JPH04132862A - Misfire detecting device for internal combustion engine - Google Patents

Misfire detecting device for internal combustion engine

Info

Publication number
JPH04132862A
JPH04132862A JP2252566A JP25256690A JPH04132862A JP H04132862 A JPH04132862 A JP H04132862A JP 2252566 A JP2252566 A JP 2252566A JP 25256690 A JP25256690 A JP 25256690A JP H04132862 A JPH04132862 A JP H04132862A
Authority
JP
Japan
Prior art keywords
misfire
time ratio
engine
detecting
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252566A
Other languages
Japanese (ja)
Inventor
Akihiro Nakagawa
中川 章寛
Akira Izumi
出水 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2252566A priority Critical patent/JPH04132862A/en
Priority to US07/761,531 priority patent/US5337240A/en
Priority to KR1019910016429A priority patent/KR950005897B1/en
Priority to DE4143605A priority patent/DE4143605B4/en
Priority to DE4131383A priority patent/DE4131383C2/en
Publication of JPH04132862A publication Critical patent/JPH04132862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To perform accurate decision of a misfire throughout a wide range of an engine running region by detecting a given time ratio between front and rear given angle sections, based on a given crank angle and detecting a misfire from the time ratio. CONSTITUTION:A misfire detecting means M5 detects the running state of an engine by means of signals from a load detecting means M3 and a number of revolutions detecting means M4. A time ratio between the given times of front and rear given angle sections is calculated based on the reference position of a crank angle from a signal from a crank angle detecting means M2, and from the time ratio, a misfire is detected. A memory map to read the map value of a set time ratio is previously stored in a memory in a microcomputer. Through comparison of the time ratio with a map value responding to a running state, the misfire is detectable by using a proper decision value. This constitution specifies a detecting output generated due to a difference in the operation condition (, such as a load and the number of revolutions,) of an engine, improves detecting ability during the misfire, and simplifies constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内燃機関の点火系の異常等による失火を検出
するための内燃機関の失火検出装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a misfire detection device for an internal combustion engine for detecting a misfire caused by an abnormality in the ignition system of the internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、この種の装置として、例えば特開昭6!!−26
845号公報に開示されているものがある。これはエン
ジンのシリンダ内圧力を筒内圧センサで検出し、この筒
内圧がピークとなるクランク角を求め、このピーク位置
が予め定めたクランク角期間内に存在するときは正常で
あると判断するものである。
Conventionally, as this type of device, for example, JP-A-6! ! -26
There is one disclosed in Japanese Patent No. 845. This system detects the internal cylinder pressure of the engine using a cylinder pressure sensor, determines the crank angle at which this cylinder pressure reaches its peak, and determines that the engine is normal when this peak position exists within a predetermined crank angle period. It is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこのような従来装置は、筒内圧のピーク位
置を検出するために所定期間単位でクランク角毎−に連
続して筒内圧を計測する必要があり、装置が複雑になり
、軽負荷運転条件では筒内圧のピーク値が圧縮上死点と
、燃焼によるピークの2通りあり、その判定がにしく、
また圧縮上死点前にピークを有する場合には失火判定が
できないなどの課題があった。
However, with such conventional devices, it is necessary to continuously measure the cylinder pressure at each crank angle for a predetermined period in order to detect the peak position of the cylinder pressure, making the device complex and difficult to operate under light load operating conditions. There are two peak values of in-cylinder pressure: compression top dead center and peak due to combustion, which is difficult to judge.
Further, there was a problem in that a misfire could not be determined if there was a peak before compression top dead center.

この発明はこのような問題点を改詐すべくなされたもの
であって、比較的簡単な構成によって、広範囲な機関運
転域で正確な失火判定を可能にしようとするものである
The present invention has been made to solve these problems, and is intended to enable accurate misfire determination over a wide range of engine operating ranges with a relatively simple configuration.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は所定クランク角を基準として前と後の所定角
度区間の所要時間比率を検出し、この時間比率から失火
を検出するようにしたものである。
This invention detects the time ratio required for the previous and subsequent predetermined angle sections with a predetermined crank angle as a reference, and detects a misfire from this time ratio.

