JPH04132539A - Even magnetic field magnet for magnetic resonance imaging apparatus - Google Patents
Even magnetic field magnet for magnetic resonance imaging apparatusInfo
- Publication number
- JPH04132539A JPH04132539A JP2254471A JP25447190A JPH04132539A JP H04132539 A JPH04132539 A JP H04132539A JP 2254471 A JP2254471 A JP 2254471A JP 25447190 A JP25447190 A JP 25447190A JP H04132539 A JPH04132539 A JP H04132539A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- pair
- pole pieces
- space
- excitation coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 154
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 16
- 230000005284 excitation Effects 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims description 12
- 239000003302 ferromagnetic material Substances 0.000 claims description 7
- 239000003507 refrigerant Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 230000004907 flux Effects 0.000 abstract description 25
- 230000008901 benefit Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000208421 Ericaceae Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000011949 advanced processing technology Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、(核)磁気共鳴映像装W(以下MRrと略
称する)に用いられる、超電導コイルを有するコア型の
均一磁場マグネ7)に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a core-type uniform magnetic field magnet 7) having a superconducting coil used in a (nuclear) magnetic resonance imaging system W (hereinafter abbreviated as MRr). .
MHIにおいては、被検体である人体を収納する空間部
のほぼ中央に、直径的50c−程度の例えば球形の領域
内に磁場強度が0.1Tから2Tで。In the MHI, a magnetic field strength of 0.1 T to 2 T is applied within a spherical region with a diameter of approximately 50 cm approximately at the center of a space that accommodates a human body.
磁場強度の均一性が10pp−以下といった高度に均一
な静磁場を発生し得る均一磁場マグネットが求められる
。A uniform magnetic field magnet is required that can generate a highly uniform static magnetic field with a uniformity of magnetic field strength of 10 pp- or less.
この種の均一磁場マグネットのうち、磁場強度が0.2
T以下のものには一般に常を1形のマグネットが用いら
れる。また、0,5Tを超える磁場強度の高いマグネッ
トには超電導形のマグネットが用いられる。Among this type of uniform magnetic field magnet, the magnetic field strength is 0.2
For magnets smaller than T, type 1 magnets are generally used. Furthermore, superconducting magnets are used as magnets with high magnetic field strengths exceeding 0.5 T.
第7図は従来の超電導均一磁場マグネットを簡略化して
示す断面図であり、複数対のへル五ホルツコイルとして
形成される超電導コイル1は、断熱真空容器2の液体ヘ
リウム容器2C内に冷媒液としての液体ヘリウム3に浸
漬した状態で収納される。断熱真空容252は液体ヘリ
ウム容器2Cと真空容器2Aとの間が真空、輻射シール
ド2B。FIG. 7 is a simplified cross-sectional view of a conventional superconducting uniform magnetic field magnet. The superconducting coil 1 formed as a plurality of pairs of Herl-5-Holtz coils is stored as a refrigerant in a liquid helium container 2C of an insulated vacuum container 2. It is stored immersed in liquid helium 3. The adiabatic vacuum volume 252 has a vacuum between the liquid helium container 2C and the vacuum container 2A, and a radiation shield 2B.
および図示しない多層断熱層等で断熱されており、サー
ビスポート4Aから液体ヘリウム3を注入して超電導コ
イル1を液体ヘリウム温度に冷却した状態で、図示しな
い1ifLリードを介して外部電源から超電導コイルl
に励磁電流を供給することにより、空間部6を軸方向に
通る静磁場BOが発生し、空間部6のほぼ中央に均一磁
場6Aが形成される。なお、冷凍115はサービスボー
ト4B内で輻射シールド2B、等に連結され、断熱性能
が高度に保持される。The superconducting coil 1 is insulated by a multi-layer heat insulating layer (not shown), etc., and the superconducting coil 1 is injected from the service port 4A to cool the superconducting coil 1 to the liquid helium temperature.
By supplying an excitation current to the space 6, a static magnetic field BO passing through the space 6 in the axial direction is generated, and a uniform magnetic field 6A is formed approximately at the center of the space 6. Note that the refrigeration unit 115 is connected to the radiation shield 2B, etc. within the service boat 4B, and its insulation performance is maintained at a high level.
一方、常電導形の均一磁場マグネットは、上記超電導形
の均一磁場マグネットと同様な複対へルムホルツコイル
からなる空心のマグネットと、コア形均一磁場マグネッ
トとに大別される。On the other hand, normal-conducting uniform magnetic field magnets are broadly classified into air-core magnets consisting of multiple pairs of Helmholtz coils similar to the above-mentioned superconducting uniform-field magnets, and core-type uniform magnetic field magnets.
第8図および第9図はコア形常S導均一磁場マグネット
を示す一部破砕した側面図および平面図であり、す間部
6を保持して互いに平行かつ同心状に配された一対の円
板状のポールピース7A。8 and 9 are a partially fragmented side view and a plan view showing a core-type normal S-conducting homogeneous magnetic field magnet, in which a pair of circles are arranged parallel and concentrically to each other while holding a gap 6. Plate-shaped pole piece 7A.
