JPH04132629A - Production of foamed molded article - Google Patents

Production of foamed molded article

Info

Publication number
JPH04132629A
JPH04132629A JP25339590A JP25339590A JPH04132629A JP H04132629 A JPH04132629 A JP H04132629A JP 25339590 A JP25339590 A JP 25339590A JP 25339590 A JP25339590 A JP 25339590A JP H04132629 A JPH04132629 A JP H04132629A
Authority
JP
Japan
Prior art keywords
glassy
polymer
particles
molded article
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25339590A
Other languages
Japanese (ja)
Inventor
Nobuo Nakamura
中村 暢雄
Keiichi Shiokawa
塩川 慶一
Masayoshi Ogoshi
大越 正芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP25339590A priority Critical patent/JPH04132629A/en
Publication of JPH04132629A publication Critical patent/JPH04132629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To inexpensively obtain a foamed molded article having excellent heat insulating properties, water absorption resistance, etc., by blending glassy foamy particles having given particle diameter with a stock solution of a polymer consisting essentially of an isocyanate, putting in a molding frame, treating with a blowing agent and packing the foamed polymer among the glassy foamy particles. CONSTITUTION:Glassy foamy particles having about 1-several mm particle diameter are blended with a stock solution of a polymer comprising an isocyanate as a main agent. Then the prepared blended raw material 4 is fed from a hopper 3 between traveling belts 1 and 2, the polymer is polymerized under heating in a thermally treating tank 5 to mutually bond the glassy foamy particles. Further, a blowing agent 6 (e.g. water) is introduced from small holes bored through the belt 1 and/or the belt 2 into the blend, the unreacted isocyanate is polymerized, foamed and the foamed polymer is packed among the glassy foamy particles to give a foamed molded article. The prepared foamed molded article is suitably used as building material, heat insulating material, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軽量で断熱性に富み、建材、什器、家具素材、
断熱材等に適用できる多泡成形体を製造する方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is lightweight and has excellent heat insulation properties, and can be used as building materials, fixtures, furniture materials,
The present invention relates to a method for producing a multicellular molded body that can be applied to heat insulating materials and the like.

[従来技術とその問題点] ガラス質多泡体の建材や断熱材としての利用は近年とみ
に高まっており、その生産量は著しく増大しているが、
その製造、加工の際に生ずるガラス質多泡体の屑の量も
多い。
[Prior art and its problems] The use of glassy foam as building materials and insulation materials has increased in recent years, and the production volume has increased significantly.
There is also a large amount of glassy foam waste generated during its manufacture and processing.

従来前記層は微粉砕して再度ガラス質多泡体原料として
用いる等の再利用手段が講じられていたが、粉砕に高コ
ストを要したり、屑自体既にガラスと発泡剤等、−例と
して炭酸カルシウム発泡剤におけるカルシウム分との反
応によりガラスが変質しているため、再発泡が困難とな
る、発泡温度が変化するなどの弊害があり、有効な手段
は見出されていない状況にある。
Conventionally, the above-mentioned layer has been reused by pulverizing it and reusing it as a raw material for glassy foam, but pulverization requires high costs, and the swarf itself already contains glass and blowing agents, etc. - for example. Since the glass is altered due to the reaction with the calcium content in the calcium carbonate foaming agent, there are disadvantages such as difficulty in foaming again and changes in the foaming temperature, and no effective means have yet been found.

公知技術において、実開昭58−97130号には、天
然ガラス質発泡粒の粒間に熱可塑性発泡体を充填した複
合成形体が開示され、その製造手段として成形枠内に天
然ガラス質発泡粒と、その粒間にボリスヂレン、ポリエ
チレン等の熱可塑性樹脂に発泡成分を含んだ粒を充填し
、これらを加熱すること、あるいは予め天然ガラス質発
泡粒表面に前記樹脂粒を被着せしめたうえでこれを加熱
すること等が言及されているが、これらの手段において
は天然ガラス質発泡粒間の熱可塑性発泡体の発泡効率を
悪化さセ、泡径が均一な発泡体を得難く、あるいは熱可
塑性発泡体が天然ガラス質発泡粒間を効果的に充填する
形態とはならず、ときに空洞を生じたりする。更に前記
した樹脂はガラスとの接着性において劣る等問題点が多
い。
In the known technology, Japanese Utility Model Application Publication No. 58-97130 discloses a composite molded article in which a thermoplastic foam is filled between the particles of natural vitreous foam particles, and as a means for producing the same, natural vitreous foam particles are placed in a molding frame. Then, between the particles, particles containing a foaming component of thermoplastic resin such as boris dylene or polyethylene are filled and heated, or the resin particles are preliminarily applied to the surface of the natural glassy foam particles. Although heating the foam is mentioned, these methods deteriorate the foaming efficiency of the thermoplastic foam between the natural glass foam particles, make it difficult to obtain a foam with uniform bubble diameter, or heat the foam. The plastic foam does not effectively fill the spaces between the natural vitreous foam particles, and sometimes cavities are formed. Furthermore, the above-mentioned resins have many problems such as poor adhesion to glass.