〔作用〕[Effect]

この発明において、所定クランク角を基準として前と後
の所定角度区間の所要時間比率は機関の燃焼状態によっ
て異なり、例えば圧縮行程上死点前所定角度間の所要時
間と、圧縮行程上死点役所定角度間の時間比率は失火の
有無により変化する為、仁の時間比率から失火を判定す
るものである。
In this invention, the ratio of time required for predetermined angle sections before and after a predetermined crank angle varies depending on the combustion state of the engine. Since the time ratio between fixed angles changes depending on the presence or absence of a misfire, a misfire is determined from the time ratio between the two angles.

〔発明の実施例〕 以下この発明の実施例を図について説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

91図はこの発明の機能ブロック図である。また第2図
は本発明の一実施例を示す構成図である。
FIG. 91 is a functional block diagram of the present invention. Further, FIG. 2 is a configuration diagram showing an embodiment of the present invention.

第1図、第2図においてMlはエンジン、M2はクラン
ク角の基準位置(例えば上死点)及びこの基準位置に対
して所定角(例えば46℃A)だけ前・後した角度位置
毎にパルスを出力するクランク角検出手段である。クラ
ンク角検出手段M2は例えば第2図に示す如くクランク
回転を検出するようにエンジンM1に設けられている。
In Figures 1 and 2, Ml is the engine, M2 is the crank angle reference position (e.g. top dead center), and pulses at each angular position a predetermined angle (e.g. 46°A) before or after this reference position. This is a crank angle detection means that outputs. Crank angle detection means M2 is provided in engine M1 to detect crank rotation, for example, as shown in FIG.

またM8はエンジンの負荷を検出する負荷検出手段であ
り、例えば第2図に示すエアフローメータM8.1゜吸
気管圧センサM8.2またはスロットル弁開度を検出す
るスロットル弁開度センサM8.8の少なくとも1つ用
いることができる。M4は回転数検出手段であり、クラ
ンク角検出手段M2の例えば基準位置信号から、所定ク
ランク角間の周期を計測し、エンジンの回転数を検出す
る。M6は失火検出手段であり、負荷検出手段M8およ
び回転数検出手段M4の信号からエンジンの運転状態を
検出し、さらにクランク角検出手段M2の信号からクラ
ンク角の基準位置を基準として前と後の所定角度区間の
それぞれの所要時間の時間比率を算出し、この時間比率
から失火を検出する。回転数検出手段M4及び失火検出
手段M6は例えば第2図に示すマイクロコンピュータM
IOに含マしており、負荷検出手段M8やクランク角検
出手段M2からの信号を入力する入力インターフζ−ス
と、入力されたアナログ信号をディジタル信号に変換す
るA / D変換器や定時間クロック毎にカウントアツ
プするタイマカウンタ(フリ・ランラングカウンタ)等
を内蔵したシングルチップマイクロコンピュータと、メ
モリ<ROM、RAM)などの回路から構成されている
M8 is a load detection means for detecting the engine load, such as the air flow meter M8.1° intake pipe pressure sensor M8.2 shown in FIG. 2 or the throttle valve opening sensor M8.8 for detecting the throttle valve opening. At least one of these can be used. Reference numeral M4 denotes a rotation speed detection means, which measures the cycle between predetermined crank angles based on, for example, a reference position signal of the crank angle detection means M2, and detects the rotation speed of the engine. M6 is a misfire detection means, which detects the operating state of the engine from the signals of the load detection means M8 and the rotational speed detection means M4, and further detects the front and rear positions based on the crank angle reference position from the signal of the crank angle detection means M2. A time ratio of the time required for each predetermined angle section is calculated, and a misfire is detected from this time ratio. The rotation speed detection means M4 and the misfire detection means M6 are, for example, a microcomputer M shown in FIG.
The IO includes an input interface ζ which inputs signals from the load detection means M8 and crank angle detection means M2, and an A/D converter and fixed timer which convert the input analog signals into digital signals. It consists of a single-chip microcomputer with a built-in timer counter (free-run counter) that counts up every clock, and circuits such as memory (ROM, RAM).

次に本発明の基本原理について説明する。Next, the basic principle of the present invention will be explained.

