JPH04132864A - Heat resistant machine element for engine - Google Patents

Heat resistant machine element for engine

Info

Publication number
JPH04132864A
JPH04132864A JP25174090A JP25174090A JPH04132864A JP H04132864 A JPH04132864 A JP H04132864A JP 25174090 A JP25174090 A JP 25174090A JP 25174090 A JP25174090 A JP 25174090A JP H04132864 A JPH04132864 A JP H04132864A
Authority
JP
Japan
Prior art keywords
layer
powder
heat
heat resisting
ductile metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25174090A
Other languages
Japanese (ja)
Other versions
JP2876760B2 (en
Inventor
Tadashi Kamimura
正 上村
Akira Tsujimura
辻村 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP25174090A priority Critical patent/JP2876760B2/en
Publication of JPH04132864A publication Critical patent/JPH04132864A/en
Application granted granted Critical
Publication of JP2876760B2 publication Critical patent/JP2876760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve durability and reliability of the machine-element of an engine by fusing a heat resisting steel on the surface of a first layer to form a second layer after capsule powder produced by covering the surface of heat resisting steel powder with ductile metallic powder is fused on the surface of the heat resisting machine element by ultrasonic waves. CONSTITUTION:A recessed part 9 is formed in the surrounding part of a cylinder head under surface 4 surrounded with suction and discharge valves 2 and 3 and a hot plug mounting hole 6, capsule powder 12 prepared such that heat resisting steel powder 10 serving as a core is covered with ductile metallic powder 11 is charged therein, and an uniform capsule powder layer is formed on the inner surface of the recessed part 9. The capsule powder 12 is fused to each other by using an ultrasonic fusing machine 13 to form a first layer 14 on the surface of the recessed part 9. Padding welding of a heat resisting steel is applied to the surface of the first layer 14 with high density energy to form a second layer 16 in a given thickness. Thermal shrinkage of the first layer 14 is transmitted to the ductile metal of the second layer 16, and since a thermal crack is effectively prevented from occurring through absorption of the ductile metal, a cylinder head 1 which is internally increased in roughness and ductility and durable to a thermal crack is provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シリンダヘッド、ピストン等のエンジンの金
属製機械要素に係り、特に金属製機械要素の受熱面に耐
熱性金属を融接したエンジンの耐熱性機械要素に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to metal mechanical elements of engines such as cylinder heads and pistons, and particularly to engines in which a heat-resistant metal is fused to the heat-receiving surface of the metal mechanical elements. Concerning heat-resistant mechanical elements.

[従来の技術] 燃焼ガスエネルギに直接晒され高温化されてしまうエン
ジンの機械要素にはシリンダヘッドやピストン等がある
が、近来のエンジンの高出力化、機械的負荷の増大に対
応するために、その燃焼面側の強度、特に燃焼面に起こ
る熱亀裂の改善を求められている。熱亀裂は、熱応力に
対して断面の少ない部分、すなわち形状的に肉厚の薄い
部分に集中的に発生する1例えばシリンダヘッドにおけ
る熱亀裂は、第6図に示すように吸気・排気ボートa、
b間の隔壁C及び吸気・排気ボルトa、bのそれぞれと
ホットプラグ取付穴または燃料噴射ノズル取付穴6間の
隔壁e、fに発生しやすく、ピストンにおける熱亀裂は
、第7図に示すようにキャビティg上部を縁取る部分り
に発生しやすい。
[Prior Art] Mechanical elements of engines that are directly exposed to combustion gas energy and heated to high temperatures include cylinder heads and pistons. There is a need to improve the strength of the combustion surface, especially the thermal cracks that occur on the combustion surface. Thermal cracks occur intensively in parts with a small cross-section due to thermal stress, that is, in parts with thin wall thickness.1 For example, thermal cracks in a cylinder head occur in the intake/exhaust boat a as shown in Figure 6. ,
Thermal cracks in the piston tend to occur in the partition wall C between b and the partition walls e and f between the intake/exhaust bolts a and b, respectively, and the hot plug mounting hole or fuel injection nozzle mounting hole 6, as shown in Figure 7. It tends to occur in the area that borders the upper part of the cavity.

