炭を加えた
のち、熱ろ過し、ろ液を氎で300mlに垌釈し
お晶析した。析出した淡黄癜色結晶をろ過
し、冷氎で充分掗浄したのち也燥した。淡黄
癜色粉末1.3を埗た。 この生成物は、第図に瀺すような赀倖線
吞収曲線及び䞋蚘元玠分析倀を有する䞋匏で
瀺されるゞテトラゟリりム化合物である。 元玠分析倀     蚈算倀 52.96 3.02 12.35 11.31 分析倀 52.88 3.00 12.47 11.41 実斜䟋  実斜䟋のヒドラゞン化合物の代わりに、
䞋蚘参考䟋に埓぀お埗られるプニルヒドラ
ゞン−−スルホ−3′−スルホン酞プニル
アミドを䜿甚する以倖は同様の合成法によ
り、第図に瀺すような赀倖吞収曲線及び䞋
蚘元玠分析倀を有する䞋匏で瀺されるゞテト
ラゟリりム化合物1.5を埗た。 元玠分析倀     蚈算倀 52.96 3.02 12.35 11.31 分析倀 52.86 3.01 12.38 11.34 参考䟋 プニルヒドラゞン−−スルホ−3′−スルホ
ン酞プニルアミドの補法 −アセチル−アミノベンれン−−スルホニ
ルクロラむド25を、−アミノベンれンスルホ
ン酞18を氎150mlに゜ヌダ灰15共存䞋に溶か
した溶液䞭に20〜25℃で埐々に加え、〜時間
かきたぜたのち、塩酞酞性ずし、析出物をろ過す
る。埗られたケヌキを苛性゜ヌダ150ml䞭に
90〜95℃で時間凊理したのち、䞭和しお−ア
ミノベンれン−−スルホ−3′−スルホン酞プ
ニルアミド氎溶液を収率玄70で埗る。 以䞋垞法により埗られた−アミノベンれン−
−スルホ−3′−スルホン酞プニルアミドをヒ
ドラゞン化合物ずする。 次に、䞊蚘実斜䟋においお埗られた本発明の化
合物を甚いたNADHによる発色テスト及び氎溶
性の実斜䟋を瀺す。 実斜䟋 〜 実斜䟋およびでえられたゞテトラゟリりム
化合物をトリトン−4050.4、NAD2mM
、ゞアホラヌれ2Umlを含有する0.1Mトリス
燐酞緩衝液PH7.5mlに、0.2mMになる
よう加え、混和し、曎にNADH2.8mMを含
む氎溶液50Όを加え、35〜40℃で分間加枩の
あず、吞光床を枬定した。氎溶性および発色性を
次衚に瀺す。
(a) Industrial Application Field The present invention relates to a novel water-soluble ditetrazolium compound and a method for measuring reducing substances using the compound, and more specifically, 3,3'-(3,3'-dihalo-4, 4′-diphenylene)-bis(2,5-
The present invention relates to a water-soluble ditetrazolium compound characterized by having one sulfonic acid group via a sulfamoyl group to the phenyl group of (diphenyl-2H-tetrazolium), and a method for measuring a reducing substance using the same. Tetrazolium compounds can be used to measure the activity of dehydrogenases, their substrates, and the substrates that act on oxidases that produce superoxide ions, in other words, to quantify additives in foods, or clinically analyze biological fluid components. It has been put into practical use as a reagent. (B) Prior art Since the water-soluble tetrazolium compound is a stable water-soluble compound, the formazan produced when it is reduced is used to measure reducing substances in an aqueous solution by quantifying this formazan. Ru. Conventional tetrazolium compounds include, for example, 2
-(4-phenyl iodide)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium salt (INT), 3-(4,5-dimethylthiazolyl-
2) -2,5-diphenyl-2H-tetrazolium salt (MTT), 2,2',5,5'-tetrakis(4-
Nitrophenyl)-3,3'-(3,3'-dimethoxy-4,4'-diphenylene)-2H,2'H-ditetrazolium salt (NTB), 2,2'-p-diphenylene-3,3',5,5'-tetraphenyl-2H,2'H-
Ditetrazolium salt (Neo-TB) is typically used. However, both of these tetrazolium salts and their reduced form, formazan, are sparingly soluble in water, and at present it is necessary to use a large amount of surfactant or organic solvent in combination. Particularly in the field of clinical testing, the generated formazan causes pigmentation in the photometric area of the measuring device, significantly affecting test results. Furthermore, with the rapid advancement of automation in testing in recent years, erroneous measurements may occur due to contamination of automatic analyzers. For the above reasons, even in the case of test items for which it is preferable to use a tetrazolium salt, it has been unavoidable to use other measurement principles. In response to this situation, Special Publication No. 56-38154,
Patent publications of JP-A-56-61366 and JP-A-56-61367, collection of lecture abstracts of the 102nd annual meeting of the Pharmaceutical Society of Japan, page 341, 4K2-
4 and others, attempts have been made to directly introduce a sulfonic acid group, a carboxylic acid group, or a side chain containing a quaternary ammonium salt into the phenyl group substituted on the tetrazole ring. However, due to these acid groups directly introduced into the phenyl group for the purpose of solubilization, within the optimal pH range where essential enzyme functions are exerted in actual measurements,
Since these tetrazolium compounds do not produce formazan, they are difficult to apply in the field of clinical testing.