第8図は4サイクル4気筒エンジンにおける回転数11
00Orp 、スロットル全開時の角速度、圧縮上死点
前後の所定クランク角所要時間比率Tv’Tt e各気
筒の筒内圧波形を示している。Tv/Ttは圧縮行程上
死点を基準として前所定角度間(例えば45℃人間)の
所要時間TLと後所定角度間(例えば46℃人間)の所
要時間TU時間比率である。
Figure 8 shows a 4-stroke, 4-cylinder engine with a rotational speed of 11.
00Orp, the angular velocity when the throttle is fully open, and the time ratio Tv'Tte required for a predetermined crank angle before and after the compression top dead center; the in-cylinder pressure waveform of each cylinder is shown. Tv/Tt is the time ratio between the time TL required between the front predetermined angle (for example, 45 degrees Celsius) and the required time TU between the rear predetermined angles (for example, 46 degrees Celsius) with reference to the top dead center of the compression stroke.

この波形はある燃焼サイクル中に、’t41 * ij
 8 。
This waveform shows 't41 * ij during a certain combustion cycle.
8.

ヰ4.ヰ2の各気筒が正常燃焼したあと卦1気筒が何ら
かの原因例えば点火系の異常等によって失火したときの
ものである。今、411気筒について正常燃焼した方を
fNaとし、その時間比率をTTJa/TLa、失火し
た方を41bとし、その時間比率をTtr b / T
L bとするとTTJa/TLa  に対してTUb/
TLbの方が増大していることがわかる。これは正常燃
焼時においてはTLaとなる区間が圧縮行程中で角速度
が減少し、TUaとなる区間が爆発行程中で角速度が増
加するのに対し、失火時においてはTLbはTLaと同
様であるがTtrbとなる区間は失火によって角速度が
さらに減少して所要時間Tabが増加する為である。こ
のことにより失火時には失火気憶の時間比率TU/TL
は正常燃焼時の同一気筒の時間比率よりも増大すること
を利用して失火を検出するものである。
ヰ4. This is when cylinder A1 misfires due to some reason, such as an abnormality in the ignition system, after each of the two cylinders burns normally. Now, for the 411 cylinder, the normally combusted one is set as fNa, its time ratio is TTJa/TLa, and the misfired one is set as 41b, and its time ratio is Ttr b / T.
If L b is TTJa/TLa, then TUb/
It can be seen that TLb is increasing. This is because during normal combustion, the angular velocity in the section TLa decreases during the compression stroke, and the angular velocity increases in the section TUa during the explosion stroke, whereas in the event of a misfire, TLb is the same as TLa. This is because the angular velocity further decreases due to misfire in the section where Ttrb occurs, and the required time Tab increases. As a result, in the event of a misfire, the time ratio TU/TL of misfire memory
misfire is detected by utilizing the fact that the time ratio of the same cylinder during normal combustion is greater than the time ratio of the same cylinder.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第4図及び第6図はこの発明の第1の実施例を示すコン
ピユータMIOの演算フロー図である。この実施例は所
定クランク角(例えば圧縮行程上死点)を基準として、
前所定角度間(@えば46℃A間)及び後所定角度間(
例えば46℃A間)の所要時間を計測してその時間比率
から失火を検出するものである。第4図(a) (b)
ではクランク角検出手段1に12の信号より割込み処理
により圧縮行程上死点前45℃A毎、及び圧縮行程上死
点毎に、所定時間クロック毎にカウントアツプするカウ
ンタ値を読んで、それぞれメモリバッファMB45゜M
TDCにストアしておく。このストアされた値は上死点
前45℃Aと上死点における時刻を示す。
FIGS. 4 and 6 are operation flow diagrams of the computer MIO showing the first embodiment of the present invention. In this embodiment, based on a predetermined crank angle (for example, top dead center of the compression stroke),
Between the front predetermined angle (for example, 46°C) and the rear predetermined angle (
For example, a misfire is detected from the time ratio by measuring the time required (for example, between 46° C. and A). Figure 4 (a) (b)
Then, the crank angle detecting means 1 reads the counter value that counts up every predetermined time clock every 45°C before the top dead center of the compression stroke and every top dead center of the compression stroke by interrupt processing using the signal 12, and stores the counter values in the memory. Buffer MB45゜M
Store it at TDC. This stored value indicates the time at 45°C before top dead center and at top dead center.

