JPH04131798A - Capsule transporting device - Google Patents

Capsule transporting device

Info

Publication number
JPH04131798A
JPH04131798A JP2251723A JP25172390A JPH04131798A JP H04131798 A JPH04131798 A JP H04131798A JP 2251723 A JP2251723 A JP 2251723A JP 25172390 A JP25172390 A JP 25172390A JP H04131798 A JPH04131798 A JP H04131798A
Authority
JP
Japan
Prior art keywords
capsule
passage
inner cylinder
irradiation
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251723A
Other languages
Japanese (ja)
Inventor
Tsutomu Kato
勉 加藤
Mitsuru Kato
満 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2251723A priority Critical patent/JPH04131798A/en
Publication of JPH04131798A publication Critical patent/JPH04131798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Feeding Of Articles To Conveyors (AREA)

Abstract

PURPOSE:To take out a capsule certainly from an irradiation cylinder without generating vibration on the capsule by putting a capsule passage in communication with small paths through parallel slits, wherein the range of controllable rate of flow is set wide for the time of individual taking-out. CONSTITUTION:The gap between an outer cylinder 12 and inner cylinder 14 is divided by partitions 17 into small paths 6a, 6b, 6c. These small paths are in communication with a capsule passage 7 through No.1, No.2, and No.3 parallel slits 21. Among them 21, the No.1 and No.2 parallel slits are so formed in the inner cylinder 14 that the bottoms of slits are in line with the bottom of a capsule 2 in its stop position. Locating the capsule 2 in this position precludes it from vibrating even though impact is applied given by the spout water from the slits 21.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、研究用原子炉を利用する放射化分析用照射
設備において、試料カプセルを放射線照射位置に輸送し
、取り出すカプセル輸送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a capsule transportation device for transporting a sample capsule to a radiation irradiation position and taking it out in an irradiation facility for activation analysis using a research nuclear reactor.

[従来の技術] 原子力分野では、中性子を種々の試料に照射して化学的
・物理的性質の変化を調べるため、およびラジオアイソ
トープの製造の研究がなされている。このような放射化
分析技術においては、作業者の被爆を回避するために、
分析エリアと中性子照射エリアとを相互に離隔設置し、
試料を両エリア間でカプセル輸送する。中性子照射エリ
アにおいては照射筒か原子炉に装入されており、これに
輸送路を介して試料カプセルを輸送する。この照射筒は
、原子炉内の所定位置に固定され、複数のカプセルを一
時的に滞在させ中性子照射を受ける役割を有する。遮蔽
シャッタを開閉して試料に所定量の中性子を照射した後
に、照射筒内に所定流量の流体を供給し、カプセルを照
射筒から取出し、輸送路を介して分析エリアまで輸送し
、これを分析する。
[Prior Art] In the field of nuclear energy, studies are being conducted to examine changes in chemical and physical properties of various samples by irradiating them with neutrons, and to produce radioisotopes. In such activation analysis technology, in order to avoid worker exposure to radiation,
The analysis area and neutron irradiation area are set apart from each other,
Samples will be transported in capsules between both areas. In the neutron irradiation area, the irradiation cylinder or nuclear reactor is loaded, and the sample capsule is transported to this via a transport path. This irradiation cylinder is fixed at a predetermined position within the nuclear reactor, and has the role of allowing a plurality of capsules to temporarily stay there and receiving neutron irradiation. After opening and closing the shielding shutter to irradiate the sample with a predetermined amount of neutrons, a predetermined flow rate of fluid is supplied into the irradiation tube, the capsule is taken out from the irradiation tube, and the capsule is transported to the analysis area via the transportation path where it is analyzed. do.