また特開昭60−31921号には無機質断熱材におい
て、バーミキュライト等の無機質発泡体と触媒ガス硬化
性のバインダ、例えばウレタンとの混合物を成形型に充
填後、触媒ガスによりバインダを硬化させることが開示
されているが、バインダを発泡せしめるものではなく、
バインダを過少に用いた場合は無機質発泡体粒間に空洞
を生じ、気密性を悪化させ、耐吸水性、断熱性に劣り、
他方過多の場合は無機質発泡体粒間が無発泡のバインダ
に充填されて断熱性を損ない、またバインダを多く用い
た分、原料コストを高騰する。
Furthermore, JP-A No. 60-31921 describes an inorganic heat insulating material in which a mold is filled with a mixture of an inorganic foam such as vermiculite and a catalytic gas-curable binder, such as urethane, and then the binder is cured with a catalytic gas. Although disclosed, it does not cause the binder to foam,
If too little binder is used, cavities will be created between the inorganic foam particles, resulting in poor airtightness, poor water absorption resistance, and poor insulation properties.
On the other hand, if the amount is too large, the spaces between the particles of the inorganic foam will be filled with non-foamed binder, impairing the heat insulation properties, and the raw material cost will increase due to the large amount of binder used.

本発明は前記ガラス質多泡体の屑を有効に活用するとと
もに、きわめて容易な手段で製造でき、ガラス質多泡粒
間を独立気泡に富む高分子で充填した多泡成形体の製法
を提供することを目的とする。
The present invention provides a method for manufacturing a multi-cellular molded product that effectively utilizes the waste of the vitreous multi-foamed material, can be produced by extremely easy means, and fills the space between the vitreous multi-cell particles with a polymer rich in closed cells. The purpose is to

F問題点を解決するための手段] 本発明は、粒径略1〜数mmのガラス質多泡粒と、イソ
シアネートを主剤とする高分子原液とを混合状態で成形
枠に投入し、加熱してガラス質多泡粒相互を接着せしめ
るとともに、発泡剤を導入して未反応イソシアネートを
重合、発泡せしめ、前記ガラス質多泡粒間を発泡高分子
で充填するようにしたこと、更に前記高分子原液にポリ
オールを含有するようにしたこと、加えて走行する上下
一対のベルト間にガラス質多泡粒と高分子原液からなる
混合原料を投入し、熱処理ゾーンに導いて加熱するとと
もに、発泡剤を導入して発泡せしめること、更に加えて
前記多泡成形体の表面に含フッ素高分子塗装を施してな
ることからなる。
Means for Solving Problem F] In the present invention, glassy cellular particles having a particle diameter of approximately 1 to several mm and a polymer stock solution containing isocyanate as a main ingredient are charged into a molding frame in a mixed state, and heated. the glassy foam particles are bonded to each other, a blowing agent is introduced to polymerize and foam unreacted isocyanate, and the space between the glassy foam particles is filled with a foamed polymer; In addition to the fact that the raw solution contains polyol, a mixed raw material consisting of glassy foam particles and a polymer stock solution is introduced between a pair of upper and lower running belts, guided to a heat treatment zone and heated, and a blowing agent is added. In addition, the surface of the multifoamed molded product is coated with a fluorine-containing polymer.