7B等7は継鉄9に支持されており、継鉄9には一対の
常電樽形励磁コイル8A、8B等8が設けられ、励磁す
ることにより空間部6のほぼ中央に均一磁場6Aが形成
される。leはポールピース7の外周部に空間部6側に
突出するよう形成されたリング状の凸部10A、および
その内周側に同心状に形成された凹所10Bで構成され
る磁場強度の均等化手段であり、円板状のポールピース
7の外縁から外側に膨らんで生ずる漏れ磁束と、これに
伴って均一磁場6Aに生ずる磁力線の乱れ(磁場強度の
不均一性)とを、凸部10Aによって形成される磁場強
度の強化部分と、凹所10Bによって形成される磁場強
度の低下部分とによって補正するものであり、均一磁場
6A部分における磁束線を直線化し、均一磁場の磁場強
度の均一性を向上させることができる。7B, etc. 7 are supported by a yoke 9, and the yoke 9 is provided with a pair of electric barrel-shaped excitation coils 8A, 8B, etc. 8, and when excited, a uniform magnetic field 6A is generated approximately in the center of the space 6. It is formed. le is a ring-shaped protrusion 10A formed on the outer periphery of the pole piece 7 so as to protrude toward the space 6, and a recess 10B concentrically formed on the inner periphery of the ring-shaped protrusion 10A. The leakage magnetic flux that bulges outward from the outer edge of the disc-shaped pole piece 7 and the disturbance of the magnetic lines of force (non-uniformity of the magnetic field strength) that occurs in the uniform magnetic field 6A due to this leakage flux are absorbed by the convex portion 10A. This is corrected by the strengthened part of the magnetic field strength formed by the recess 10B and the reduced part of the magnetic field strength formed by the recess 10B, which straightens the magnetic flux lines in the uniform magnetic field 6A part and improves the uniformity of the magnetic field strength of the uniform magnetic field. can be improved.
前述のN電導形均一磁場マグネットは、超電導コイルの
低損失性蛯を活かして電力消費量が少なく、高い磁場強
度の均一磁場マグネットを得ることができるが、均一磁
場を得るに要する幾伺学的寸法がヘルムホルツコイルに
よって決まってしまうため、高度の加工技術を必要とす
るために高価な断熱真空容器が大型化し、磁場強度0.
3から0.5T程度のマグネットでは経済的デメリット
が大きい、また、マグネットの外に分布する漏れ磁束量
が極めて大きいために、周囲物体への磁気的影響を回避
するための磁気シールドに多量の鉄材が必要になり、か
つ多大な施工費用を必要とするので、益々経済的デメリ
ットが問題となり、MRlの普及を阻害する原因にもな
っている。The above-mentioned N conductivity type uniform magnetic field magnet can obtain a uniform magnetic field magnet with low power consumption and high magnetic field strength by taking advantage of the low loss property of the superconducting coil, but it is possible to obtain a uniform magnetic field magnet with high magnetic field strength. Since the dimensions are determined by the Helmholtz coil, advanced processing technology is required, resulting in an expensive insulated vacuum container that is large and has a magnetic field strength of 0.
Magnets of about 3 to 0.5 T have a large economic disadvantage, and the amount of leakage magnetic flux distributed outside the magnet is extremely large, so a large amount of iron material is required for magnetic shielding to avoid magnetic effects on surrounding objects. Since this requires a large amount of construction cost, the economic disadvantages are becoming more and more problematic, and this is also a cause of hindering the spread of MRl.
一方、コア形均一磁場マグネットは、その構成が安価な
鉄系の磁性材料および鋼材が主体で、その加工度も低い
ので、磁場強度の低い均一磁場マグネットを経済的に有
利に得られる利点があり、かつ継鉄が漏れ磁束を抑制す
るので磁気シールド等を簡単化でき、したがって磁気共
鳴映像装置の普及に貢献できると期待される。しかしな
がら、常電導コイルを用いているために励磁損失が太き
(、かつ励磁コイル7がその3方を継鉄9およびポール
ピース7に囲まれ、空間部6に比べて磁気抵抗の低いロ
ーカルな磁気回路9Lを形成し、これがマグネットの磁
気能率を低下させるので、大きな励磁電源および励磁コ
イルを必要とし、例えば、磁場強度が0.4T程度の均
一磁場マグネットを作ることも容易でないという問題が
ある。On the other hand, core-type homogeneous magnetic field magnets are mainly composed of inexpensive iron-based magnetic materials and steel materials, and their processing is low, so they have the advantage of being economically advantageous in producing uniform magnetic field magnets with low magnetic field strength. In addition, since the yoke suppresses leakage magnetic flux, magnetic shielding, etc. can be simplified, and it is therefore expected to contribute to the spread of magnetic resonance imaging devices. However, since the normally conducting coil is used, the excitation loss is large (and the excitation coil 7 is surrounded on three sides by the yoke 9 and the pole piece 7, and the excitation coil 7 is surrounded by the yoke 9 and the pole piece 7 on three sides, and the local magnetic resistance is lower than that in the space 6). Since the magnetic circuit 9L is formed and this reduces the magnetic efficiency of the magnet, a large excitation power source and excitation coil are required, and for example, there is a problem that it is not easy to create a uniform magnetic field magnet with a magnetic field strength of about 0.4T. .
この発明の目的は、小型の超電導励磁コイルを用いて漏
れ磁束が少なく、磁気能率および磁場強度が高い、安価
な均一磁場マグネットを得ることにある。An object of the present invention is to obtain an inexpensive uniform magnetic field magnet that uses a small superconducting excitation coil, has low leakage magnetic flux, and has high magnetic efficiency and magnetic field strength.