照射筒は、外筒および内筒からなる二重管で構成され、
内筒底部の受座を多孔にして内筒および外筒を相互に連
通させている。すなわち、カブセル装入口の側から内筒
に流体を供給すると、受座に向かう下降流か生し、カプ
セルか照射筒内に到着する。一方、外筒に流体を供給す
ると、受座の孔から流体が噴出して内筒内に上昇流が生
じ、カプセルが照射筒を脱出する。
The irradiation tube consists of a double tube consisting of an outer tube and an inner tube.
The seat at the bottom of the inner cylinder is made porous to allow the inner cylinder and outer cylinder to communicate with each other. That is, when fluid is supplied to the inner tube from the side of the capsule loading port, a downward flow toward the receiving seat is generated, and the capsule arrives in the irradiation tube. On the other hand, when fluid is supplied to the outer cylinder, the fluid is ejected from the hole in the seat, creating an upward flow within the inner cylinder, and the capsule escapes from the irradiation cylinder.

このような照射筒は、原子炉内で昇降させることができ
ず、底部受座の位置でのみカプセルが照射を受ける。こ
のため、軸方向中性子束分布において中性子束密度が最
大の位置にて試料が照射を受け、低強度の照射か要求さ
れる場合に、試料の放射線量率が過剰になるという問題
点がある。
Such an irradiation tube cannot be raised or lowered within the reactor, and the capsule is irradiated only at the bottom seat. For this reason, the sample is irradiated at a position where the neutron flux density is maximum in the axial neutron flux distribution, and when low-intensity irradiation is required, there is a problem that the radiation dose rate of the sample becomes excessive.

[発明が解決しようとする課題] そこで、照射強度を種々変えるために、複数のカプセル
を照射筒に直列多段に積み上げ、カプセルが上段に位置
するほど中性子照射強度か小さくなるように改良した。
[Problems to be Solved by the Invention] Therefore, in order to vary the irradiation intensity, a plurality of capsules were stacked in series in an irradiation cylinder in multiple stages, and the neutron irradiation intensity was improved so that the higher the capsule is located, the lower the neutron irradiation intensity.

すなわち、照射筒の内筒中腹の適所に孔を開け、中腹の
孔を介して内筒内に流体を注入し、直列多段に積み上げ
たカプセルを個別に照射筒から取出すようにした。
That is, a hole is made at a suitable position in the middle of the inner cylinder of the irradiation tube, and fluid is injected into the inner cylinder through the hole in the middle, so that the capsules stacked in multiple stages in series can be taken out individually from the irradiation tube.

しかしながら、上記照射筒においては、カプセルを個別
に取出すときに、上昇流および下降流の流量配分の範囲
か狭く、これを制御することが非常に困難である。個別
取出し時における制御可能な流量の範囲は、可能な限り
広いほうか好ましい。
However, in the above-mentioned irradiation tube, when capsules are taken out individually, the range of flow rate distribution between upward flow and downward flow is narrow, and it is very difficult to control this. It is preferable that the controllable flow rate range during individual extraction be as wide as possible.

流量配分がアンバランスになると、孔より下側のカプセ
ルも一緒に取り出されてしまうという不都合かある。
If the flow rate distribution becomes unbalanced, the capsule below the hole may also be taken out, which is an inconvenience.

また、個別取出し時に、孔の上下のカプセルか激しく振
動し、カプセルか内筒に衝撃を与え、内筒の寿命が短く
なる。
Furthermore, when taking out individual capsules, the capsules above and below the hole vibrate violently, giving impact to the capsules or the inner cylinder, shortening the life of the inner cylinder.

この発明は、かかる事情に鑑みてなされたものであって
、個別取出し時における制御可能な流量の範囲が広く、
カプセルに振動を生じることなく、カプセルを照射筒か
ら確実に取り出すことができるカプセル輸送装置を提供
することを目的とする。
This invention was made in view of the above circumstances, and has a wide range of controllable flow rate during individual extraction.
It is an object of the present invention to provide a capsule transportation device that can reliably take out a capsule from an irradiation tube without causing vibration to the capsule.