そこで本出願人は、シリンダヘッドやピストンを合金鋳
造する方法、機械要素の燃焼面をFRMで補強する方法
、高密度エネルギビームにより部分的に再溶融処理を行
う再溶融方法の検討を行った。
Therefore, the applicant investigated methods of casting cylinder heads and pistons with alloys, reinforcing the combustion surfaces of mechanical elements with FRM, and remelting methods of partially remelting using high-density energy beams.

合金鋳造法・・・ 合金鋳造は、機械要素の耐熱性の改善には有効ではある
ものの、鋳造性が悪化して健全な鋳物を得ることが困誼
である、鋳物の機械的性質が悪化させてしまう、母材に
対する合金濃度の調整が困難であり強度のバラツキを無
くして一定の強度を確保することが雌しい、等の点で量
産化に適していない。
Alloy casting method...Although alloy casting is effective in improving the heat resistance of machine elements, it deteriorates castability, making it difficult to obtain sound castings, and deteriorates the mechanical properties of castings. It is not suitable for mass production because it is difficult to adjust the alloy concentration in the base material, and it is difficult to eliminate variations in strength and ensure a constant strength.

FRM補強法・・・ この技術は、材料自体が高価であり、FRMで構成した
補強部材を上記隔壁に接着。
FRM reinforcing method: The material itself is expensive in this technology, so reinforcing members made of FRM are bonded to the partition walls.

溶融して取付けることも考慮するとかなりコスト高とな
る。
Considering that it must be melted and installed, the cost becomes quite high.

再溶融(リメルト)方法・・・ シリンダヘッドやピストンの燃焼面を高エネルギ密度レ
ーザー、TIG、電子ビームで再溶融する。この方法は
、特定部分のみの金属組織を微細化し、亀裂寿命を延命
することができるという利点があるものの、金属m織の
微細化によるS裂寿命は、再溶融処理を行なわなかった
ものに対して約2倍程度であり、今後要求される高出力
への対応としては不十分である。
Remelting method: The combustion surfaces of cylinder heads and pistons are remelted using high energy density lasers, TIG, or electron beams. Although this method has the advantage of refining the metal structure only in specific parts and extending the crack life, the S crack life due to the refinement of the metal weave is lower than that without remelting. This is approximately twice as high as the actual output power, which is insufficient to meet the high output requirements that will be required in the future.

このように上記方法には一長一笈があり量産化を満足す
るような技術としては改善の余地がある。
As described above, the above method has its advantages and disadvantages, and there is room for improvement as a technology that can satisfy mass production.

このため耐熱性合金(ステンレス、NIMONIC80
A、lNC0NELまたはCo、Ni。
For this reason, heat-resistant alloys (stainless steel, NIMONIC80
A, INCONEL or Co, Ni.

MO,W等の合金)を、金属製機械要素の受熱面にTI
G、MIG、PTA等の高エネルギ密度ビムで融接しこ
れらをクラッデングさせる技術(特開昭61−9132
3号、特開昭60−70136号等)の検討を行ってみ
たところ、金属製機械要素と耐熱性金属との熱収縮率の
相違によって、耐熱性金属に熱収縮割れが起きてしまう
という新たな課題を見出だした。
alloys such as MO, W, etc.) on the heat-receiving surface of metal mechanical elements.
Technology of fusion welding and cladding with high energy density beams such as G, MIG, and PTA (Japanese Patent Laid-Open No. 61-9132
3, Japanese Patent Application Laid-open No. 60-70136, etc.), we found a new finding that heat shrinkage cracking occurs in heat-resistant metals due to the difference in heat shrinkage rate between metal machine elements and heat-resistant metals. I found a problem.