Further, compounds into which quaternary ammonium salts are introduced are insufficient in terms of water solubility. Recently, as shown in JP-A-59-106476, attempts have been made to include two water-soluble groups (sulfonic acid groups and/or carboxylic acid groups) that are not directly bonded to the phenyl group. However, the molecular extinction coefficient of formazan, which is a reduced form of the tetrazolium compound proposed here, fluctuates significantly with changes in pH. In order to stop enzyme reactions, it is common in clinical tests to shift the pH of the reaction solution to acid or alkali, but when using the tetrazolium compound proposed here, it has the drawback of significantly reducing measurement sensitivity. have. (c) Problems to be Solved by the Invention The present inventors have found that in order to solve these conventional drawbacks, the tetrazolium compound should be easily water-soluble and should have low pH dependence when undergoing reduction. In particular, when used in clinical tests, it is specifically acted on by reduced nicotinamide adenine dinucleotide (hereinafter abbreviated as NADH) or reduced nicotinamide dinucleotide phosphate (hereinafter abbreviated as NADPH). As a result of their studies, they have completed the present invention, focusing on the fact that the produced formazan compound must be easily water-soluble. That is, the first object of the present invention is to provide a novel water-soluble tetrazolium compound that produces a readily water-soluble color-forming formazan in the presence of an electron transfer agent using a reducing substance. A second object of the present invention is to provide a method for measuring reducing substances and superoxide ions in an aqueous solution using a novel tetrazolium compound. Another purpose is to provide a method for measuring reducing substances that is specifically advantageous for NADH and NADPH in biological body fluids, is less affected by PH fluctuations in aqueous solutions, and does not contaminate measuring equipment. (d) Means for solving the problems The novel water-soluble ditetrazolium compound of the present invention is represented by general formula (1): [In the formula, R 1 and R 3 are hydrogen, R 2 and R 4 are the formula
(2) or (3) (In the formula, X and Y are SO 2 NH, R 7 is hydrogen, R 6 and R 8 are sulfonic acid groups.), P and Q are hydrogen, and Z is halogen. ] The sulfonic acid group forms an inner salt with the tetrazole ring. The tetrazolium compound of the present invention includes known raw materials,
It can be easily manufactured by this method. For example, the formula (4) obtained by reducing the condensate of m-tonylobenzenesulfonyl chloride and m-aminobenzenesulfonic acid If the amino compound of is converted into a hydrazine compound by a conventional method and then condensed with, for example, benzaldehyde, the formula (5) is obtained. A phenylhydrazone compound represented by is obtained. By coupling a tetrazo compound of 3,3'-dichlorobenzidine to this by a conventional method, formula (6) was obtained. A formazan compound represented by is obtained. By oxidizing the obtained formazan compound by a conventional method, the desired ditetrazolium compound (7) is obtained. can be obtained. The method for producing the ditetrazolium compound of the present invention is detailed in the Examples below. Since the diformazane compound used in the present invention is easily soluble in highly hydrophilic organic solvents such as alcohol, oxidation is extremely smooth, and the ditetrazolium salt compound obtained by oxidation is somewhat difficult to produce under acidic conditions due to intramolecular salt formation in water. It can be isolated with high purity as crystals of the solution, and relatively high purity quality can be obtained without complicated purification such as column purification. These tetrazolium compounds have sufficient water solubility for practical use by making them slightly alkaline in water. The second gist of the present invention resides in