[課題を解決するための手段] この発明に係るカプセル輸送装置は、外筒と、この外筒
に挿入され、カプセルの通路を形成する内筒と、この内
筒と前記外筒との間に形成された間隙を複数の小通路に
仕切る仕切りと、これら各小通路にそれぞれ流体を供給
する流体供給手段と、を有し、前記カプセル通路および
前記各小通路に連通する平行スリット孔をそれぞれ前記
内筒に形成し、これら各平行スリット孔がカプセル停止
位置におけるカプセル下部近傍に位置することを特徴と
する。
[Means for Solving the Problems] A capsule transportation device according to the present invention includes an outer cylinder, an inner cylinder inserted into the outer cylinder and forming a passage for the capsule, and a space between the inner cylinder and the outer cylinder. It has a partition for partitioning the formed gap into a plurality of small passages, and a fluid supply means for supplying fluid to each of these small passages, and a parallel slit hole communicating with the capsule passage and each of the small passages. The capsule is formed in the inner cylinder, and each of these parallel slit holes is located near the bottom of the capsule at the capsule stop position.

平行スリット孔の長さは、カプセルの長さの1/2以下
であることが好ましく、重量か500グラム以下の軽量
カプセルを輸送する場合は、カプセル長さの約215の
長さであることか望ましい。
The length of the parallel slit hole is preferably 1/2 or less of the capsule length, and when transporting a lightweight capsule weighing 500 grams or less, it should be about 215 times the capsule length. desirable.

また、平行スリット孔の幅は、少なくともカプセル径の
1/2以下であることが好ましく、約1/4であること
が最も望ましい。この場合に、スリット孔の幅を広くし
て流速を遅くするほうが、振動抑制のためには有利であ
るが、カプセルがスリット孔に引っ掛かりやすくなるの
で、幅の拡大には一定の限界がある。
Further, the width of the parallel slit hole is preferably at least 1/2 or less of the capsule diameter, and most preferably about 1/4. In this case, increasing the width of the slit hole to slow down the flow rate is advantageous for vibration suppression, but there is a certain limit to increasing the width because the capsule tends to get caught in the slit hole.

また、平行スリット孔および停止カプセルの相対位置は
、平行スリット孔の下端が停止カプセルの下端部より下
方にはみ出ないようにすることが好ましく、停止カプセ
ルの下端部が平行スリット孔の下端に揃う位置に平行ス
リット孔を形成することが最も望ましい。
In addition, the relative positions of the parallel slit hole and the stop capsule are preferably such that the lower end of the parallel slit hole does not protrude below the lower end of the stop capsule, and the lower end of the stop capsule is aligned with the lower end of the parallel slit hole. It is most desirable to form parallel slit holes.

さらに、孔相互の間隔を小さくし、孔を互いに接近させ
すぎると、孔に挾まれた部材か強度不足となって損傷し
やすく、損傷して拡大した孔にカプセルが嵌まり込む事
故が生じるので、両者を適正な間隔をもって離隔するこ
とを要する。一方、孔相互の間隔を大きくし、孔を互い
に遠くへ離しすぎると、上昇流のいきおいが弱まり、カ
プセルを速やかに上昇させることができない。従って、
平行スリット孔の孔相互間隔は、カプセル径とのつりあ
いを考慮して決定することが好ましく、孔の幅と同じ寸
法とすることが最も望ましい。
Furthermore, if the distance between the holes is made small and the holes are placed too close to each other, the parts sandwiched between the holes may lack strength and be easily damaged, and an accident may occur where the capsule gets stuck in the damaged and enlarged hole. , it is necessary to separate the two with an appropriate distance. On the other hand, if the distance between the holes is increased and the holes are separated too far from each other, the momentum of the upward flow will be weakened and the capsule will not be able to rise quickly. Therefore,
The distance between the parallel slit holes is preferably determined in consideration of the balance with the capsule diameter, and is most preferably set to the same dimension as the width of the hole.

[作用] この発明に係るカプセル輸送装置おいては、平行スリッ
ト孔によってカプセル通路と小通路とを互いに連通させ
ているので、小通路に流体を供給すると、平行スリット
孔を介してカプセル通路に流体が流れ込み、これが上下
に分流し、上昇流と共にカプセルか上昇する。この場合
に、平行スリット孔が停止カプセルの下端部近傍に配置
形成しであるので、上昇流は確実に上側カプセルを持ち
上げ、下降流は下側カプセルを受座の方向へ押さえ付け
るように流れる。
[Function] In the capsule transport device according to the present invention, the capsule passage and the small passage are communicated with each other by the parallel slit holes, so when fluid is supplied to the small passage, the fluid flows into the capsule passage through the parallel slit hole. flows in, this is split up and down, and the capsule rises with the upward flow. In this case, since the parallel slit holes are arranged near the lower end of the stop capsule, the upward flow reliably lifts the upper capsule, and the downward flow flows so as to press the lower capsule toward the catch.