さらに第5図は圧縮行程上死点後46℃A毎に行う割込
み演算処理のフロー図で51.52.S4゜S5,56
は処理手段のステップを示す。Slではこの割込み処理
時点の前述のタイマカウンタ値を読んでメモリバッファ
MA45にストアする。
Furthermore, FIG. 5 is a flowchart of the interrupt calculation processing performed every 46°C after the top dead center of the compression stroke. S4゜S5,56
indicates the steps of the processing means. Sl reads the above-mentioned timer counter value at the time of this interrupt processing and stores it in the memory buffer MA45.

そして、S2では時間比率Tv / TtをTU/TL
=(MA45−MTDC) / (MTDC−八1B4
5)から求める。
Then, in S2, the time ratio Tv / Tt is TU/TL
= (MA45-MTDC) / (MTDC-81B4
5).

ここで、MA45−MTDCは上死点から上死点後46
℃Aまでの所要時間を示し、MTDC−MB46は上死
点前45℃Aから上死点までの所要時間を示している。
Here, MA45-MTDC is 46 after top dead center from top dead center.
MTDC-MB46 shows the time required from 45°C A before top dead center to top dead center.

そして54ではS2で求めた時間比率が、予め設定され
た失火に対応する所定値より大きいかどうか判断し、Y
6.であればS5へ進みこの気筒は失火していると判定
して処理を終了する。またS4でNθであればS6へ進
みこの気筒は正常燃焼していると判定して処理を終了す
る。このように所定クランク角を基準として前所定角度
間の所要時間と後所定角度間の所要時間の時間比率を検
出し、この時間比率から失火を検出する。
Then, in 54, it is determined whether the time ratio obtained in S2 is larger than a predetermined value corresponding to a misfire, and Y
6. If so, the process advances to S5, where it is determined that this cylinder has misfired, and the process ends. Further, if it is Nθ in S4, the process proceeds to S6, where it is determined that normal combustion is occurring in this cylinder, and the process is terminated. In this way, the time ratio of the time required between the front predetermined angle and the time required between the rear predetermined angle is detected using the predetermined crank angle as a reference, and a misfire is detected from this time ratio.

第6図はこの発明の第2の実施例を示すフロー図である
。この実施例は前記時間比率と機関の運転状態によつて
予め定められた所定比率との大小により失火と判定する
ものである。この実施例も第1の実施例と同じく第4図
に示す様にタイマカウンタ値をメモリバッファMB4δ
、 M’l’D(:にストしておく。さらに第6図は圧
縮行程上死点後所定角度毎(例えば46℃A毎)に行う
処理のフロー図でSl、S2・・・S6は処理手段のス
テップを示す。ここでSt、S2は第6図と同じである
ので説明省略する。S8では機関の運転状態に対応して
予め設定された所定比率メモリマツプよりその時の運転
状態に対応した設定時間比率のマツプ値を読出す。
FIG. 6 is a flow diagram showing a second embodiment of the invention. In this embodiment, a misfire is determined based on the magnitude of the time ratio and a predetermined ratio predetermined based on the operating state of the engine. In this embodiment, as in the first embodiment, the timer counter value is stored in the memory buffer MB4δ as shown in FIG.
, M'l'D(:.Furthermore, Fig. 6 is a flowchart of the process performed at every predetermined angle (for example, every 46 degrees A) after the top dead center of the compression stroke, and S1, S2...S6 are The steps of the processing means are shown.Here, St and S2 are the same as those in Fig. 6, so their explanation will be omitted.In S8, a predetermined ratio memory map that is set in advance corresponding to the operating state of the engine is used to calculate the ratio corresponding to the operating state at that time. Read the map value of the set time ratio.