a method for measuring a reducing substance in an aqueous solution, which is characterized by using a water-soluble ditetrazolium compound represented by the general formula (1). The ditetrazolium compound (1) acts as a hydrogen acceptor for reducing substances, such as NADH or NADPH, or is reduced by superoxide ions. Measuring the amount of reducing substances NADH, NADPH, or superoxide ions by spectrophotometrically measuring the degree of color development that is proportional to the amount of formazan quantitatively produced during reduction. I can do it. Such a measurement method is extremely useful for measuring the activity of dehydrogenase and thereby quantifying substrates, that is, biological components, additives in foods, and the like. The following is an example of these principles when measuring the activity of lactate dehydrogenase (LDH): (NAD: Oxidized form of NADH) The activity of LDH can be measured by quantifying the concentration of formazan quantitatively produced as a result of these reactions by measuring absorbance. In addition, the measurement of biological components using dehydrogenase for cholesterol measurement is as follows: Similarly, cholesterol can be quantified. Furthermore, the following is shown regarding creatine phosphate kinase (CPK) in biological components: (NADP: oxidized form of NADPH HK: hexokase ADP: adenosine-2-phosphate ATP: adenosine-3-phosphate G-6-PDH: glucose-6-phosphate dehydrogenase) Therefore, CPK activity can be measured in the same way. is possible. There are various other methods for applying tetrazolium, which will be clarified by the examples below. In actual measurements, enzymes such as oxidases and dehydrogenases specific to the substrate to be quantified and enzymes expressed by general formula (1) are added to the test solution in an appropriate medium such as Tris phosphate buffer. A ditetrazolium compound is added thereto, the reaction is allowed to proceed by incubation, and the absorbance of the formazan produced is measured to quantify the reducing substance or superoxide ion, as well as the substrate, in the test solution. When quantifying superoxide ions, in order to further improve the practical measurement effect in terms of measurement time, sensitivity, quantitative performance, etc.,
Conventionally used phenols, thiophenols, amines, etc. can also be added. Furthermore, a chelating agent may be added to prevent autoxidation, which is an undesirable side reaction during measurement. These additive aids may be used alone or in combination as appropriate. In particular, the combined use of a surfactant as an additive auxiliary agent has the effect of shifting the maximum absorption of formazan coloring to the longer wavelength side, further increasing the coloring sensitivity, and is therefore a preferred embodiment in the measurement method of the present invention. .
As the surfactant, polyoxyethylene derivatives of aliphatic or aromatic alcohols are used, and the degree of polymerization thereof is generally about 5 to 30. Generally commercially available nonionic surfactants can be used without any inconvenience. The PH of the test liquid during measurement is normally preferably in the neutral range of 7.0 to 8.0, but in the measurement method of the present invention, the PH
There is little change in color sensitivity even in the range of 6.0 to 10.5, and even in the acidic range. (E) Action and Effect The ditetrazolium compound represented by the general formula (1) of the present invention and its reduced formazan,
By having two substituted sulfamoyl groups having one sulfonic acid group, excessive water solubility can be suppressed, and production and purification are easy. In addition, the absorption waveform of the formazan obtained by reduction near neutrality has a longer wavelength (approximately 500 nm) than that of conventional formazan, so it is markedly distinguishable from the colored components in body fluids around 450 nm.