[実施例] 以下、添付の図面を参照しながら、この発明の実施例に
ついて具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

研究用原子炉50にカプセル輸送装置1F10の照射筒
11かほぼ垂直に装備され、炉心で発生した中性子が照
射筒11内の試料カプセル2に照射されるようになって
いる。照射筒11は、その最下部が炉心に最も接近する
ような位置に装備され、最下部にて照射量が最大となり
、上方へ移行するに従って照射量が漸次減少するように
なっている。
The irradiation tube 11 of the capsule transportation device 1F10 is installed almost vertically in the research nuclear reactor 50, so that the sample capsules 2 in the irradiation tube 11 are irradiated with neutrons generated in the reactor core. The irradiation tube 11 is installed at a position where the lowest part thereof is closest to the reactor core, and the irradiation amount is maximum at the lowest part and gradually decreases as it moves upward.

照射筒11の上部にカプセル通路7が連通している。カ
プセル通路7は、カプセル装入取出装置70の装入取出
口に連通し、さらに、ポンプ60及び流路47を介して
流体供給源80に連通している。流体供給源80には搬
送流体としての水が貯留されている。なお、ポンプ60
は、吸引側と吐出側とを切り替えて逆流させることかで
きる切り替えポンプである。
A capsule passage 7 communicates with the upper part of the irradiation tube 11. The capsule passage 7 communicates with a loading/unloading port of a capsule loading/unloading device 70 and further communicates with a fluid supply source 80 via a pump 60 and a flow path 47 . The fluid supply source 80 stores water as a carrier fluid. In addition, the pump 60
is a switching pump that can switch between the suction side and the discharge side to reverse flow.

照射筒11の下部に4系統の流路9a  9b9c、9
dかそれぞれ連通している。各流路9a9b、9c、9
dは、それぞれ弁61,6263.64を介してポンプ
60に連通し、さらに、流路46を介して流体供給源8
0に連通している。
Four channels 9a, 9b, 9c, 9 are provided at the bottom of the irradiation tube 11.
d are connected to each other. Each channel 9a9b, 9c, 9
d communicate with the pump 60 via valves 61 and 6263.64, respectively, and further with the fluid supply source 8 via the flow path 46.
Connected to 0.

なお、流路9dおよび流路47とはバイパス流路42に
よって連通している。このバイパス流路42には弁65
か設けられている。
Note that the flow path 9d and the flow path 47 communicate with each other through a bypass flow path 42. A valve 65 is provided in this bypass passage 42.
Or is provided.

第1図及び第3図に示すように、照射筒11の上部に分
岐部材8が取り付けられ、流路9a。
As shown in FIGS. 1 and 3, a branching member 8 is attached to the upper part of the irradiation tube 11, and a flow path 9a.

9b、9cかそれぞれ外筒12に連通し、一方、カプセ
ル通路7が内筒14に連通している。内筒14は、外筒
12との間隙が一様になるように、支持部材16により
外筒12に支持されている。
9b and 9c each communicate with the outer cylinder 12, while the capsule passage 7 communicates with the inner cylinder 14. The inner cylinder 14 is supported by the outer cylinder 12 by a support member 16 so that the gap between the inner cylinder 14 and the outer cylinder 12 is uniform.

内筒14は、ステンレス鋼製であり、長さか1m以上で
、内径がカプセル2の直径より若干大きくなるようにつ
くられている。因みに、内筒14の内径は36.5〜3
7mmであるのに対して、カプセル2の直径は3211
Illである。なお、カプセル2は、長さが150 f
f1lls空重量か180グラム、試料積み込み時の重
量か約500グラムである。
The inner cylinder 14 is made of stainless steel, has a length of 1 m or more, and has an inner diameter slightly larger than the diameter of the capsule 2. Incidentally, the inner diameter of the inner cylinder 14 is 36.5 to 3
7 mm, while the diameter of capsule 2 is 3211 mm.
Ill. In addition, capsule 2 has a length of 150 f.
The empty weight of f1lls is 180 grams, and the weight when loaded with a sample is approximately 500 grams.