ここで上記メモリマツプは例えば第8図のように設定で
きf42図で示したマイクロコンピュータMlo内のメ
モリに予め配備させておく。第8図の横軸は回転数Nで
ありNl、N2.N8と区分されている。この回転数は
クランク角検出手段M8の出力から所定クランク角間の
周期を計測して検出される。また、縦軸はエンジンの負
荷を示すパラメータであり、たとえば吸入空気量を計測
するエアフローメータの吸入空気量Qを用いており、Q
l、Q2.QBと区分されている。これらの区分でゾー
ン分けをし、それぞれのゾーンに対応して設定比率をメ
モリP n、 qに割り当てる。ここでn、qはそれぞ
れの横軸と縦軸の区分番号を示している。この読み出さ
れるときの回転数と吸入空気量に対応して、マツプゾー
ンの設定比率が読み出される。次いで、S4において、
Yo、であればSLへ進みこの気筒は失火していると判
定して処理を終了する。またS4でN、であればS6へ
進みこの気筒は正常燃焼していると判定して処理を終了
する。このように時間比率を運転状態に対応したマツプ
値と比較することによりそれぞれの運転状態における適
切な判定値を用いて失火を検出できる。
Here, the above memory map can be set, for example, as shown in FIG. 8, and is prepared in advance in the memory in the microcomputer Mlo shown in FIG. f42. The horizontal axis in FIG. 8 is the rotational speed N, Nl, N2. It is classified as N8. This rotational speed is detected by measuring the period between predetermined crank angles from the output of the crank angle detection means M8. Also, the vertical axis is a parameter indicating the engine load, for example, the intake air amount Q of the air flow meter that measures the intake air amount is used.
l, Q2. It is classified as QB. These zones are divided into zones, and setting ratios are assigned to the memories Pn, q corresponding to each zone. Here, n and q indicate the respective division numbers on the horizontal and vertical axes. The set ratio of the map zone is read out in accordance with the rotational speed and intake air amount at the time of reading out. Then, in S4,
If Yes, proceed to SL, determine that this cylinder is misfiring, and end the process. If the result in S4 is N, the process proceeds to S6, where it is determined that normal combustion is occurring in this cylinder, and the process ends. In this way, by comparing the time ratio with the map value corresponding to the operating state, a misfire can be detected using an appropriate judgment value for each operating state.

第7図はこの発明の第8の実施例を示すフロー図である
。この実施例は前記の運転状態によって予め定められた
マツプ値を所定運転状態において学習し更新していくも
のである。この実施例も第1の実施例と同じく第4図に
示す様にタイマカウンタ値をメモリバッファMB45.
MTDCにストアしておく。さらに第7図は圧縮行程上
死点後所定角度毎(例えば46℃A毎)に行う処理のフ
ロー図で81〜S6は第6図と同じであるので説明を省
略する。但し、S8におけるメモリマツプは書き換え不
能なメモリ(RAM)が使用されている。S7では、学
習を行ってもよい条件であるかどうか(例えば正常燃焼
時、所定回転数で所定時間継続した定常状態か等〉を判
断する。モしてY。
FIG. 7 is a flow diagram showing an eighth embodiment of the present invention. In this embodiment, map values predetermined according to the aforementioned operating conditions are learned and updated in a predetermined operating condition. In this embodiment, as in the first embodiment, the timer counter value is stored in the memory buffer MB45. as shown in FIG.
Store it in MTDC. Furthermore, FIG. 7 is a flowchart of a process performed at predetermined angle intervals (for example, every 46° C.A.) after the top dead center of the compression stroke, and since steps 81 to S6 are the same as FIG. 6, their explanation will be omitted. However, the memory map in S8 uses a non-rewritable memory (RAM). In S7, it is determined whether the conditions are such that learning can be performed (for example, during normal combustion, in a steady state that continues at a predetermined number of revolutions for a predetermined period of time, etc.).

であれば、その時の回転数と吸入空気量とによって第8
図の対応する運転状態のマツプ値を現在の時間比率TU
 / TLに基づいて修正した値に更新。
If so, depending on the rotational speed and intake air amount at that time, the eighth
The map value of the corresponding operating state in the diagram is converted to the current time ratio TU.
/ Updated to the corrected value based on TL.

記憶し処理を終了する。S7でNθであれば処理を終了
する。このように運転状態によって予め定められたマツ
プ値を、所定運転状態でTυ/TLの学習値に基づき補
正することによりエンジンのばらつきや、経時変化によ
る影響がなく最適な判定値を用いて失火を検出すること
ができる。
Store and end processing. If Nθ is determined in S7, the process ends. In this way, by correcting the predetermined map value according to the operating condition based on the learned value of Tυ/TL under the specified operating condition, it is possible to prevent misfires using the optimal judgment value without being affected by engine variations or changes over time. can be detected.