Less likely to cause measurement errors. Further, since the ditetrazolium compound of the present invention has extremely low pH dependence upon reduction, measurement results can be obtained with good reproducibility and high sensitivity. When these ditetrazolium compounds are used to measure substrate or enzyme activity in the field of clinical testing, various reducing substances that coexist in biological components may also reduce the tetrazolium compounds, resulting in positive errors in the measurement results. becomes. In order to eliminate this effect, the specimen (biological component) is pretreated with a weak oxidizing agent such as potassium iodate to remove reducing substances, and then the substrate or enzyme activity is measured. Tetrazolium compounds are
It has specific action on NADH and NADPH,
Accurate measurement information can be obtained without being affected by various reducing substances and pretreatment agents that coexist with biological components. (F) Examples The present invention will be explained in detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 34 g of phenylhydrazine-3-sulfo-3'-sulfonic acid phenylamide was dissolved in 1000 ml of water, and 10.8 g of benzaldehyde was added. Next, the mixture was stirred at 40 to 45°C for 2 hours and then salted out to obtain a hydrazone compound in a yield of 70%. 2.3 g of the obtained hydrazone compound was added to 40 ml of water containing 6 g of soda ash and dissolved at 5 to 10°C, and separately 3,3'-dichlorobenzicine was added.
0.63 g was tetrazonated using a conventional method, and a solution adjusted to a pH of about 5 was added, and after stirring in an alkaline environment for 7 hours, the obtained diformazan compound was neutralized, crystallized, and filtered. Purified with methanol, diformazan compound cake 7
I got g. Next, dissolve the above diformazan compound cake in 70 ml of methanol in a hot water bath, and heat it at 70 to 75°C for 70 minutes.
Add 10g of % hydrochloric acid, then add 2g of ammonium persulfate crystals, and simmer for 70~70 minutes until oxidation is complete.
Stir at 75℃ for about 2 hours. After adding activated carbon, the mixture was filtered under heat, and the filtrate was diluted with water to 300 ml for crystallization. The precipitated pale yellowish white crystals were filtered, thoroughly washed with cold water, and then dried. 1.3 g of pale yellowish white powder was obtained. This product is a ditetrazolium compound represented by the following formula and has an infrared absorption curve as shown in FIG. 1 and the following elemental analysis values. Elemental analysis value (%) C H N S Calculated value 52.96 3.02 12.35 11.31 Analysis value 52.88 3.00 12.47 11.41 Example 2 Instead of the hydrazine compound of Example 1,
The infrared absorption curve shown in Figure 2 and the following elemental analysis values were obtained by the same synthesis method except that phenylhydrazine-4-sulfo-3'-sulfonic acid phenylamide obtained according to the reference example below was used. 1.5 g of a ditetrazolium compound represented by the following formula was obtained. Elemental analysis value C H N S Calculated value 52.96 3.02 12.35 11.31 Analysis value 52.86 3.01 12.38 11.34 Reference Example: Process for producing phenylhydrazine-4-sulfo-3'-sulfonic acid phenylamide: 25 g of 1-acetyl-aminobenzene-4-sulfonyl chloride and 18 g of m-aminobenzenesulfonic acid were added to 150 ml of water in the presence of 15 g of soda ash. It is gradually added to the dissolved solution at 20-25°C, stirred for 5-6 hours, acidified with hydrochloric acid, and the precipitate is filtered. The resulting cake was dissolved in 150ml of 5% caustic soda.
After treatment at 90-95°C for 2 hours, it is neutralized to obtain an aqueous 1-aminobenzene-4-sulfo-3'-sulfonic acid phenylamide solution with a yield of about 70%. 1-Aminobenzene- obtained by the following conventional method
4-Sulfo-3'-sulfonic acid phenylamide is used as a hydrazine compound. Next, color development tests using NADH and water-solubility examples using the compounds of the present invention obtained in the above examples will be shown. Examples 3 to 4 The ditetrazolium compounds obtained in Examples 1 and 2 were mixed with Triton X-405, 0.4%, NAD 2mM/
, to 3 ml of 0.1 M Tris phosphate buffer (PH 7.5) containing 2 U/ml of diaphorase to give a concentration of 0.2 mM/ml, mix, add 50 Ό of an aqueous solution containing 2.8 mM/ml of NADH, and incubate at 35-40°C. After heating for 5 minutes, absorbance was measured. The water solubility and color development are shown in the table below.