〔tlIII!Iを解決するための手段〕上記課題を解
決するために、この発明によれば、被検体を収納すべき
空間部を隔てて互いに対向するよう継鉄部に支持された
上下一対の円板状のポールピースと、その外周部に形成
され前記空間部側に突出したリング状の凸部、およびそ
の内径側に同心状に形成された凹所を含む磁場強度の均
等化手段とを備え、励磁コイルを励磁することにより前
記空間部の中央部に均一磁場を発生するものにおいて、
前記一対のポールピースの外周側を包囲するリング状に
形成された断熱真空容器と、その内部に冷媒液とともに
収納された超電導コイルとからなる超電導励磁コイルを
、前記一対のポールピース毎に備えてなるもの、または
、一対のポールピースの外周側を包囲するリング状に形
成された断熱真空容器と、その内部に冷媒液とともに収
納された超電導コイルとからなる超電導励磁コイルを、
前記上下一対のポールピースのうち、下側に位置するボ
ールピー入側にのみ備えてなるものとする。[tlIII! Means for Solving I] In order to solve the above problems, according to the present invention, a pair of upper and lower disc-shaped discs are supported by a yoke part so as to face each other across a space in which a subject is to be housed. A magnetic field strength equalizing means including a ring-shaped protrusion formed on the outer circumference of the pole piece and protruding toward the space, and a recess formed concentrically on the inner diameter side of the pole piece, and excitation. A device that generates a uniform magnetic field in the center of the space by exciting a coil,
A superconducting excitation coil is provided for each of the pair of pole pieces, the superconducting excitation coil consisting of a ring-shaped insulating vacuum container surrounding the outer periphery of the pair of pole pieces, and a superconducting coil housed inside the vacuum container along with a refrigerant liquid. Or, a superconducting excitation coil consisting of a ring-shaped insulated vacuum container surrounding the outer periphery of a pair of pole pieces, and a superconducting coil housed inside the container along with a refrigerant.
Of the pair of upper and lower pole pieces, only the lower ball piece entry side is provided.
また、断熱真空容器が方形断面を有するリング状に形成
され、非磁性金属からなる断熱真空容器の真空容器の、
ポールピースを近接して包囲する倒板のみが強磁性材料
で形成されてなるもの、さらに、上下一対のポールピー
スが互いに非対称に形成されてなるものを含むこととす
る。Further, the insulating vacuum container is formed into a ring shape having a rectangular cross section, and the vacuum container of the insulating vacuum container is made of a non-magnetic metal.
This includes a type in which only the inverted plate that closely surrounds the pole piece is made of a ferromagnetic material, and a type in which a pair of upper and lower pole pieces are formed asymmetrically with respect to each other.
さらに、前記一対のポールピースの対向面に対して傾斜
した凸部を形成するよう前記ポールピースの外周部分に
間隔を置いて同心状に、かつ回動回旋に支持された少な
くとも二つの斜円*、=、この斜円筒間に形成された凹
所とからなり、前記斜円筒の回動により磁場強度の不均
等をシミングする磁場強度の均等化手段を備えたものと
する。Furthermore, at least two oblique circles* are supported concentrically and rotatably at intervals on the outer peripheral portion of the pole piece so as to form a convex portion inclined with respect to the opposing surfaces of the pair of pole pieces. , =, a recess formed between the oblique cylinders, and is provided with a magnetic field strength equalizing means for shimming out unevenness in magnetic field strength by rotating the oblique cylinders.
この発明の構成において、一対のポールピースの外周側
を包囲するリング状に形成された断熱真空容器と、その
内部に冷媒液とともに収納された超電導コイルとからな
る超電導励磁コイルを、前記一対のポールピース毎に備
えることにより、コアの存在によって超電導コイルはへ
ルムホルッコイルによる幾何学的制約から開放され、高
価な断熱真空容器をドーナツ状に小型化でき、かつ漏れ
磁束量を大幅に低減できるとともに、コイルとコア間の
磁気抵抗を高めて磁気能率を向上するatが得られる。In the configuration of the present invention, a superconducting excitation coil consisting of a ring-shaped insulating vacuum container surrounding the outer periphery of the pair of pole pieces and a superconducting coil housed inside the container along with a refrigerant liquid is connected to the pair of pole pieces. By providing each piece, the presence of the core frees the superconducting coil from the geometric constraints imposed by Helmholck coils, allowing the expensive insulated vacuum container to be downsized into a donut shape, and significantly reducing the amount of leakage magnetic flux. It is possible to obtain at which increases the magnetic resistance between the core and the core and improves the magnetic efficiency.
また、超電導励磁コイルを、前記上下一対のボールヒー
スのうち下側に位置するポールピース側にのみ備えるよ
う構成すれば、高価な超電導励磁コイルが1個で済み、
かつ一対の超電導コイル間に作用する$磁吸引力が排診
され、励磁コイルの支持構造を簡素化できるので、均一
磁場マグネットの構成を−N簡素化できる利点が得られ
る。Furthermore, if the superconducting excitation coil is provided only on the lower pole piece side of the pair of upper and lower ball heaths, only one expensive superconducting excitation coil is required.
In addition, the magnetic attraction force acting between the pair of superconducting coils can be eliminated, and the support structure of the excitation coil can be simplified, resulting in the advantage that the configuration of the uniform magnetic field magnet can be simplified by -N.
さらに、断熱真空容器を方形断面を有するリング状に形
成して、非磁性金属からなる真空容器の。Furthermore, the insulating vacuum container is formed into a ring shape having a rectangular cross section, and the vacuum container is made of a non-magnetic metal.
ポールピースを近接して包囲する側板のみ強磁性材料で
形成すれば、超[1コイル側の漏れ磁束が織り、したが
って励磁を流の開閉の際コイルに作用する!磁機械力を
軽減して超電導コイルをII械的に安定化できるととも
に、ポールピースに対する位置決め精度お緩やかにする
ことができる。If only the side plate that closely surrounds the pole piece is made of ferromagnetic material, the leakage magnetic flux on the 1st coil side will be woven, and therefore act on the coil when the excitation current is switched on and off. The superconducting coil can be mechanically stabilized by reducing the magneto-mechanical force, and the positioning accuracy relative to the pole piece can be relaxed.
また、超電S励磁コイルが下側ポールピースにのみ設け
られている場合、例えば磁場強度の均等化手段を下側ポ
ールピースのみに設けるなど、互いに非対称に形成する
ことが可能であり、磁場強度の均一性に悪影響を及ぼす
ことなくポールピースの構造を簡素化することができる
。In addition, if the superelectric S excitation coil is provided only on the lower pole piece, it is possible to form them asymmetrically, for example by providing a means for equalizing the magnetic field strength only on the lower pole piece. The structure of the pole piece can be simplified without adversely affecting the uniformity of the pole piece.