従来、ガラス質多泡体は通例ソーダ石灰系ガラス粉、発
泡剤、あるいは更に耐熱無機粉、顔料を混合したものを
成形枠に投入し熱処理、発泡させたもので、これを必要
に応じ所望サイズ、形状に裁断して製品とする。
Conventionally, vitreous foams are produced by putting a mixture of soda-lime-based glass powder, a blowing agent, or even heat-resistant inorganic powder and pigments into a molding frame, heat-treating and foaming, and molding this into the desired size as needed. , cut into shapes and make products.

その際ガラス質多泡体の塊状屑が生ずるが、これを適宜
粒径に破砕して原料、すなわちガラス質多泡粒とする。
At this time, lumps of vitreous foam are produced, which are crushed to an appropriate particle size and used as a raw material, that is, vitreous foam granules.

勿論公知の手段で、例えば前記原料を結合剤とともに粒
状に成形しこれを加熱発泡してガラス質多泡粒とするこ
ともできるが紙庫で容易に入手できる前記屑を採用する
のが好ましい。
Of course, it is also possible to form glassy cellular particles by forming the raw material together with a binder into granules and heating and foaming them by known means, but it is preferable to use the scraps that are easily available in paper warehouses.

前記ガラス質多泡粒の粒径は略1mm〜数mmとするも
ので、1mmより著しく小サイズであるとガラス質多泡
粒に内在する気泡自体が破砕されてその断熱、軽量性等
の特性を喪失し易く、他方、10mm近くの大サイズで
あると、その移送、貯蔵や混合等に際して圧潰、磨耗し
易く、ひいては前記特性を発揮し難くなり、また得られ
る多泡成形体の切断加工性を悪化させる。
The particle size of the vitreous multicellular particles is approximately 1 mm to several mm; if the size is significantly smaller than 1 mm, the bubbles within the vitreous multicellular particles themselves will be crushed, resulting in poor properties such as heat insulation and lightness. On the other hand, if the size is large (nearly 10 mm), it will be easily crushed and worn out during transportation, storage, mixing, etc., making it difficult to exhibit the above-mentioned properties, and the cutting processability of the resulting multicellular molded product will be reduced. worsen.

インシアネートとしては公知のトルエンジイソシアネー
ト、ジフェニルメタンジイソシアネート、1.6−ヘキ
サメチレンジイソシアネート、p−フェニレンジイソシ
アネート、m−キシレンジイソシアネート、テトラメチ
ルキシレンジイソシアネート、トリフェニルメタントワ
インシアネート等を採用するものである。
As the incyanate, known toluene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, p-phenylene diisocyanate, m-xylylene diisocyanate, tetramethylxylene diisocyanate, triphenylmethane diisocyanate, etc. are employed.

更にシリコン等の整泡剤、トリエチルアミン等の触媒、
その他架橋剤、着色剤、難燃剤等適宜添加剤を加えるこ
とができる。
Furthermore, foam stabilizers such as silicone, catalysts such as triethylamine,
Other additives such as crosslinking agents, colorants, flame retardants, etc. can be added as appropriate.

インシアネートはそれ自体、付加、重合反応してイソシ
アヌレートその他の高分子を形成するもので、それらは
ガラス質多泡粒等のガラス質、陶磁器質の物品と強固に
接着する。
Incyanate itself undergoes addition and polymerization reactions to form isocyanurate and other polymers, which firmly adhere to glassy and ceramic articles such as glassy foam particles.

また、イソシアネートに発泡剤、例えば水を反応さゼれ
ばポリ尿素を形成し、炭酸ガスを放出して発泡作用が生
ずる。
Further, when isocyanate is reacted with a blowing agent, such as water, polyurea is formed, and carbon dioxide gas is released to produce a blowing action.

前記イソシアネート付加、重合物やポリ尿素等は靭性に
富むが反面柔軟性に欠け、?!1i撃等に対し脆い面が
ある。
The above-mentioned isocyanate-added products, polymers, polyureas, etc. are rich in toughness, but on the other hand, they lack flexibility. ! It is vulnerable to attacks such as 1i attacks.

従って適当量のポリオールを導入し、イソシアネ−1・
との反応により脆性を改善するポリウレタンを形成せし
めることが好ましい。
Therefore, by introducing an appropriate amount of polyol, isocyanate-1.
It is preferred to form a polyurethane that improves brittleness by reaction with the polyurethane.