【衚】 本発明のゞテトラゟリりム化合物は、実甚䞊充
分な氎溶性を有するずずもに、NADH−ゞアホ
ラヌれ系のような䜎還元電䜍系においおも良奜な
発色を瀺しおいる。 実斜䟋  実斜䟋で埗たゞテトラゟリりム化合物
0.2mM、トリトン−4050.4、NAD
2mM、ゞアホラヌれ2Umlを含有する0.1M
トリス燐酞緩衝液PH7.5mlをずる。䞀方、
トリトン−405を加えない同様の組成の緩衝液
mlをずる。䞡液にNADH2.8mM氎溶液
50Όを加え、37℃で分間加枩埌、それぞれの
吞光スペクトルを枬定した。結果を第図に瀺
す。 第図に瀺す通り、界面掻性剀を䜵甚する堎
合、実斜䟋で埗た本発明のゞテトラゟリりム化
合物では極倧波長520nmから525nmにシフトし、
その吞光床は玄倍に増倧する。 次に、本発明化合物による呈色のPH䟝存の様子
をNADHの枬定を䟋にず぀お瀺す。 実斜䟋  トリトン−4050.4を含有する0.1Mトリ
ス燐酞緩衝液においお、PHを5.8、6.5、7.0、7.4、
8.0、8.4、9.0、9.4、9.8、10.5に調補した溶液を
準備し、各々に実斜䟋で埗た本発明ゞテトラゟ
リりム化合物0.2mM、ゞアホラヌれ2Uml
を加え、その溶液2.5mlにNADH2.5mM氎溶
液50Όを加え、37℃で分間加枩埌、各PHにお
いお生成されたホルマザンの極倧吞光床をプロツ
トした。結果を第図に瀺す。 即ち、呈色の感床は少なくずもPH7.2〜10.5に
おいお倉化はなく、酞性域においおも倉化は著し
く少ない。このこずはNADHの枬定及び各皮脱
氎玠酵玠の至適PHが著しく広範囲に䜿甚できるこ
ずを意味し、再珟性よく、安定した枬定結果が高
感床に埗られるこずになる。 実斜䟋および比范䟋 トリトン−4050.4を含有する0.1Mトリ
ス燐酞緩衝液PH5.8、7.5、8.4、9.0、9.8に調敎
に実斜䟋で埗たゞテトラゟリりム化合物実斜
䟋又はNTB比范䟋を各0.2mM、
ゞアホラヌれ2Umlになるよう加え反応液を調
補する。この反応液2.5mlに50mgアスコル
ビン酞氎溶液50Όを加え、37℃で分間加枩し
おから、生成されるそれぞれのホルマザンの極倧
吞光床で吞光床を枬定した、その結果をプロツト
しお第図の結果を埗た。 第図からわかるように、埓来䜿甚されおいる
NBTに比范し、各PHにおいお本発明のゞテトラ
ゟリりム化合物では生成されるホルマザンは著し
く少ない。このこずはアスコルビン酞に察し還元
され難いこずを瀺し、NTBに比范しNADHに察
し、特異的に䜜甚するこずの䞀面を瀺すものであ
る。 実斜䟋  実斜䟋で埗た本発明ゞテトラゟリりム化合物
1mM、乳酞リチりム塩25mM、
NAD2mM、ゞアホラヌれ2Uml、EDTA
−2NalmMを、トリトン−4050.4を含
む0.2Mトリス塩酞緩衝液PH8.2に加え、発色
詊液ずする。 ヒト血枅20Όをずり、発色詊薬2.5mlを加え、
37℃の恒枩で連続的に生成されるホルマザンの極
倧吞光床である517nmの吞光床を枬定した。結果
を第図に瀺す。 又、ヒト血枅を20、30、40Όず増加させ、同
様に連続的に吞光床を枬定した埌、分間圓り吞
光床の倉化量をプロツトしお第図に瀺す結果を
埗た。 これらの結果から、本発明の枬定方法は䜓液成
分の枬定に効果的で、定量的な反応であるこずが
わかる。 次にスヌパヌオキサむドの定量に぀いおコレス
テロヌルの定量を䟋にずり瀺す。 実斜䟋  実斜䟋で埗た化合物0.2mM、コレステ
ロヌルオキシダヌれ0.2Uml、ペルオキシダヌ
ã‚Œ10Uml、−゚チル−ヒドロキシ−−
スルフオプロピル−−トルむゞン1mM、
還元型グルタチオン0.5mMを、トリトン
−1000.2を含む0.1Mトリス塩酞緩衝液に溶
解し、発色詊薬ずする。 コレステロヌルをむ゜プロパノヌルに溶解し、
300mgの濃床に調補し詊料ずする。 è©Šæ–™10、20、30、40、50Όを各々取り、発色
詊薬mlを加え、37℃の恒枩䞋で分間むンキナ
ベヌト埌、詊薬ブランクを察照に517nmの吞光床
を枬定した。結果を第図に瀺す。 このこずは、コレステロヌルオキシダヌれの䜜
甚により生成されたスヌパヌオキサむドむオンを
定量的に枬定できるこずを瀺すものである。
[Table] The ditetrazolium compound of the present invention has sufficient water solubility for practical use, and also exhibits good color development in a low reduction potential system such as the NADH-diaphorase system. Example 5 Ditetrazolium compound obtained in Example 2
0.2mM/, Triton X-405, 0.4%, NAD
2mM/0.1M containing diaphorase 2U/ml
Take 3 ml of Tris phosphate buffer (PH7.5). on the other hand,
Take 3 ml of a buffer of similar composition without the addition of Triton X-405. NADH2.8mM/aqueous solution in both solutions
After adding 50Ό and heating at 37°C for 5 minutes, each absorption spectrum was measured. The results are shown in Figure 3. As shown in FIG. 3, when a surfactant is used in combination, the maximum wavelength of the ditetrazolium compound of the present invention obtained in Example 2 shifts from 520 nm to 525 nm.
Its absorbance increases approximately twice. Next, the PH dependence of color development by the compound of the present invention will be shown using the measurement of NADH as an example. Example 6 In 0.1M Tris phosphate buffer containing 0.4% Triton