更にまた、一対のポールピースの対向面に対して傾斜し
た凸部を形成するよう前記ポールピースの外周部分に間
隔を置いて同心状に、かつ回動可能に支持された少なく
とも二つの斜円筒と、この斜円筒間に形成された凹所と
からなり、前記斜円筒の回動により磁場強度の不均等を
シミングする磁場強度の均等化手段を備えるよう構成し
た場合には、凸部と凹所とによる磁場強度の均等化作用
と、周方向に突出寸法が変化する二つの斜円筒を回動し
て突出寸法の位置関係を変えることによって磁場強度の
角度方向の不均等を木目細かく補正するシミングIl能
とを同時に得ることが可能になり、したがって磁場強度
の均一性に優れた磁気共鳴映像装置の均一磁場マグネッ
トが得られる。Furthermore, at least two oblique cylinders are concentrically and rotatably supported at intervals on the outer circumferential portion of the pole pieces so as to form convex portions that are inclined with respect to opposing surfaces of the pair of pole pieces. , and a recess formed between the oblique cylinders, and in the case of a structure including a magnetic field strength equalizing means for shimming uneven magnetic field strength by rotation of the oblique cylinder, the convex part and the recess Shimming finely corrects the unevenness of the magnetic field strength in the angular direction by rotating two oblique cylinders whose protruding dimensions change in the circumferential direction and changing the positional relationship of the protruding dimensions. Therefore, a uniform magnetic field magnet for a magnetic resonance imaging apparatus with excellent uniformity of magnetic field strength can be obtained.
以下、この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.
第1図はこの発明の実施例になる磁気共鳴映像装置の均
一磁場マグネットを簡略化して示す倒断面図、第2図は
実施例における磁束分布を示す模式図であり、以下従来
の装置と同し部分には、同一参照符号を用いることによ
り、詳細な説明を省略する0図において、継鉄9に支持
された一対のポールピース7A、7B等7は、それぞれ
空間部6側に突出したリング状の凸部10Aと、その内
周側に同心状に形成された凹所10Bとからなる磁場強
度の均等化手段10を備える。また、一対のポールピー
ス7A、7Bそれぞれの外周には、これを包囲するりん
ぐ状に形成された超電導励磁コイル20を備える。超電
導励磁コイル20は、断熱真空容器12内の液体ヘリウ
ム容器12Cに液体ヘリウム3とともに収納されたim
mココイル11備え、液体ヘリウム容器12cと真空容
器12Aとの間は輻射シールド12Bや図示しない多層
断熱層等で熱シールドされる。なお、継鉄9は比透磁率
の大きい軟鉄で形成され、上下一対のポールピース7は
これより比透磁率の小さい圧粉鉄心などで形成され、継
鉄9内の磁束が円板状のポールピース全体に均等に広が
り、さらに対向するポールピース間の空間部6の成るべ
く広い領域に磁束密度BOなる均一磁場6Aを発生する
よう構成される。また、ポールピースに挟まれた空間部
6の外に膨らんで分布する漏れ磁束と、これが原因で生
ずる均一磁場の磁束線の変歪は、第2図において磁場強
度の均等化手段10の凸部10Aによって形成される高
磁界部BHと、I!1所10Bによって形成される低磁
界部BLとにより直線化するよう補正される。FIG. 1 is a simplified cross-sectional view of a uniform magnetic field magnet of a magnetic resonance imaging apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the magnetic flux distribution in the embodiment. In Fig. 0, in which detailed explanations are omitted by using the same reference numerals for portions, the pair of pole pieces 7A, 7B, etc. 7 supported by the yoke 9 are each a ring protruding toward the space 6 side. The magnetic field strength equalizing means 10 is comprised of a shaped convex portion 10A and a recess 10B concentrically formed on the inner circumferential side of the convex portion 10A. Furthermore, a ring-shaped superconducting excitation coil 20 surrounding the pair of pole pieces 7A and 7B is provided on the outer periphery of each pole piece. The superconducting excitation coil 20 is stored in a liquid helium container 12C in an insulated vacuum container 12 together with liquid helium 3.
The space between the liquid helium container 12c and the vacuum container 12A is heat shielded by a radiation shield 12B, a multilayer heat insulating layer (not shown), etc. The yoke 9 is made of soft iron with a high relative magnetic permeability, and the pair of upper and lower pole pieces 7 are made of a powder iron core with a smaller relative permeability than this, so that the magnetic flux within the yoke 9 is made of soft iron with a high relative magnetic permeability. It is configured to generate a uniform magnetic field 6A having a magnetic flux density BO that spreads evenly over the entire piece and further covers as wide a region as possible in the space 6 between opposing pole pieces. In addition, the leakage magnetic flux that expands and is distributed outside the space 6 sandwiched between the pole pieces and the distortion of the magnetic flux lines of the uniform magnetic field caused by this are caused by the convex portion of the magnetic field strength equalizing means 10 in FIG. 10A and the high magnetic field part BH formed by I! The low magnetic field portion BL formed by the one location 10B corrects it to be straight.
このように構成されたコア形の超電導均一磁場マグネッ
トは、磁場強度の均一性がポールピースの形状で決まり
、超電導励磁コイルは所望の磁場強度(例えば0.4T
程度)に相応した磁束量を発生するだけのll旋を満た
せれば済むことになり、断熱真空容器を小さな断面積の
リング状に小型化することができる。また、小断面の超
電導コイル11は継鉄9やポールピース7に対して充分
な距離を容易に確保できるために、ローカルな磁路(第
8図の9Lに相当する)の形成を阻止して磁気能率を高
めることができ、かつ継鉄の存在によって漏れ磁束量が
少ないこと、超電導コイルの電力損失が零に近いことな
どの特長との兼合により、磁気能率が高く、低損失であ
り、かつ漏れ磁束が周囲物体に及ぼす悪影響の少ない磁
気共鳴映像装置の均一磁場マグネットを臂供することが
できる。In the core-shaped superconducting homogeneous magnetic field magnet configured in this way, the uniformity of the magnetic field strength is determined by the shape of the pole piece, and the superconducting excitation coil has the desired magnetic field strength (for example, 0.4T).