そこで本出願人は鋭意研究の結果、金属製機械要素の受
熱面に超音波接合で延性金属層を形成し、その延性金属
層の表面に耐熱金属層を融接形成すると、耐熱金属層と
金属製機械要素との間に生じる熱収縮応力が延性金属層
によって吸収され、熱収縮による耐熱金属層の収縮割れ
が防止されるいうことを見出だすに至った(「エンジン
の耐熱性機械要素」 (特願平1−284115号))
Therefore, as a result of intensive research, the present applicant found that by forming a ductile metal layer on the heat receiving surface of a metal machine element by ultrasonic bonding, and then fusion welding a heat-resistant metal layer on the surface of the ductile metal layer, the heat-resistant metal layer and the metal It was discovered that the heat shrinkage stress that occurs between the heat-resistant mechanical elements and the manufactured mechanical elements is absorbed by the ductile metal layer, and shrinkage cracking of the heat-resistant metal layer due to heat shrinkage is prevented. (Patent Application No. 1-284115))
.

[発明が解決しようとする課題] しかしながら最近のエンジンの高出力化、機械的負荷の
増大の傾向を考慮すると、耐熱金属層延性金属層との接
合性をさらに改善して熱収縮応力を延性金属に確実に伝
達して延性金属による有効な熱収縮応力の吸収がなされ
るようにしておく必要がある。
[Problems to be Solved by the Invention] However, in view of the recent trends toward higher engine output and increased mechanical loads, it is desirable to further improve the bondability between the heat-resistant metal layer and the ductile metal layer to reduce heat shrinkage stress by reducing the heat shrinkage stress to the ductile metal layer. It is necessary to ensure that the stress is transmitted to the ductile metal so that the ductile metal effectively absorbs the heat shrinkage stress.

[課題を解決するための手段] 本発明は上記課題を解決するために、耐熱鋼粉末の表面
を延性金属粉末で被覆したカプセル粉末を耐熱性機械要
素の表面に超音波融接して第1層を形成し、この後、そ
の第1層の表面に耐熱鋼を融接して第2層を形成したも
のである。
[Means for Solving the Problems] In order to solve the above problems, the present invention forms a first layer by ultrasonically welding capsule powder, which is made by coating the surface of heat-resistant steel powder with ductile metal powder, onto the surface of a heat-resistant mechanical element. After that, heat-resistant steel was fusion welded to the surface of the first layer to form a second layer.

[作用] カプセル粉末を、耐熱性を必要とする機械要素の表面に
超音波融接すると、カプセル粉末表面の延性金属粉末が
有効に溶融され、機械要素の表面に、耐熱鋼を金属組織
的に均一拡散させた第1層を形成する。そして超音波溶
融後、第1層の表面に耐熱鋼を融接して第2層を積層す
ると第1層の表面の延性金属が溶融して耐5!8#4が
露出するようになるため第2層の耐熱鋼と第1層の耐熱
鋼との馴染みがよくなり良好な融接が行われる。
[Function] When capsule powder is ultrasonically welded to the surface of a mechanical element that requires heat resistance, the ductile metal powder on the surface of the capsule powder is effectively melted, and the heat-resistant steel is metallographically bonded to the surface of the mechanical element. A uniformly diffused first layer is formed. After ultrasonic melting, when heat-resistant steel is fusion welded to the surface of the first layer and the second layer is laminated, the ductile metal on the surface of the first layer melts and exposes the 5!8 #4. The heat-resistant steel of the second layer and the heat-resistant steel of the first layer become compatible, and good fusion welding is performed.

従って、第2層の熱収縮応力は、第1層に対して金属#
IIm的に拡散された耐熱鋼に対して確実に伝達され、
熱収縮応力が第1層の延性金属により吸収されるように
なる。このため、従来に対して熱!裂の発生は防止され
る。
Therefore, the heat shrinkage stress of the second layer is
Reliably transmitted to heat-resistant steel diffused in IIm,
Heat shrinkage stress becomes absorbed by the ductile metal of the first layer. For this reason, it is hot compared to the conventional one! The occurrence of cracks is prevented.