8.0, 8.4, 9.0, 9.4, 9.8, and 10.5 were prepared, each containing 0.2 mM/ml of the ditetrazolium compound of the present invention obtained in Example 2 and 2 U/ml diaphorase.
was added, and 50Ό of a 2.5mM NADH/aqueous solution was added to 2.5ml of the solution, and after heating at 37°C for 5 minutes, the maximum absorbance of formazan produced at each pH was plotted. The results are shown in Figure 4. That is, there is no change in color sensitivity at least in the pH range of 7.2 to 10.5, and there is very little change in the acidic range. This means that the measurement of NADH and the optimum pH of various dehydrogenases can be used over a significantly wide range, and stable measurement results with good reproducibility and high sensitivity can be obtained. Example 7 and Comparative Example 1 0.1M Tris phosphate buffer containing 0.4% Triton X-405 (adjusted to PH5.8, 7.5, 8.4, 9.0, 9.8)
0.2mM/each of the ditetrazolium compound (Example 7) or NTB (Comparative Example 1) obtained in Example 2,
Add diaphorase to a concentration of 2 U/ml to prepare a reaction solution. 50Ό of a 50mg/d ascorbic acid aqueous solution was added to 2.5ml of this reaction solution, heated at 37°C for 5 minutes, and the absorbance was measured at the maximum absorbance of each formazan produced.The results were plotted and We obtained the results shown in the figure. As can be seen from Figure 5, the conventionally used
Compared to NBT, the ditetrazolium compound of the present invention produces significantly less formazan at each pH. This shows that it is difficult to reduce ascorbic acid and shows that it acts specifically on NADH compared to NTB. Example 8 Ditetrazolium compound of the present invention obtained in Example 1
1mM/, lactate lithium salt 25mM/,
NAD 2mM/, diaphorase 2U/ml, EDTA
-2NalmM/ is added to 0.2M Tris-HCl buffer (PH8.2) containing 0.4% Triton X-405 to prepare a coloring reagent. Take 20Ό of human serum, add 2.5ml of coloring reagent,
The absorbance at 517 nm, which is the maximum absorbance of formazan continuously produced at a constant temperature of 37°C, was measured. The results are shown in Figure 6. Further, after increasing the amount of human serum to 20, 30, and 40Ό, and measuring the absorbance continuously in the same manner, the change in absorbance per minute was plotted to obtain the results shown in FIG. These results show that the measuring method of the present invention is effective in measuring body fluid components and is a quantitative reaction. Next, the determination of superoxide will be explained using the determination of cholesterol as an example. Example 9 0.2mM of the compound obtained in Example 1, cholesterol oxidase 0.2U/ml, peroxidase 10U/ml, N-ethyl (2-hydroxy-3-
sulfopropyl)-m-toluidine 1mM/,
Reduced glutathione 0.5mM/Triton
-100, dissolve in 0.1M Tris-HCl buffer containing 0.2% and use as a coloring reagent. Dissolve cholesterol in isopropanol,