It is sufficient to satisfy a sufficient amount of rotation to generate an amount of magnetic flux corresponding to the amount of magnetic flux (degree), and the insulating vacuum container can be miniaturized into a ring shape with a small cross-sectional area. In addition, since the superconducting coil 11 with a small cross section can easily secure a sufficient distance from the yoke 9 and the pole piece 7, it prevents the formation of a local magnetic path (corresponding to 9L in FIG. 8). It has high magnetic efficiency and low loss due to the combination of features such as high magnetic efficiency, low leakage magnetic flux due to the presence of the yoke, and near zero power loss of the superconducting coil. Furthermore, it is possible to provide a uniform magnetic field magnet for a magnetic resonance imaging apparatus in which leakage magnetic flux has less adverse effects on surrounding objects.
第3図はこの発明の異なる実施例を示す断面図であり、
B電導励磁コイル20を下側ポールピース7B!!1に
のみ設けた点が前述の実施例と興なっている。均一磁場
の形成機能を一対のボールピースフA、7’Bが持って
いるので、磁場の均一性を損なうことなく励磁コイル2
0を一つに減らすことが可能であり、これにより大きな
経済的メリットが得られる。また、超電導励磁コイルが
一つに減ることにより、サービスポート4や電流リード
等も簡素化でき、かつ二つの励磁コイル間に作用する磁
気吸引力も排除され、さらには励磁コイルがポールピー
スに対して最も磁気能率が良い位置に静止するようIl
f:するので、励磁コイルに作用する電磁機械力は電流
の急変に際して生ずる半径方向力のみとなり、超電導励
磁コイル20の支持構造を大幅に簡単化することができ
る。FIG. 3 is a sectional view showing a different embodiment of the invention,
B conductive excitation coil 20 to lower pole piece 7B! ! This is different from the previous embodiment in that it is provided only in the first embodiment. Since the pair of ball pieces A and 7'B have the function of forming a uniform magnetic field, the excitation coil 2 can be
It is possible to reduce the number of zeros to one, which provides significant economic benefits. In addition, by reducing the number of superconducting excitation coils to one, the service port 4, current leads, etc. can be simplified, and the magnetic attraction force that acts between the two excitation coils is also eliminated. Il so that it stands still at the position with the best magnetic efficiency.
f: Therefore, the electromagnetic mechanical force acting on the excitation coil is only the radial force generated when the current suddenly changes, and the support structure of the superconducting excitation coil 20 can be greatly simplified.
第4図はこの発明のさらに異なる実施例を示す要部の断
面図であり、断熱真空容器12のいずれも非磁性金属で
構成される真空容器12A、輻射シールド12B、液体
ヘリウム容器12Cのうち、真空容器12Aのポールピ
ース7の外周を包囲する側壁22Aのみを強磁性体板で
構成した点が前述の各実施例と異なっている。この場合
、超電導コイル11の内径側に強磁性体を配することに
より、超電導コイル近傍の漏れ磁束密度が低減され、電
流の急変により超電導コイルに作用する半径方向力を低
減できるので、機械的安定性を向上できるとともに、超
電導コイルに作用する半径方向力がポールピースに及ぶ
ことを強磁性体が阻止するよう機能するので、ポールピ
ースに対して励磁コイルを同心状に位置決めするための
寸法精度が緩やかとなり、超電導コイルの支持構造を一
層簡素化できる利点が得られる。FIG. 4 is a cross-sectional view of main parts showing still another embodiment of the present invention. Among the vacuum container 12A, the radiation shield 12B, and the liquid helium container 12C, all of which are made of non-magnetic metal of the insulating vacuum container 12, This embodiment differs from the previous embodiments in that only the side wall 22A surrounding the outer periphery of the pole piece 7 of the vacuum vessel 12A is made of a ferromagnetic plate. In this case, by placing a ferromagnetic material on the inner diameter side of the superconducting coil 11, the leakage magnetic flux density near the superconducting coil can be reduced, and the radial force acting on the superconducting coil due to sudden changes in current can be reduced, resulting in mechanical stability. In addition, the ferromagnetic material functions to prevent the radial force acting on the superconducting coil from reaching the pole piece, which improves the dimensional accuracy for positioning the excitation coil concentrically with respect to the pole piece. This has the advantage that the support structure of the superconducting coil can be further simplified.
第5図はこの発明の他の実施例を示す断面図であり、超
電導励磁コイル20を設けた下側ポールピース7Bにの
み磁場強度の均等化手段10を形成し、上側のポールピ
ースは平坦な磁極面を有する平円板状のポールピース2
7とした点が前述の各実施例と異なっており、この場合
にも前述の各実施例と同様に均一磁場を発生できるとと
もに、ポールピースの加工を簡単化できる利点が得られ
る。FIG. 5 is a sectional view showing another embodiment of the present invention, in which the magnetic field strength equalization means 10 is formed only on the lower pole piece 7B provided with the superconducting excitation coil 20, and the upper pole piece is flat. Pole piece 2 in the shape of a flat disk having a magnetic pole surface
7 is different from the above-mentioned embodiments, and in this case as well, a uniform magnetic field can be generated as in the above-mentioned embodiments, and the advantage that the machining of the pole piece can be simplified can be obtained.