[実施例コ 以下に、本発明の好適一実施例を添付図面に基づいて説
明する。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

(実施例1) 第3図に示す如くシリンダヘッド1には、吸気ボート2
及び排気ポート3がそれぞれ形成されている。これら吸
気ボート2及び排気ポート3は、エンジンのシリンダボ
ア(いずれも図示せず)に対応するシリンダヘッド下面
4に開口させて形成されている。これら吸気ボート2及
び排気ボート3間には、吸気ボート2及び排気ポート3
を形成した結果として隔壁5が形成されようになる。そ
してシリンダヘッドには、その隔壁5と近接する位置に
シリンダヘッド下面4に開口するホットプラグ取付穴6
が形成され、このホットプラグ取付穴6を形成した結果
として吸気ボート2.ホットプラグ取付穴6間に隔壁7
が形成され、排気ボート3.ホットプラグ取付穴6間に
隔壁8が形成されるようになる。
(Embodiment 1) As shown in FIG. 3, the cylinder head 1 has an intake boat 2.
and an exhaust port 3 are respectively formed. These intake boats 2 and exhaust ports 3 are formed to open in a cylinder head lower surface 4 corresponding to a cylinder bore (both not shown) of the engine. The intake boat 2 and the exhaust port 3 are connected between the intake boat 2 and the exhaust port 3.
As a result of forming the partition wall 5, the partition wall 5 is formed. The cylinder head has a hot plug mounting hole 6 opened in the lower surface 4 of the cylinder head at a position close to the partition wall 5.
is formed, and as a result of forming the hot plug mounting hole 6, the intake boat 2. Bulkhead 7 between hot plug mounting holes 6
is formed and the exhaust boat 3. A partition wall 8 is now formed between the hot plug mounting holes 6.

さて、熱応力に対する上記隔壁5,7.8の強度を向上
させるなめに本発明では第1図、第2図及び第2図(イ
)、(ロ)、(ハ)、(ニ)に示すように、上記隔壁5
,7.8の表面側、即ち吸気・排気弁2,3及びホット
プラグ取付穴6が取り囲んでいるシリンダヘッド下面4
の包囲部分に、所定深さの凹部9を形成する。そして耐
熱鋼粉末を核としてこれを延性金属粉末で被覆して形成
したカプセル粉末を投入し、凹部9の内面に−様な層厚
でカプセル粉末の層を形成する。カプセル粉末を構成す
る耐熱鋼粉末及び延性金属粉末は、共に微粉末粉砕機に
より粉砕して形成する。耐熱鋼粉末(Ni 、Cr、M
o、Co、Wとの合金鋼等)は粒径が20〜500μm
の粒径まで、延性金属粉末(Cu、Cu系合金、Aj 
、Aj系合金)は耐熱鋼粉末の約1710程度の粒径ま
で粉砕する。この後、耐熱鋼粉末に、延性金属粉末を、
例えば重量比で約30%混合し、静電付着によって第3
図に示すように耐熱鋼粉末10の表面に、延性金属粉末
11を付着させてカプセル粉末12を形成する。
Now, in order to improve the strength of the partition walls 5, 7.8 against thermal stress, the present invention is shown in FIGS. 1, 2, and 2 (a), (b), (c), and (d). As such, the partition wall 5
, 7.8, that is, the lower surface 4 of the cylinder head surrounded by the intake/exhaust valves 2, 3 and the hot plug mounting hole 6.
A recess 9 of a predetermined depth is formed in the surrounding area. Then, capsule powder formed by coating heat-resistant steel powder as a core with ductile metal powder is introduced, and a layer of capsule powder is formed on the inner surface of the recess 9 with a thickness of -. The heat-resistant steel powder and the ductile metal powder constituting the capsule powder are both pulverized using a fine powder pulverizer. Heat-resistant steel powder (Ni, Cr, M
alloy steel with O, Co, and W) has a grain size of 20 to 500 μm.
ductile metal powder (Cu, Cu-based alloy, Aj
, Aj-based alloys) are ground to a particle size of approximately 1710 particles of heat-resistant steel powder. After this, ductile metal powder is added to the heat-resistant steel powder,
For example, by mixing about 30% by weight, the third
As shown in the figure, ductile metal powder 11 is attached to the surface of heat-resistant steel powder 10 to form capsule powder 12.