前記ポリオールとしてはエチレングリコール、ジエチレ
ングリコール、プロピレングリコール、グリセリン、ト
リメチロールプロパン、エチレンジアミンオキシプロピ
レート、ジェタノールアミン、アミノエチルエタノール
アミン等を原料とする分子■数百ないし数千のものを採
用する。
As the polyol, hundreds to thousands of molecules made from ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, ethylenediamineoxypropylate, jetanolamine, aminoethylethanolamine, etc. are used.

多泡成形体の製造に際しては、前記ガラス質多泡粒1重
里部に対し、前記イソシアネートを主剤とする高分子原
液を適宜量、好適には0.1ないし0.3重量部を混合
し、成形枠に投入した後30℃ないし】00℃以下程度
で1時間ないし数時間加熱することにより、ガラス質多
泡粒相互をイソシアネートの付加、重合体で接着一体化
する。更に前記粒間に発泡剤、例えば水を導入して未反
応のイソシアネートと反応せしめ、炭酸ガスを放出する
とともにポリ尿素を形成して該粒間を発泡高分子で充填
するものである。
When producing a cellular molded article, an appropriate amount, preferably 0.1 to 0.3 parts by weight, of a polymer stock solution containing the isocyanate as a main ingredient is mixed with one part by weight of the glassy cellular particles; After being put into a molding frame, it is heated at a temperature between 30° C. and 100° C. or less for one to several hours, thereby bonding the glassy cellular particles to each other with the addition of isocyanate and the polymer. Further, a blowing agent, such as water, is introduced between the grains to react with unreacted isocyanate, releasing carbon dioxide gas, forming polyurea, and filling the spaces between the grains with foamed polymer.

多泡成形体を連続的に製造するには、走行する上下一対
のベルト間に直に、ただしベルト面にワックス、ソープ
、オイル等の離型剤を塗布したうえで前記ガラス質多泡
粒と高分子原液からなる混合原料を投入し、あるいは前
記上下のベルト間に上および/または下の面材フィルム
、例えばアルミニウムシート、ポリエチレンコートグラ
スファイバーシート、プラスチックフィルム等を介して
前記混合原料を投入し、熱処理ゾーンに導いて前記同様
30℃ないし100℃以下程度に加熱してガラス質多泡
粒を接着し、更に水等の発泡剤を導入して発泡せしめれ
ばよい。
In order to continuously produce a cellular molded product, the glassy cellular particles are placed directly between a pair of running upper and lower belts, but after applying a mold release agent such as wax, soap, or oil to the belt surface, A mixed raw material consisting of a polymer stock solution is introduced, or the mixed raw material is introduced between the upper and lower belts through an upper and/or lower surface material film, such as an aluminum sheet, a polyethylene coated glass fiber sheet, or a plastic film. The glassy foam particles may be introduced into a heat treatment zone and heated to a temperature of 30° C. to 100° C. or lower to adhere the glassy foam beads as described above, and then a foaming agent such as water may be introduced to cause foaming.

前記面材フィルムは表装材、補強材、気密性増強材等と
して作用するものである。
The facing material film acts as a facing material, a reinforcing material, an airtightness enhancing material, and the like.

あるいは多泡成形体の表面に含フッ素高分子をスプレィ
、刷毛塗り、その他公知の手段で塗装することにより、
耐熱性、撥水性、耐候性、耐薬品性等を向上させ、加え
て装飾性を付与することもできる。
Alternatively, by applying a fluorine-containing polymer to the surface of the foamed molded product by spraying, brushing, or other known means,
It can improve heat resistance, water repellency, weather resistance, chemical resistance, etc., and can also add decorative properties.

添付第1図は前記一連続製造手段を示ず側断面図であり
、」1下の走行ベル1−L2間に、ホッパセ、更に例え
ばベルト1および/または2に穿設した小孔(図示せず
)より6(矢印)で示すように水を散布して発泡せしめ
るものである。
The attached FIG. 1 is a side sectional view without showing the continuous manufacturing means, and shows small holes (not shown) drilled in the hopper set, and also in the belts 1 and/or 2, between the lower running belts 1 and L2. As shown in 6 (arrow) from 1), water is sprayed to cause foaming.