第6図はこの発明の異なる他の実施例を示す要部の断面
図であり、ポールピース37がその外周側に回動可能に
支持された二つの斜面1137A。FIG. 6 is a sectional view of a main part showing another embodiment of the present invention, showing two slopes 1137A on which a pole piece 37 is rotatably supported on its outer circumferential side.
37B(短い円筒の一方の端部を斜めに切り落としたも
の)を備え、それぞれ突出長さが周方向に変化する凸部
を形成するとともに、斜円筒相互間にリング状の凹所3
7Cを形成することにより、磁場強度の均等化手段40
を構成した点が前述の各実施例と異なっている。37B (one end of a short cylinder cut off diagonally), each forming a convex portion whose protrusion length changes in the circumferential direction, and a ring-shaped recess 3 between the oblique cylinders.
7C, the magnetic field strength equalization means 40
This embodiment differs from the previous embodiments in that it is configured as follows.
このように形成されたポールピース37一対または一つ
を用いて超電導均一磁場マグネットを構成した場合、二
つの斜円筒それぞれを回転することにより、凸部の突出
長さの組合せを周方向の各位置でかなり任意に調整する
ことができるので、均一磁場の磁場強度の不均一と9そ
の角度方向の変動分とを同時にきめ細かく調整するシミ
ング機能が得られ、したがって磁場強度の均一性をより
高めることができる。なお、第6図に示す磁場強度の均
等化手段40は前述の超電導均一磁場マグネットはもと
より、常tSのコア形均一磁場マグネットに適用しても
同様の作用、効果を得ることができる。When a superconducting uniform magnetic field magnet is constructed using a pair or one of the pole pieces 37 formed in this way, by rotating each of the two oblique cylinders, the combination of the protruding lengths of the convex portions can be adjusted at each position in the circumferential direction. Since it can be adjusted fairly arbitrarily, it is possible to obtain a shimming function that finely adjusts the non-uniformity of the magnetic field strength of the uniform magnetic field and its angular variation at the same time, thereby further increasing the uniformity of the magnetic field strength. can. The magnetic field strength equalization means 40 shown in FIG. 6 can be applied not only to the above-mentioned superconducting uniform magnetic field magnet but also to a normal tS core type uniform magnetic field magnet to obtain similar functions and effects.
この発明は前述のように、継鉄に支持され1Mi場強度
の均等化手段を有する上下一対のポールピースそれぞれ
に、これを包囲するリング状の超電導励磁コイルを設け
るよう構成した。その結果、一対のポールピースが持つ
磁場強度の均等化作用を利用して超電導励磁コイルを従
来の超電導均一磁場マグネットに比べて大幅に小型化で
き、大きな経済的メリットが得られるとともに、コア形
の常電導均一磁場マグネットでは得られない高磁場強度
、低損失性旋、高磁気蛯率性能が得られ、がつ漏れ磁束
量が少ないので周囲物体に及ぼす悪影響が少な(、シだ
がって磁気シールドが簡素化されてその施工費用を大幅
に低減できるなど、数々の特長を有する磁気共鳴映像装
置の均一磁場マグネットを擾供することができる。As described above, the present invention is configured such that a ring-shaped superconducting excitation coil surrounding each of a pair of upper and lower pole pieces supported by a yoke and having a 1 Mi field strength equalization means is provided. As a result, by utilizing the magnetic field strength equalization effect of the pair of pole pieces, the superconducting excitation coil can be significantly downsized compared to conventional superconducting uniform magnetic field magnets, which provides great economic benefits. High magnetic field strength, low magnetic flux loss, and high magnetic flux performance that cannot be obtained with normal conducting homogeneous magnetic field magnets are obtained, and the amount of leakage magnetic flux is small, so there is little negative impact on surrounding objects (because magnetic shielding It is possible to provide a uniform magnetic field magnet for a magnetic resonance imaging system that has a number of features, such as a simplified system and a significant reduction in construction costs.
また、超電導励磁コイルを一方のポールピース側にのみ
設けるよう構成すれば、更に大きな経済的メリットが得
られ、高価な故に阻まれている磁気共鳴映像装置の普及
を促進できるとともに、磁気吸引力などの低減により、
励磁コイルの支持構造を11!it化できる利点が得ら
れる。In addition, if the superconducting excitation coil is provided only on one pole piece side, even greater economic benefits can be obtained, and the spread of magnetic resonance imaging equipment, which has been hindered due to its high price, can be promoted, and the magnetic attraction force can be increased. By reducing the
11 support structures for excitation coils! You can get the advantage of being able to use IT.
さらに、真空容器の倒板の一部を強磁性材とすれば、超
を導コイルに作用する半径方向力を低減して超1!コイ
ルの支持構造をさらに簡素化でき、かつポールピースに
対する位置決め精度の制約も緩和できるので、機械的安
定性に優れた均一磁場マグネットを提供できる。Furthermore, if part of the flattened plate of the vacuum vessel is made of ferromagnetic material, the radial force acting on the superconducting coil can be reduced, making it super! Since the coil support structure can be further simplified and restrictions on positioning accuracy with respect to the pole piece can be relaxed, a uniform magnetic field magnet with excellent mechanical stability can be provided.
さらにまた、超を導励磁コイルを一方のボールビ〜ス側
に設けるよう構成した場合、磁場強度の均等化手段をコ
イル側のポールピースにのb設けるなど、ポールピース
を非対称とすることが可能であり、ポールピースの加工
を省力化できる利点が得られる。Furthermore, if the configuration is such that a superconducting excitation coil is provided on one ball base side, it is possible to make the pole piece asymmetric, such as by providing a means for equalizing the magnetic field strength on the pole piece on the coil side. This has the advantage of saving labor in machining the pole pieces.