Prepare the concentration to 300mg/d and use it as a sample. Samples 10, 20, 30, 40, and 50Ό were each taken, 5 ml of coloring reagent was added thereto, and after incubation at a constant temperature of 37°C for 5 minutes, the absorbance at 517 nm was measured using a reagent blank as a control. The results are shown in FIG. This shows that superoxide ions generated by the action of cholesterol oxidase can be quantitatively measured.

【図面の簡単な説明】[Brief explanation of drawings]

第図および第図は、実斜䟋およびで埗
たゞテトラゟリりム化合物の赀倖吞収スペクト
ル、第図は、実斜䟋で埗られた吞光スペクト
ル、第図は、実斜䟋で埗られた吞光床を瀺す
図、第図は、実斜䟋で埗られた吞光床を瀺す
図、第図および第図は、実斜䟋で埗られた
吞光床を瀺す図、および第図は、実斜䟋で埗
られた吞光床を瀺す図である。
Figures 1 and 2 are infrared absorption spectra of the ditetrazolium compounds obtained in Examples 1 and 2, Figure 3 is the absorption spectrum obtained in Example 5, and Figure 4 is the absorption spectrum of the ditetrazolium compounds obtained in Example 6. Figure 5 is a diagram showing the absorbance obtained in Example 7, Figures 6 and 7 are diagrams showing the absorbance obtained in Example 8, and Figure 8 is a diagram showing the absorbance obtained in Example 8. is a diagram showing the absorbance obtained in Example 9.

Claims (1)

【特蚱請求の範囲】  䞀般匏(1) 匏䞭、R1およびR3は氎玠、R2およびR4は匏
(2)たたは(3) 匏䞭、およびはSO2NH、R5およびR7は
氎玠、R6およびR8はスルホン酞基を瀺す。 で衚される基、およびは氎玠、はハロゲン
を瀺す。で衚される新芏氎溶性ゞテトラゟリり
ム化合物。  䞀般匏(1) 匏䞭、R1およびR3は氎玠、R2およびR4は匏
(2)たたは(3) 匏䞭、およびはSO2NH、R5およびR7は
氎玠、R6およびR8はスルホン酞基を瀺す。 で衚される基、およびは氎玠、はハロゲン
を瀺す。で衚される氎溶性テトラゟリりム化合
物を甚いるこずを特城ずする氎性溶液䞭の還元性
物質の枬定方法。  還元性物質が還元型ニコチン酞アミドアデニ
ンゞヌクレオチド又は還元型ニコチン酞アミドゞ
ヌクレオチド燐酞である特蚱請求の範囲第項に
蚘茉の枬定方法。  還元性物質がスヌパヌオキサむドむオンであ
る特蚱請求の範囲第項に蚘茉の枬定方法。  テトラゟリりム化合物を界面掻性剀ず䜵甚す
る特蚱請求の範囲第〜項のいずれかに蚘茉の
枬定方法。  氎性溶液䞭の還元性物質を枬定するこずによ
぀お氎性溶液䞭の成分を定量する特蚱請求の範囲
第〜項のいずれかに蚘茉の枬定方法。  氎性溶液䞭の成分が生䜓䜓液䞭の成分である
特蚱請求の範囲第項に蚘茉の枬定方法。
[Claims] 1 General formula (1) [In the formula, R 1 and R 3 are hydrogen, R 2 and R 4 are the formula
(2) or (3) (In the formula, X and Y are SO 2 NH, R 5 and R 7 are hydrogen, R 6 and R 8 are sulfonic acid groups.) P and Q are hydrogen, and Z is halogen. . ] A novel water-soluble ditetrazolium compound represented by: 2 General formula (1) [In the formula, R 1 and R 3 are hydrogen, R 2 and R 4 are the formula
(2) or (3) (In the formula, X and Y are SO 2 NH, R 5 and R 7 are hydrogen, R 6 and R 8 are sulfonic acid groups.) P and Q are hydrogen, and Z is halogen. . ] A method for measuring a reducing substance in an aqueous solution, characterized by using a water-soluble tetrazolium compound represented by the following. 3. The measuring method according to claim 2, wherein the reducing substance is reduced nicotinamide adenine dinucleotide or reduced nicotinamide dinucleotide phosphoric acid. 4. The measuring method according to claim 2, wherein the reducing substance is a superoxide ion. 5. The measuring method according to any one of claims 2 to 4, in which a tetrazolium compound is used in combination with a surfactant. 6. The measuring method according to any one of claims 2 to 5, wherein a component in an aqueous solution is quantified by measuring a reducing substance in the aqueous solution. 7. The measuring method according to claim 6, wherein the component in the aqueous solution is a component in a biological body fluid.