このようにして形成した多泡成形体は、ガラス質多泡粒
相互が高分子により接合一体化するとともに、その粒間
が発泡高分子により充填され、軽量断熱性に富む製品を
得ることができる。
In the cellular molded product thus formed, the glassy cellular particles are bonded and integrated with each other by the polymer, and the spaces between the particles are filled with the foamed polymer, making it possible to obtain a lightweight product with excellent heat insulation properties. .

[実施例および比較例] 以下本発明の実施例を、比較例と対比して説明する。[Examples and comparative examples] Examples of the present invention will be described below in comparison with comparative examples.

大産■上 ガラス質多泡粒原料としてソーダ石灰系ガラス質多泡体
の製造の際に生じた塊状屑を用い、これをインパクトク
ラッシャーで粉砕し粒径1ないし3mmに調製した。
Large-scale vitreous foam particles used as a raw material were lumpy debris produced during the production of soda-lime-based vitreous foam particles, which were pulverized with an impact crusher to a particle size of 1 to 3 mm.

イソシアネートとしてトルエンジイソシアネートヲ用い
、別にポリオールとしてのプロピレンオキシド系ポリオ
ール(分子置駒1000) 、触媒として第1にオクチ
ル酸錫、第2にトリメチルアミン、整泡剤として水溶性
ポリエーテルシロキサンを採用し、発泡剤としての水を
準備した。
Toluene diisocyanate was used as the isocyanate, a propylene oxide polyol (molecule placement number 1000) was used as the polyol, tin octylate was used as the catalyst, trimethylamine was used as the catalyst, and water-soluble polyether siloxane was used as the foam stabilizer. Water was prepared as an agent.

前記ガラス質多泡粒100重里部に対しイソシアネー)
15重量部を混合し、更にポリオール3重量部、微量の
第1触媒および整泡剤を加えて混合した。これを予め内
面に離型用ワックスを塗布した金型内に投入し、熱処理
槽内にセットして50℃で約60分保持し、その後端で
金型に予め穿設した孔より数十砂水および第2触媒溶液
を導入し、常温に放置した。
Isocyanate per 100 parts of the glassy foam particles)
15 parts by weight were mixed, and further 3 parts by weight of polyol, trace amounts of the first catalyst and foam stabilizer were added and mixed. This was placed in a mold whose inner surface was coated with release wax in advance, set in a heat treatment tank and kept at 50°C for about 60 minutes, and then several tens of sand particles were inserted into the hole pre-drilled in the mold at the rear end. Water and a second catalyst solution were introduced and left at room temperature.

金型より取外して得られた多泡成形体はガラス質多泡粒
間が、一部連通気泡を有するが多くは独立気泡よりなる
発泡高分子で充填された形態を示し、その・かさ比重は
0.9、曲げ強度は22kg/ cffl。
The foamed molded product obtained after removal from the mold shows a morphology in which the spaces between the glassy foam particles are filled with foamed polymer, which has some open cells but mostly closed cells, and its bulk specific gravity is 0.9, bending strength is 22kg/cffl.

常温熱伝導率0.09Kcal/m、 hr、 ℃、2
4hr水中浸漬後の吸水率1..2wt%であり、例え
ば壁材として充分使用し得るものであった。
Room temperature thermal conductivity 0.09Kcal/m, hr, °C, 2
Water absorption rate after immersion in water for 4 hours: 1. .. It was 2 wt%, and could be sufficiently used as a wall material, for example.

ズー柵桝I 実施例1で得られた多泡成形体の全面にセントラル硝子
(株)製の商標「セフラルコート」に係る含フッ素高分
子をスプレィ塗布したところ、その熱伝導率は実施例1
に対し約2割低減して断熱性を向上し、また吸水率は殆
ど0と極めて良好であった。
Zoo fence I When a fluorine-containing polymer related to the trademark "Cefral Coat" manufactured by Central Glass Co., Ltd. was spray-coated on the entire surface of the multicellular molded product obtained in Example 1, the thermal conductivity was as shown in Example 1.
The water absorption rate was reduced by about 20% compared to the previous year, improving the heat insulation properties, and the water absorption rate was almost 0, which was extremely good.

勿論該含フッ素高分子は実際には全面に塗布する必要は
なく、例えば壁材として用いる場合はその露呈表面に塗
布する等随意に行えばよい。
Of course, it is not actually necessary to apply the fluorine-containing polymer to the entire surface; for example, when it is used as a wall material, it may be applied to the exposed surface as desired.