受座18が内筒14の下端部に嵌め込まれ、カプセル2
が受座18に衝突停止するようになっている。第7図に
示すように、受座18には多数の孔18aが形成されて
おり、孔18aを介して搬送流体が内@14の内外を通
流できるようになっている。
The catch seat 18 is fitted into the lower end of the inner cylinder 14, and the capsule 2
collides with the catch seat 18 and stops. As shown in FIG. 7, a large number of holes 18a are formed in the seat 18, and the carrier fluid can flow through the inside and outside of the inner part 14 through the holes 18a.

第4図乃至第6図に示すように、外筒12及び内筒14
の間の間隙は、三つの仕切り17によって小通路6a、
6b、6cに等分に三分割されている。第4図に示すよ
うに、小通路6aは、内筒14の中腹に形成された第1
の平行スリット孔21によってカプセル通路7に連通し
ている。第5図に示すように、小通路6bは、内筒14
の中腹に形成された第2の平行スリット孔21によって
カプセル通路7に連通している。第6図に示すように、
小通路6cは、内筒14の中腹に形成された第3の平行
スリット孔21によってカプセル通路7に連通している
As shown in FIGS. 4 to 6, the outer cylinder 12 and the inner cylinder 14
The gap between the small passage 6a,
It is divided into three equal parts 6b and 6c. As shown in FIG. 4, the small passage 6a is formed in the middle of the inner cylinder 14.
It communicates with the capsule passage 7 through a parallel slit hole 21 . As shown in FIG. 5, the small passage 6b is connected to the inner cylinder 14.
It communicates with the capsule passage 7 through a second parallel slit hole 21 formed in the middle of the capsule. As shown in Figure 6,
The small passage 6c communicates with the capsule passage 7 through a third parallel slit hole 21 formed in the middle of the inner cylinder 14.

第8図に示すように、平行スリット孔21の下端かカプ
セル停止位置におけるカプセル2の下端部に揃うように
、第1および第2の平行スリット孔21か内筒14に形
成されている。このような位置にカプセル2を配置する
と、平行スリット孔21からの噴射水の衝撃を受けても
カプセル2が振動しなくなる。なお、第3の平行スリッ
ト孔21は、受座18の近傍の内筒14の中腹に形成さ
れている。因みに、各平行スリット孔21は、長さが6
0111111、幅が81、孔の相互間隔が8mmであ
る。この場合に、スリット孔21の幅が狭くなりすぎる
と、低流速であってもカプセルに振動を生じる。一方、
スリット孔21の幅を広げすぎると、カプセル2の頭部
かスリット孔21に引っ掛かりやすくなる。従って、平
行スリット孔21の幅は、カプセル2のサイズ及び重量
に応じて最適値が種々変わるものであるが、通常はカプ
セル2の径の1/4程度とすることが望ましい。
As shown in FIG. 8, the first and second parallel slit holes 21 are formed in the inner tube 14 so that the lower ends of the parallel slit holes 21 are aligned with the lower end of the capsule 2 at the capsule stop position. When the capsule 2 is placed in such a position, the capsule 2 will not vibrate even if it receives the impact of water jetted from the parallel slit hole 21. Note that the third parallel slit hole 21 is formed in the middle of the inner cylinder 14 near the catch seat 18. Incidentally, each parallel slit hole 21 has a length of 6
0111111, the width is 81, and the mutual distance between the holes is 8 mm. In this case, if the width of the slit hole 21 becomes too narrow, vibrations will occur in the capsule even at a low flow rate. on the other hand,
If the width of the slit hole 21 is too wide, the head of the capsule 2 will easily get caught in the slit hole 21. Therefore, the optimum width of the parallel slit hole 21 varies depending on the size and weight of the capsule 2, but it is usually desirable to set it to about 1/4 of the diameter of the capsule 2.