一方、磁場強度の均等化手段をポールピースに回動可能
に支持された少なくとも二つの斜円筒で構成すれば、磁
場強度の角度方向の不均等を木目細かく調整するノミン
グ機能が得られ、磁場強度の均一性に優れた均一磁場マ
グネットを提供できるので、超電導励磁コイルによる磁
場強度の向上効果と併せて、磁場強度が高く高性能な磁
気共鳴映像装置を経済的にも有利に提供することに貢献
できる。On the other hand, if the magnetic field strength equalization means is composed of at least two oblique cylinders rotatably supported by the pole piece, a noming function can be obtained to finely adjust the angular unevenness of the magnetic field strength. Since it is possible to provide a uniform magnetic field magnet with excellent uniformity, in addition to the effect of improving the magnetic field strength by the superconducting excitation coil, it contributes to economically advantageous provision of high-performance magnetic resonance imaging equipment with high magnetic field strength. can.
第一図はこの発明の実施例になる磁気共鳴映像装置の均
一磁場マグネットを簡略化して示す断面図、第2図は実
施例における磁束分布図、第3図はこの発明の異なる実
施例を示す断面図、第4図はこの発明の更に異なる実施
例を示す要部の断面図、第5図はこの発明の他の実施例
を示す断面図、第6図はこの発明の異なる他の実施例を
示す要部の断面図、第7図は従来の超電導均一磁場マグ
ネットを示す断面図、第8図および第9図は従来の常電
導、コア形均一磁場マグネットを示す側面図および平面
図である。
1.11・・超電導コイル、2.12・・断熱真空容器
、3・・液体ヘリウム、6・・空間部、6A・・均一磁
場、?、7A、7B、27.37〜・ポールピース、9
・・継鉄、10.40・磁場強度の均等化手段、IOA
・・凸部、IOB。
7C
凹所、20・・超電導励磁コイル、2
2・・側板(強磁性体)、37A、37B・・斜円筒。
代理人弁理士 山 口 1蟲。
祐2図
tZ
′!I34図
第乙閏Fig. 1 is a simplified cross-sectional view of a uniform magnetic field magnet of a magnetic resonance imaging apparatus according to an embodiment of the present invention, Fig. 2 is a magnetic flux distribution diagram in the embodiment, and Fig. 3 is a different embodiment of the invention. 4 is a sectional view of a main part showing a further different embodiment of the invention, FIG. 5 is a sectional view showing another embodiment of the invention, and FIG. 6 is a sectional view of another embodiment of the invention. Figure 7 is a cross-sectional view of a conventional superconducting uniform magnetic field magnet, and Figures 8 and 9 are a side view and a plan view of a conventional normal-conducting, core-shaped uniform magnetic field magnet. . 1.11...Superconducting coil, 2.12...Insulated vacuum vessel, 3...Liquid helium, 6...Space, 6A...uniform magnetic field, ? , 7A, 7B, 27.37~・Pole piece, 9
・Yoke, 10.40・Magnetic field strength equalization means, IOA
...Protrusion, IOB. 7C recess, 20... superconducting excitation coil, 2 2... side plate (ferromagnetic material), 37A, 37B... oblique cylinder. Representative patent attorney Yamaguchi 1 insect. Yu2 figure tZ'! Figure I34
Claims (1)
よう継鉄部に支持された上下一対の円板状のポールピー
スと、その外周部に形成され前記空間部側に突出したリ
ング状の凸部,およびその内径側に同心状に形成された
凹所を含む磁場強度の均等化手段とを備え、励磁コイル
を励磁することにより前記空間部の中央部に均一磁場を
発生するものにおいて、前記一対のポールピースの外周
側を包囲するリング状に形成された断熱真空容器と、そ
の内部に冷媒液とともに収納された超電導コイルとから
なる超電導励磁コイルを、前記一対のポールピース毎に
備えてなることを特徴とする磁気共鳴映像装置の均一磁
場マグネット。 2)被検体を収納すべき空間部を隔てて互いに対向する
よう継鉄部に支持された上下一対の円板状のポールピー
スと、その外周部に形成され前記空間部側に突出したリ
ング状の凸部,およびその内径側に同心状に形成された
凹所を含む磁場強度の均等化手段とを備え、励磁コイル
を励磁することにより前記空間部の中央部に均一磁場を
発生するものにおいて、前記一対のポールピースの外周
側を包囲するリング状に形成された断熱真空容器と、そ
の内部に冷媒液とともに収納された超電導コイルとから
なる超電導励磁コイルを、前記上下一対のポールピース
のうち下側に位置するポールピース側にのみ備えてなる
ことを特徴とする磁気共鳴映像装置の均一磁場マグネッ
ト。 3)断熱真空容器が方形断面を有するリング状に形成さ
れ、非磁性金属からなる断熱真空容器の真空容器の,ポ
ールピースを近接して包囲する側板のみが強磁性材料で
形成されてなることを特徴とする請求項1または請求項
2記載の磁気共鳴映像装置の均一磁場マグネット。 4)上下一対のポールピースが互いに非対称に形成され
てなることを特徴とする請求項2記載の磁気共鳴映像装
置の均一磁場マグネット。 5)被検体を収納すべき空間部を隔てて互いに対向する
よう継鉄部に支持された上下一対の円板状のポールピー
スと、その外周部に形成され前記空間部側に突出したリ
ング状の凸部,およびその内径側に同心状に形成された
凹所を含む磁場強度の均等化手段とを備え、励磁コイル
を励磁することにより前記空間部の中央部に均一磁場を
発生するものにおいて、前記一対のポールピースの対向
面に対して傾斜した凸部を形成するよう前記ポールピー
スの外周部分に間隔を置いて同心状に,かつ回動可能に
支持された少なくとも二つの斜円筒と、この斜円筒間に
形成された凹所とからなり、前記斜円筒の回動により磁
場強度の不均等をシミングする磁場強度の均等化手段を
備えたことを特徴とする磁気共鳴映像装置の均一磁場マ
グネット。[Scope of Claims] 1) A pair of upper and lower disc-shaped pole pieces supported by a yoke so as to face each other across a space in which a subject is to be housed, and the space formed on the outer periphery of the pole pieces. It is equipped with a ring-shaped convex part protruding to the side, and a magnetic field strength equalization means including a recess formed concentrically on the inner diameter side thereof, and by exciting an excitation coil, the magnetic field strength is uniformly distributed in the central part of the space part. In the device that generates a magnetic field, a superconducting excitation coil consisting of a ring-shaped insulating vacuum container surrounding the outer periphery of the pair of pole pieces, and a superconducting coil housed inside the vacuum container together with a refrigerant, is connected to the pair of pole pieces. A uniform magnetic field magnet for a magnetic resonance imaging apparatus, characterized in that each pole piece is provided with a uniform magnetic field magnet. 