そして、この後、撹拌機を用いて耐熱鋼粉末10に延性
金属粉末11を固定する。撹拌機としては、ハウジング
内に回転翼を有し、ハウジング内面に沿ってカプセル粉
末12を遠心転勤させるように構成したものを用いる。
After that, the ductile metal powder 11 is fixed to the heat-resistant steel powder 10 using a stirrer. As the stirrer, one having rotary blades in the housing and configured to centrifugally transfer the capsule powder 12 along the inner surface of the housing is used.

すなわち撹拌機によってカプセル粉末12を1000〜
7000r p mの範囲で遠心転動させることにより
耐熱鋼粉末10と延性金属粉末11の接合面に適度な摩
擦熱を発生させると同時に、衝撃力によって、延性金属
粉末11を耐熱鋼粉末10の表面に対して面方向に沿う
ように引伸ばす、この摩擦熱及び衝撃力によって耐熱鋼
粉末10と延性金属粉末11とが相互に固定され融接材
料として完全な形態のカプセル粉末12が得られる。但
し、シリンダヘッド1の材質がアルミニウム又はアルミ
ニウム合金であるような場合は、延性金属粉末11をA
jまたはAJ系合金とするカプセル粉末12を用い、シ
リンダヘッド1の材質が鋳鉄の場合は、延性金属粉末1
1をCuまたはCu系合金とするカプセル粉末12を用
いる。次に、この層を第2図(ロ)に示すように、磁歪
振動子等の超音波融接1113を使用してカプセル粉末
12を融接し、第2図(ハ)に示すように凹部9の表面
に第1層14を形成する。なお、超音波融接1i13に
、カプセル粉末12の同時供給装置15を設け、超音波
溶接を行う直前に凹部9に層を形成するようにしても構
わない、この超音波融接を行う際は、カプセル粉末12
の耐熱鋼粉末10が芯材となり、粒径が微細なものほど
接合しやすいため、延性金属粉末11とシリンダヘッド
1を構成する母材、及び延性金属粉末11相互が良好に
融接されるようになる。つまり、耐熱鋼を組織的に均一
に拡散させた第1層14が形成される。
That is, the capsule powder 12 is mixed with a stirrer at 1,000~
By centrifugally rolling in the range of 7000 rpm, moderate frictional heat is generated at the joint surface of the heat-resistant steel powder 10 and the ductile metal powder 11, and at the same time, the ductile metal powder 11 is transferred to the surface of the heat-resistant steel powder 10 by impact force. The heat-resistant steel powder 10 and the ductile metal powder 11 are fixed to each other by this frictional heat and impact force, and a capsule powder 12 in a perfect form as a fusion welding material is obtained. However, if the material of the cylinder head 1 is aluminum or aluminum alloy, the ductile metal powder 11 is
If the capsule powder 12 is made of J or AJ alloy, and the material of the cylinder head 1 is cast iron, the ductile metal powder 1
A capsule powder 12 in which 1 is Cu or a Cu-based alloy is used. Next, as shown in FIG. 2(B), capsule powder 12 is fused to this layer using ultrasonic fusion welding 1113 such as a magnetostrictive vibrator, and as shown in FIG. A first layer 14 is formed on the surface. Note that the ultrasonic fusion welding unit 1i13 may be provided with a simultaneous supply device 15 for the capsule powder 12 to form a layer in the recess 9 immediately before ultrasonic welding. , capsule powder 12
The heat-resistant steel powder 10 of 100 mL serves as the core material, and the finer the particle size, the easier it is to join. become. In other words, the first layer 14 is formed in which the heat-resistant steel is uniformly diffused in structure.

次いで第1層14の表面に、耐熱鋼(Ni。Next, heat-resistant steel (Ni.