JP27013184A 1984-12-20 1984-12-20 Water-soluble tetrazolium compound and method of measuring reducing substance using same Granted JPS61148170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27013184A JPS61148170A (en) 1984-12-20 1984-12-20 Water-soluble tetrazolium compound and method of measuring reducing substance using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27013184A JPS61148170A (en) 1984-12-20 1984-12-20 Water-soluble tetrazolium compound and method of measuring reducing substance using same

Publications (2)

Publication Number Publication Date
JPS61148170A JPS61148170A (en) 1986-07-05
JPH0413352B2 true JPH0413352B2 (en) 1992-03-09

Family

ID=17481982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27013184A Granted JPS61148170A (en) 1984-12-20 1984-12-20 Water-soluble tetrazolium compound and method of measuring reducing substance using same

Country Status (1)

Country Link
JP (1) JPS61148170A (en)

Also Published As

Publication number Publication date
JPS61148170A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
EP0124909B1 (en) Process for determining reduced form coenzymes
JPS60184400A (en) Novel color reagent
US4824779A (en) Method for the determination of the reduced form of nicotinamide adenine dinucleotide
EP0488756B1 (en) Oxidizable color producing reagent
JP2590124B2 (en) Water-soluble tetrazolium compound and method for measuring reducing substance using the compound
JP5327578B2 (en) Method for measuring phosphatase
JP2838866B2 (en) Method for suppressing the activity of reducing substances in oxidative colorimetric analysis
JPH0571239B2 (en)
JP2516381B2 (en) Method for quantifying hydrogen peroxide and reagent for quantifying the same
US4695539A (en) Process for quantitative determination of substrate treated with oxidase
JPH0413352B2 (en)
JPH0413351B2 (en)
JPH02276595A (en) Method for measuring bile acid in high sensitivity and composition for measuring bile acid
Shiga et al. Synthesis of a new tetrazolium salt giving a water-soluble formazan and its application in the determination of lactate dehydrogenase activity
JPS59106476A (en) Water-soluble tetrazolium compound and a method for determining reductive substance using the same
US5792619A (en) Assay using oxidative chromogenic reagent
JPS6240300A (en) Activity measurement of adenosine deaminase in humor
JPS6219100A (en) Measurement of bile acid
JPH0343096A (en) Determination of substrate or enzyme
JPS61174267A (en) Novel imidazole derivative and measuring method using same as color forming component
JPS62244397A (en) Novel measurement of choline esterase activity
JPH02100699A (en) Measurement of organism sample
JPH0362400B2 (en)
JPH0432987B2 (en)
JPS6036755B2 (en) Method for measuring components in biological fluids