2) A pair of upper and lower disc-shaped pole pieces supported by a yoke so as to face each other across a space in which the subject is to be housed, and a ring-shaped pole piece formed on the outer periphery of the pole pieces and protruding toward the space. and a magnetic field strength equalization means including a concave portion concentrically formed on the inner diameter side of the convex portion, and generates a uniform magnetic field in the center of the space by exciting an excitation coil. , a superconducting excitation coil consisting of a ring-shaped insulating vacuum container surrounding the outer periphery of the pair of pole pieces, and a superconducting coil housed inside the container along with a refrigerant liquid, is placed between the pair of upper and lower pole pieces. A uniform magnetic field magnet for a magnetic resonance imaging apparatus, characterized in that it is provided only on the lower pole piece side. 3) The insulating vacuum vessel is formed into a ring shape with a rectangular cross section, and only the side plate of the vacuum vessel of the insulating vacuum vessel made of a non-magnetic metal, which closely surrounds the pole piece, is made of a ferromagnetic material. A uniform magnetic field magnet for a magnetic resonance imaging apparatus according to claim 1 or claim 2. 4) A uniform magnetic field magnet for a magnetic resonance imaging apparatus according to claim 2, wherein the pair of upper and lower pole pieces are formed asymmetrically with respect to each other. 5) A pair of upper and lower disc-shaped pole pieces supported by a yoke so as to face each other across a space in which the subject is to be stored, and a ring-shaped pole piece formed on the outer periphery of the pole pieces and protruding toward the space. and a magnetic field strength equalization means including a concave portion concentrically formed on the inner diameter side of the convex portion, and generates a uniform magnetic field in the center of the space by exciting an excitation coil. , at least two oblique cylinders rotatably and concentrically supported at intervals on the outer circumferential portion of the pole piece so as to form a convex portion inclined with respect to opposing surfaces of the pair of pole pieces; A uniform magnetic field of a magnetic resonance imaging apparatus, characterized in that the magnetic resonance imaging apparatus comprises a recess formed between the oblique cylinders, and includes a magnetic field strength equalizing means for shimming uneven magnetic field intensity by rotating the oblique cylinders. magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2254471A JPH04132539A (en) | 1990-09-25 | 1990-09-25 | Even magnetic field magnet for magnetic resonance imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2254471A JPH04132539A (en) | 1990-09-25 | 1990-09-25 | Even magnetic field magnet for magnetic resonance imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04132539A true JPH04132539A (en) | 1992-05-06 |
Family
ID=17265502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2254471A Pending JPH04132539A (en) | 1990-09-25 | 1990-09-25 | Even magnetic field magnet for magnetic resonance imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04132539A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271469A (en) * | 1996-04-05 | 1997-10-21 | Hitachi Medical Corp | Superconducting magnet device |
-
1990
- 1990-09-25 JP JP2254471A patent/JPH04132539A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271469A (en) * | 1996-04-05 | 1997-10-21 | Hitachi Medical Corp | Superconducting magnet device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4672346A (en) | Magnetic field generating device for NMR-CT | |
US5061897A (en) | Eddy current control in magnetic resonance imaging | |
US5959454A (en) | Magnet arrangement for an NMR tomography system, in particular for skin and surface examinations | |
JP3548240B2 (en) | Magnetic resonance imaging (MRI) magnet | |
JP3654463B2 (en) | Magnetic resonance imaging system | |
US4644313A (en) | Cylindrical magnet apparatus | |
JP3662220B2 (en) | Improved magnet | |
US20080100295A1 (en) | Superconductive magnetic apparatus for magnetic resonance imaging unit | |
JP7369470B2 (en) | Lightweight asymmetric magnet array with mixed phase magnet rings | |
JP4179578B2 (en) | Open superconducting magnet and magnetic resonance imaging system using the same | |
US5384538A (en) | Magnetic field generation device for use in superconductive type MRI | |
JPH07375A (en) | Permanent magnet structure for generating stable and uniform magnetic induction in fixed space | |
JP3971093B2 (en) | Magnet for generating uniform magnetic field and magnetic resonance imaging apparatus using the same | |
JP3585141B2 (en) | Superconducting magnet device | |
JPH04132539A (en) | Even magnetic field magnet for magnetic resonance imaging apparatus | |
JPH02184002A (en) | Magnetic field generator for mri | |
US5701040A (en) | Magnet arrangement, and drive device and cooling apparatus incorporating same | |
US20210333341A1 (en) | Open-type magnetic resonance imaging apparatus | |
JP2649437B2 (en) | Magnetic field generator for MRI | |
JPS61218120A (en) | Magnetic field generator | |
JP3699789B2 (en) | Superconducting magnet device | |
JPS62256416A (en) | Magnetic field generating equipment | |
JPH119572A (en) | Magnetic resonance imaging apparatus | |
JPH0537446Y2 (en) | ||
JPH04246330A (en) | Magnetic resonance imaging device |