尚、上記実施例は境在の時間比率TV/TL O)hに
基づいてマツプ値を更新したが、例えば過去の所定回数
の時間比率の平均値、その他の平均化処理値や、あるい
は何らかの統計的な処理を加えたものを新たなマツプ値
として更新、記−させてもよい。
In the above embodiment, the map value is updated based on the boundary time ratio TV/TLO)h, but for example, the map value is updated based on the time ratio of a predetermined number of times in the past, other averaging processing values, or some kind of statistics. It is also possible to update and record the map value after additional processing as a new map value.

〔発明の効果〕〔Effect of the invention〕

以上のように第1の発明によれば所定クランク角を基準
として前所定角度間の所要時間と後所定角度間の所要時
間の時間比率を検出しこの時間比率により失火を検出す
る様に構成したので、エンジンの運転祭件(負荷9回転
数など)の違いにより生ずる検出出力の変動を正規化で
き、失火時の検出性を向上でき、又構成もm素化できる
As described above, according to the first invention, the time ratio between the time required between the predetermined angle and the time required between the predetermined angle after the predetermined angle is detected based on the predetermined crank angle, and a misfire is detected based on this time ratio. Therefore, it is possible to normalize fluctuations in the detection output caused by differences in engine operating conditions (load speed, etc.), improve the detectability in the event of a misfire, and also make the configuration more compact.

さらに第2の発明によれば、前記時間比率を運転状態に
対応したマツプ値と比較する構成としたのでそれぞれの
運転状態における適切な判定値を用いて失火を検出でき
る。
Furthermore, according to the second aspect of the invention, since the time ratio is compared with a map value corresponding to the operating state, a misfire can be detected using an appropriate determination value for each operating state.

さらに第8の発明によれば、前記運転状態に対応したマ
ツプ値を所定運転状態で学習修正し、その修正値と時間
比率を比較する構成としたのでエンジンのばらつきや経
時変化による影響がなく最適な判定値を用いて失火を検
出することができる。
Furthermore, according to the eighth invention, the map value corresponding to the operating state is learned and corrected in a predetermined operating state, and the corrected value is compared with the time ratio, so it is optimal without being affected by engine variations or changes over time. A misfire can be detected using a judgment value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成を示す機能ブロック図。 第2図はこの発明を適用した装置の一実施例を示す構成
図、第8図は失火時の角速度、時間比率Try/Tt 
* ai内圧の関係を示す波形図、彫4図はこの発明の
一実施例における圧縮上死点前45℃A毎及び圧縮上死
点毎の処理ルーチンを示すフローチャート、第6図はこ
の発明の一実施例における圧縮上列にλ後46℃A毎の
処理ルーチンを示すフローチャート、第6図はこの発明
の他の実施例における圧縮上死点後45℃A毎の処理ル
ーチンを示すフローチャート、第7図はこの発明の更に
別の実施例における圧縮上死点後46℃A毎の処理ルー
チンを示すフローチャート、第8図は第6図、第7図実
施例の回転数と空気Mに対する失火判定用のマツプを示
す図である。 Ml・ ・エンジン、M2・・・クランク角検出手段、
Ml・・・負荷検出手段、M4・・・回転数検出手段、
MS・・・失火検出手段なお、各図中同一符号は同一ま
たは相当部分を示す。
FIG. 1 is a functional block diagram showing the configuration of the present invention. Fig. 2 is a configuration diagram showing an embodiment of a device to which the present invention is applied, and Fig. 8 shows the angular velocity and time ratio Try/Tt at the time of misfire.
* Waveform diagram showing the relationship between ai internal pressure, Figure 4 is a flowchart showing the processing routine every 45°C before compression top dead center and every compression top dead center in one embodiment of this invention, and Figure 6 is a flowchart showing the processing routine for each compression top dead center in one embodiment of this invention. FIG. 6 is a flowchart showing a processing routine every 46°C after λ in the upper row of compression in one embodiment, and FIG. FIG. 7 is a flowchart showing a processing routine for every 46°C after compression top dead center in yet another embodiment of the present invention, and FIGS. FIG. Ml... Engine, M2... Crank angle detection means,
Ml...Load detection means, M4...Rotation speed detection means,
MS: misfire detection means Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)内燃機関の所定クランク角を基準として前と後の
所定角度区間のそれぞれの所要時間の時間比率を検出す
る手段と、この時間比率から失火を判定する手段を備え
たことを特徴とする内燃機関の失火検出装置。
(1) The engine is characterized by comprising means for detecting the time ratio of the required time for each of the preceding and following predetermined angle sections with reference to a predetermined crank angle of the internal combustion engine, and means for determining a misfire from this time ratio. Misfire detection device for internal combustion engines.
(2)上記時間比率と、機関の運転状態対応してメモリ
に記憶された設定比率との関係が所定の関係を満たすと
き失火と判定することを特徴とする特許請求の範囲第1
項記載の内燃機関の失火検出装置。
(2) A misfire is determined when the relationship between the time ratio and the set ratio stored in the memory corresponding to the operating state of the engine satisfies a predetermined relationship.
A misfire detection device for an internal combustion engine as described in .
(3)上記メモリに記憶された設定比率を、上記検出さ
れた時間比率に基づいて更新に記憶し、この記憶値と現
在の時間比率との関係が所定の関係を満たすとき失火と
判定することを特徴とする特許請求範囲第2項記載の内
燃機関の失火検出装置。
(3) Update and store the set ratio stored in the memory based on the detected time ratio, and determine that a misfire has occurred when the relationship between this stored value and the current time ratio satisfies a predetermined relationship. A misfire detection device for an internal combustion engine according to claim 2, characterized in that:
JP2252566A 1990-09-20 1990-09-20 Misfire detecting device for internal combustion engine Pending JPH04132862A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2252566A JPH04132862A (en) 1990-09-20 1990-09-20 Misfire detecting device for internal combustion engine
US07/761,531 US5337240A (en) 1990-09-20 1991-09-18 Misfiring sensing apparatus
KR1019910016429A KR950005897B1 (en) 1990-09-20 1991-09-19 Misfring sensing apparatus
DE4143605A DE4143605B4 (en) 1990-09-20 1991-09-20 IC engine knocking detector for motor vehicle
DE4131383A DE4131383C2 (en) 1990-09-20 1991-09-20 Misfire Detection Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252566A JPH04132862A (en) 1990-09-20 1990-09-20 Misfire detecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04132862A true JPH04132862A (en) 1992-05-07