Cr、Mo、Co、W等の合金)を高密度エネルギをも
って肉盛り溶接し、第1層14の表面に所定の厚さに第
2層16を形成する。この第2層16の肉盛りはTIG
や、MIG、耐熱鋼の粉末を噴射しつつ溶融させるPT
Aのうちのいずれかによって行う(第2図(ニ))、こ
の場合、第1層14の表面の延性金属が先に溶融するた
め第1層14の耐熱鋼と第2層16の耐熱鋼との融接が
なされる0次に、機械加工によって肉盛りされた第2層
16を仕上げシリンダヘッド1を完成する。
The second layer 16 is formed on the surface of the first layer 14 to a predetermined thickness by overlay welding (alloys such as Cr, Mo, Co, W, etc.) using high-density energy. The filling of this second layer 16 is TIG
, MIG, PT that melts heat-resistant steel powder while injecting it.
In this case, since the ductile metal on the surface of the first layer 14 melts first, the heat-resistant steel of the first layer 14 and the heat-resistant steel of the second layer 16 are used. Next, the second layer 16, which is built up by machining, is finished by fusion welding and the cylinder head 1 is completed.

従って第1層14の熱収縮は、第2層16の延性金属に
伝達されこの延性金属の吸収によって熱亀裂は有効に防
止される。したがって、内部的に靭性が高く、延性が高
く熱亀裂に強いシリンダヘッド1が提供されるようにな
る。
Therefore, the thermal contraction of the first layer 14 is transferred to the ductile metal of the second layer 16, and thermal cracking is effectively prevented by the absorption of the ductile metal. Therefore, the cylinder head 1 is provided which has high internal toughness, high ductility, and is resistant to thermal cracking.

次に、ディーゼルエンジン用のピストンの場合、を説明
する。この種のピストンは第7図に示すようにキャビ7
48周つりツブhが肉薄となり、ここに熱亀裂が発生し
やすい、そこで周側部りの上面を段状に窪ませて上記第
1層14及び第2層16を形成する。この結果、上記シ
リンダヘッド1同様に、靭性、延性に富み熱亀裂に強い
リップの形成が可能になり、耐久性の高いピストン19
を提供することができる。なおシリンダヘッド1゜ピス
トン19を鋳鉄で形成した場合にあっては、上記延性金
属が脆化組織(チル層(FesC))の析出を防止しク
ラッデングに対する信頼性を改善する。
Next, the case of a piston for a diesel engine will be explained. This type of piston has a cavity 7 as shown in FIG.
48 The hanging tube h around the periphery is thin and thermal cracks are likely to occur there. Therefore, the upper surface of the peripheral side portion is recessed in a stepped manner to form the first layer 14 and the second layer 16. As a result, similar to the cylinder head 1 described above, it is possible to form a lip that is highly tough and ductile and resistant to thermal cracking, resulting in a highly durable piston 19.
can be provided. In the case where the cylinder head 1° piston 19 is made of cast iron, the ductile metal prevents the precipitation of a brittle structure (chill layer (FesC)) and improves reliability against cladding.

(実施例2) まず第4図(イ)に示す如く、上記凹部9に、エバジュ
ール等の銅合金粉末(95,OCu 、 1.O7Mn
、3.48Si、Zn1Tr、5niTr。
(Example 2) First, as shown in FIG. 4(A), a copper alloy powder such as Everdur (95, OCu, 1.O7Mn) was placed in the recess 9.
, 3.48Si, Zn1Tr, 5niTr.

AjiTr)を選定してこの銅合金粉末17を上記凹部
9の表面に均等な厚さでプレコートする。
AjiTr) is selected and this copper alloy powder 17 is pre-coated on the surface of the recess 9 to a uniform thickness.