I且り 実施例1同様のガラス質多泡粒100重量部に対し、ポ
リオール10重量部、第1、第2触媒、水および整泡剤
若干量を混合し、更にイソシアネート10重量部を混合
して実施例1同様に金型に投入、熱処理した。本比較例
においてはイソシアネートとポリオールの反応による発
泡ポリウレタンの形成を狙ったものである。
I and 100 parts by weight of the same glassy foam particles as in Example 1 were mixed with 10 parts by weight of polyol, first and second catalysts, water and some amount of foam stabilizer, and further mixed with 10 parts by weight of isocyanate. The sample was placed in a mold and heat treated in the same manner as in Example 1. In this comparative example, the aim was to form polyurethane foam through the reaction of isocyanate and polyol.

しかし、金型内でガラス質多泡粒が下方に沈積偏在し、
その上に発泡ポリウレタン層が形成される固液分離の形
態となり、所期の目的とする多泡成形体は得られなかっ
た。
However, the glassy foam particles are unevenly distributed downward in the mold.
The foamed polyurethane layer was formed on top of the solid-liquid separation, and the desired multifoamed molded product could not be obtained.

ル較勇叉 実施例1同様のガラス質多泡粒100重量部に対し、ポ
リオール10重量部を混合し、次いでイソシアネート1
0重量部を混合後、金型に投入し、そのまま熱処理する
ことなく第2触媒を金型通孔より導入し、ポリオールと
イソシアネートとの反応生成物、ポリウレタンによりガ
ラス質多泡粒が接合一体化された多泡成形体を得た。
10 parts by weight of the same glassy foam particles as in Example 1 were mixed with 10 parts by weight of polyol, and then 1 part by weight of isocyanate was added.
After mixing 0 parts by weight, it is put into a mold, and the second catalyst is introduced through the mold hole without heat treatment, and the glassy cellular particles are bonded and integrated by the reaction product of polyol and isocyanate, polyurethane. A multifoamed molded article was obtained.

該多泡成形体はガラス質多泡粒間が充分発泡ウレタンに
より充填されたものではなく、粒間に空洞が形成されて
通気性を有し、水分を侵入し易く、そのかさ比重は1.
0、曲げ強度は19kg/ cnf、、熱伝導率0.1
5Kcal/m、 hr、 ℃、吸水率6.9wt%で
あり、実施例に比べ明らかに劣るものである。
In the multicellular molded product, the spaces between the glassy foam particles are not sufficiently filled with foamed urethane, and cavities are formed between the particles and have air permeability, allowing moisture to easily penetrate, and the bulk specific gravity is 1.
0, bending strength is 19kg/cnf, thermal conductivity is 0.1
5 Kcal/m, hr, °C, and water absorption rate of 6.9 wt%, which is clearly inferior to the examples.

以上から明らかなとおり、本実施例のものはガラス質多
泡粒間が殆ど独立気泡の発泡性高分子で充填されて耐熱
伝導性(断熱性)、耐吸水性等に優れ、しかも容易に製
造できるものである。
As is clear from the above, this example has excellent heat resistance conductivity (insulation), water absorption resistance, etc. because the spaces between the glassy foam particles are mostly filled with closed cell foam polymer, and it is easy to manufacture. It is possible.

[発明の効果] 本発明によればガラス質多泡粒間が殆ど独立気泡の発泡
性高分子で充填されて断熱性、耐吸水性等に優れ、しか
も前記ガラス質多泡粒は元のガラス質多泡体の廃棄物が
利用でき、低コストで容易に製造できるという効果を奏
する。
[Effects of the Invention] According to the present invention, the spaces between the vitreous foam particles are almost completely filled with closed-cell foamable polymer, and the vitreous foam granules have excellent heat insulation properties, water absorption resistance, etc. It has the advantage of being able to utilize the waste material of high quality foam and being easily manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一製造手段を示した側断面図であ
る。 2走行ベルト
FIG. 1 is a side sectional view showing one manufacturing means according to the present invention. 2 running belt

Claims (1)