Family

ID=17239161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252566A Pending JPH04132862A (en) 1990-09-20 1990-09-20 Misfire detecting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04132862A (en)

Similar Documents

Publication Publication Date Title
JP3978535B2 (en) Non-ignition detection method for vehicle engine
JP2623921B2 (en) Misfire detection device for internal combustion engine
JP3995054B2 (en) Method for detecting misfire in a multi-cylinder internal combustion engine
KR950005897B1 (en) Misfring sensing apparatus
US5870688A (en) Misfire diagnostic system for internal combustion engine
JPH0447146A (en) Failure in ignition detecting device for internal combustion engine
US5214958A (en) Misfiring detecting apparatus for an internal combustion device
JPH04365958A (en) Misfire detecting device for internal combustion engine
JPH04198731A (en) Misfire detecting device for internal combustion engine
US5638278A (en) Apparatus for detecting an occurence of misfiring in an engine cylinder
US6023964A (en) Misfire diagnosis method and apparatus of internal combustion engine
JP3922468B2 (en) Misfire detection device for internal combustion engine
JPH0237156A (en) Detecting apparatus for combustion condition of internal combustion engine
JPH0454262A (en) Failure diagnostic device for internal combustion engine
US5301546A (en) Misfire detecting device for internal combustion engine
JPH02112646A (en) Misfire detector for multicylinder internal combustion engine
JPH04132862A (en) Misfire detecting device for internal combustion engine
JP2757548B2 (en) Misfire detection device for internal combustion engine
KR20000066048A (en) A system and a method of detecting engine misfire, using optimal delayed phase angle
JPH0778385B2 (en) Misfire detection device for internal combustion engine
JP2796198B2 (en) Misfire detection device for internal combustion engine
JP2694878B2 (en) Misfire detection device for internal combustion engine
JP2675921B2 (en) Misfire detection device for internal combustion engine
JPH07119532A (en) Misfire detection device for internal combustion engine
JPH02161172A (en) Combustion state detecting device for internal combustion engine