次いで、第4図(ロ)に示すように、磁歪振動子等の超
音波融接6113を使用して上記銅合金の粉末17を融
接し、第4図(ハ)に示すように凹部9の表面に延性金
属層18を形成する0次いで延性金属層18の表面に、
上記カプセル粉末12を用いて第1層14を超音波融接
し、第2層16の表面に、高密度エネルギで耐熱鋼を融
接し、第2層16を積層する。
Next, as shown in FIG. 4(b), the copper alloy powder 17 is fused using ultrasonic fusion welding 6113 such as a magnetostrictive vibrator, and as shown in FIG. 4(c), the recess 9 is welded. 0 to form a ductile metal layer 18 on the surface, then on the surface of the ductile metal layer 18,
The first layer 14 is ultrasonically fused using the capsule powder 12, and the second layer 16 is laminated by fusion welding heat-resistant steel on the surface of the second layer 16 using high-density energy.

このように第1層14の下部に延性金属層18を形成す
ると、第1層14と第2層16と同様に、延性金属層1
8と第1層14との延性金属の馴染みがよくなり熱膨張
差による応力が、より緩和されるようになる。
When the ductile metal layer 18 is formed below the first layer 14 in this way, the ductile metal layer 18
8 and the first layer 14 become more compatible with each other, and the stress caused by the difference in thermal expansion becomes more relaxed.

(実施例3) 実施例2と同様にして、上記凹部に、シリンダヘッド1
の材質がアルミニウムまたはアルミニウム合金の鋳物で
ある場合は、エバジュール等の銅合金粉末を選定してこ
の銅合金粉末17を上記凹部9の表面に均等な厚さでプ
レコートする0次いで、第4図(イ)に示すように、磁
歪振動子等の超音波融接機13を使用して上記鋼合金の
粉末17を融接し、第4図(ロ)に示すように凹部9の
表面に延性金属層18を形成する9次いで延性金属Fi
i!18の表面に、上記カプセル粉末12を用いて第1
層14を超音波融接し、第2層16の表面に、上記耐熱
鋼粉末10を超音波融接して第2層16を形成し、さら
に第2層の表面に、耐熱金属を高密度エネルギビーム等
で溶融肉盛りして第3層(図示せず)を形成する。第3
層は、実施例2と同様にTIG、MIG、PTAのいず
れかによって肉盛り形成する。つまりこの実施例3では
熱膨張差による応力を、さらにキメ細かに緩和する。
(Example 3) In the same manner as in Example 2, the cylinder head 1 was placed in the recess.
If the material is aluminum or aluminum alloy casting, select a copper alloy powder such as Everdur and pre-coat the surface of the recess 9 with this copper alloy powder 17 to a uniform thickness.Next, as shown in FIG. As shown in FIG. 4(B), the steel alloy powder 17 is fusion welded using an ultrasonic fusion welding machine 13 such as a magnetostrictive vibrator, and a ductile metal layer is formed on the surface of the recess 9 as shown in FIG. 4(B). 9 then ductile metal Fi forming 18
i! 18, using the capsule powder 12 described above, the first
The layer 14 is ultrasonically welded, the heat-resistant steel powder 10 is ultrasonically welded to the surface of the second layer 16 to form the second layer 16, and a heat-resistant metal is further welded to the surface of the second layer using a high-density energy beam. A third layer (not shown) is formed by melting and overlaying. Third
The layer is formed using TIG, MIG, or PTA in the same manner as in Example 2. In other words, in this third embodiment, the stress caused by the difference in thermal expansion is more finely relaxed.

[発明の効果] 以上説明したことから明らかなように本発明によれば次
の如き優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