【特許請求の範囲】 1)粒径略1〜数mmのガラス質多泡粒と、イソシアネ
ートを主剤とする高分子原液とを混合状態で成形枠に投
入し、加熱してガラス質多泡粒相互を接着せしめるとと
もに、発泡剤を導入して未反応イソシアネートを重合、
発泡せしめ、前記ガラス質多泡粒間を発泡高分子で充填
するようにしたことを特徴とする多泡成形体の製法。 2)高分子原液にポリオールを含有するようにしたこと
を特徴とする請求項1記載の多泡成形体の製法。 3)走行する上下一対のベルト間にガラス質多泡粒と高
分子原液からなる混合原料を投入し、熱処理ゾーンに導
いて加熱するとともに発泡剤を導入して発泡せしめるこ
とを特徴とする請求項1または2記載の多泡成形体の製
法。 4)多泡成形体の表面に含フッ素高分子塗装を施してな
ることを特徴とする請求項1ないし3記載の多泡成形体
の製法。
[Scope of Claims] 1) Glassy cellular beads with a particle size of approximately 1 to several mm and a polymer stock solution containing isocyanate as the main ingredient are put into a molding frame in a mixed state, and heated to form glassy cellular particles. In addition to bonding them together, a foaming agent is introduced to polymerize unreacted isocyanate.
1. A method for producing a multicellular molded article, which comprises foaming and filling spaces between the glassy multicellular particles with a foamed polymer. 2) The method for producing a multicellular molded article according to claim 1, characterized in that the polymer stock solution contains a polyol. 3) A claim characterized in that a mixed raw material consisting of glassy foam particles and a polymer stock solution is introduced between a pair of upper and lower running belts, guided to a heat treatment zone, heated, and foamed by introducing a foaming agent. 2. The method for producing a multifoam molded article according to 1 or 2. 4) The method for producing a multi-cellular molded article according to any one of claims 1 to 3, characterized in that the surface of the multi-cellular molded article is coated with a fluorine-containing polymer.
JP25339590A 1990-09-21 1990-09-21 Production of foamed molded article Pending JPH04132629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25339590A JPH04132629A (en) 1990-09-21 1990-09-21 Production of foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25339590A JPH04132629A (en) 1990-09-21 1990-09-21 Production of foamed molded article

Publications (1)

Publication Number Publication Date
JPH04132629A true JPH04132629A (en) 1992-05-06

Family

ID=17250776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25339590A Pending JPH04132629A (en) 1990-09-21 1990-09-21 Production of foamed molded article

Country Status (1)

Country Link
JP (1) JPH04132629A (en)

Similar Documents

Publication Publication Date Title
CA2616415C (en) Composite material including rigid foam with inorganic fillers
US3256218A (en) Dispersing coarse fillers in polyurethane foams
ES2269548T3 (en) THERMOPLASTIC POLYUTTERS.
US20090053490A1 (en) Highly Filled Composite Materials
AU2005208714A1 (en) Filled polymer composite and synthetic building material compositions
JPH03218955A (en) Inorganic formed board and its production
US4061701A (en) Manufacture of soft and resilient foams
MX2010012439A (en) Foam laminate product and process for production thereof.
Frisch History of science and technology of polymeric foams
CA1109598A (en) Process for preparing a composite product constituted by foam particles
US3817766A (en) Hardening of waterglass solutions using pyrocarbonic acid esters and/or carboxylic-carbonic acid ester anhydrides
JPH04132629A (en) Production of foamed molded article
JPS58145431A (en) Heat-and water-resistant molding with flame-retardant expansible adhesive
JPS63152648A (en) Foamed plastic material and production thereof
Ghosh et al. Polymers for foams and their emerging applications
KR100440831B1 (en) Method for preparing of composition for inter-floor noise prevention using waste polyurethane
JPH09169863A (en) Blowing agent for producing urethane foam, urethane composition, and production of urethane foam
JPS6178818A (en) Melting of asphalt foam
JP2001212832A (en) Method for continuously producing foamed resin
PL189498B1 (en) Method of obtaining porous composite materials based on polyurethane resins
JPS58213033A (en) Siliceous filler for use in polyurethane
JPS60225718A (en) Preparation of asphalt board
JPH07196756A (en) Foaming composition
JPH0471934B2 (en)
KR20170139858A (en) Complex insulation and construction composite panel using the same