第2層の熱収縮応力を第1層によって確実に吸収でき、
エンジンの機械要素の耐久性、信頼性を向上させること
ができる。
The heat shrinkage stress of the second layer can be reliably absorbed by the first layer,
The durability and reliability of the engine's mechanical elements can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るシリンダヘッドの要部詳細断面図
、第2図は第1層及び第2層の形成工程を示す図、第3
図はカプセル粉末の概略断面図、第4図は他の実施例を
説明するための図、第5図はシリンダヘッドに形成した
凹部を示す平面図、第6図シリンダヘッドに発生する熱
亀裂を示した概略図、第7図はピストンの熱亀裂を示す
概略図である。 図中、1はシリンダヘッド、10は耐熱鋼粉末、11は
延性金属粉末、12はカプセル粉末、14は第1層、1
6は第2層である。
FIG. 1 is a detailed sectional view of the main part of the cylinder head according to the present invention, FIG. 2 is a diagram showing the formation process of the first layer and the second layer, and FIG.
The figure is a schematic cross-sectional view of the capsule powder, Figure 4 is a diagram for explaining another example, Figure 5 is a plan view showing the recess formed in the cylinder head, and Figure 6 is a diagram showing thermal cracks occurring in the cylinder head. The schematic diagram shown, FIG. 7, is a schematic diagram showing a thermal crack in a piston. In the figure, 1 is a cylinder head, 10 is a heat-resistant steel powder, 11 is a ductile metal powder, 12 is a capsule powder, 14 is a first layer, 1
6 is the second layer.

Claims (1)

【特許請求の範囲】[Claims] 1、耐熱鋼粉末の表面を延性金属粉末で被覆したカプセ
ル粉末を耐熱性機械要素の表面に超音波融接して第1層
を形成し、該第1層の表面に耐熱鋼を融接して第2層を
形成したことを特徴とするエンジンの耐熱性機械要素。
1. A first layer is formed by ultrasonic fusion welding of capsule powder in which the surface of heat-resistant steel powder is coated with ductile metal powder on the surface of a heat-resistant mechanical element, and a first layer is formed by fusion welding heat-resistant steel onto the surface of the first layer. A heat-resistant mechanical element for an engine characterized by forming two layers.
JP25174090A 1990-09-25 1990-09-25 Heat resistant mechanical element of engine Expired - Lifetime JP2876760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25174090A JP2876760B2 (en) 1990-09-25 1990-09-25 Heat resistant mechanical element of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25174090A JP2876760B2 (en) 1990-09-25 1990-09-25 Heat resistant mechanical element of engine

Publications (2)

Publication Number Publication Date
JPH04132864A true JPH04132864A (en) 1992-05-07
JP2876760B2 JP2876760B2 (en) 1999-03-31

Family

ID=17227230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25174090A Expired - Lifetime JP2876760B2 (en) 1990-09-25 1990-09-25 Heat resistant mechanical element of engine

Country Status (1)

Country Link
JP (1) JP2876760B2 (en)

Also Published As

Publication number Publication date
JP2876760B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US4074616A (en) Aluminum piston with steel reinforced piston ring grooves
CA2040942C (en) Methods of strengthening aluminum castings in the specified local part
US5404639A (en) Composite insulation for engine components
JPH11285842A (en) Joined metal member and joining method of its member
JP3394363B2 (en) Engine cylinder head
DK177071B1 (en) Exhaust valve spindle for an internal combustion engine and a method of manufacture thereof
JP2006516313A (en) Valve seat and method for manufacturing the valve seat
JP3409631B2 (en) Method of overlaying with laser beam and overlaying structure
JPH09239566A (en) Method for joining different metallic materials
JPH04132864A (en) Heat resistant machine element for engine
JPH08277746A (en) Internal combustion engine
JP2754794B2 (en) Heat resistant mechanical element of engine
EP0730085B1 (en) A cylinder head and a method for producing a valve seat
JPH0330709B2 (en)
JPH03234364A (en) Heat resistant mechanical element of engine
JPH07132362A (en) Cylinder block and its production
JP3487021B2 (en) How to locally strengthen aluminum
JPS6176742A (en) Valve-seatless light alloy cylinder head
JPH0569240A (en) Method of forming hollow wear-resisting ring for diesel engine piston
JP3752833B2 (en) Method for joining metal members
JP2940067B2 (en) Aluminum sintered body
Moriyama et al. Nimonic compound exhaust valve spindles for diesel engines via hot isostatic pressing
JP4178568B2 (en) Method of joining metal members
JP4013297B2 (en) Method for joining metal members
JPH05256190A (en) Cylinder head