次に、第9図乃至第12図を参照しながらカプセルの個
別取出しについて説明する。
Next, individual extraction of capsules will be explained with reference to FIGS. 9 to 12.

3個のカプセル2を装置70の装入口から次々にカプセ
ル通路7に装入し、装置70の側から照射筒11の側に
向かって水を供給し、カプセル2を照射筒11に輸送す
る。第9図に示すように、3個のカプセル2が直列に積
み上げられた状態で、遮蔽シャッタを開けて所定時間だ
け中性子照射する。
Three capsules 2 are loaded one after another into the capsule passage 7 from the loading port of the device 70, water is supplied from the device 70 side toward the irradiation tube 11 side, and the capsules 2 are transported to the irradiation tube 11. As shown in FIG. 9, three capsules 2 are stacked in series, and the shielding shutter is opened to irradiate them with neutrons for a predetermined period of time.

照射完了後、ポンプ60の吸引側と吐出側とを切り替え
、第1の流路9aに送水する。このとき、流量を毎時2
.3〜s、’ym’の範囲に制御する。小通路6aの平
行スリット孔21からカプセル通路7に水が流入する。
After the irradiation is completed, the pump 60 is switched between the suction side and the discharge side to supply water to the first channel 9a. At this time, the flow rate is set to 2 per hour.
.. It is controlled within the range of 3 to s, 'ym'. Water flows into the capsule passage 7 from the parallel slit hole 21 of the small passage 6a.

このスリット孔21は、最上段のカプセル2と中段のカ
プセル2との境界に位置しており、孔21から流入する
水はここで上下に分かれて流れる。上方への流れは最上
段のカプセル2の脇を通り抜け、内筒14上部の通路7
を通り、照射筒11の外部へ搬出される。
This slit hole 21 is located at the boundary between the top capsule 2 and the middle capsule 2, and the water flowing through the hole 21 is divided into upper and lower parts and flows there. The upward flow passes through the side of the topmost capsule 2 and passes through the passage 7 at the top of the inner cylinder 14.
, and is carried out to the outside of the irradiation tube 11.

第10図に示すように、上昇分流により上側の圧力か下
側の圧力よりも低くなる差圧が生じ、この差圧によって
最上段のカプセル2が上昇する。
As shown in FIG. 10, the rising branch flow creates a pressure difference in which the pressure on the upper side is lower than the pressure on the lower side, and this pressure difference causes the topmost capsule 2 to rise.

一方、下方への流れは、中段および下段のカプセル2の
脇を通り抜けるときに、中性子照射を受けて発熱した各
カプセル2から熱を奪い、内筒14の受座18の間隙を
介して第2及び第3の小通路6b、6c内へ流入し、流
路9b、9cを通って水供給源80に戻る。
On the other hand, when the downward flow passes by the middle and lower capsules 2, it removes heat from each capsule 2 that has generated heat due to neutron irradiation, and passes through the gap between the seats 18 of the inner cylinder 14 to the second capsule 2. and flows into the third small passages 6b, 6c, and returns to the water supply source 80 through the flow passages 9b, 9c.

中段カプセル2を取り出す場合は、第2の流路9bに送
水する。このとき、流量を毎時2,4〜9.8m’の範
囲に制御する。水は、小通路6bの平行スリット孔21
を介してカプセル通路7に流入する。この孔21は、中
段のカプセル2と最下段のカプセル2との境界に位置し
ており、孔21から流入する水はここで上下に分かれて
流れる。
When taking out the middle capsule 2, water is supplied to the second flow path 9b. At this time, the flow rate is controlled within the range of 2.4 to 9.8 m'/hour. The water flows through the parallel slit hole 21 of the small passage 6b.
It flows into the capsule passage 7 via. This hole 21 is located at the boundary between the middle capsule 2 and the bottom capsule 2, and the water flowing in from the hole 21 is divided into upper and lower parts and flows there.

上方への流れは中段のカプセル2の脇を通り抜け、内筒
上部の案内管を通って照射筒11外部へ搬出される。
The upward flow passes through the side of the middle capsule 2, passes through the guide tube at the top of the inner cylinder, and is carried out to the outside of the irradiation tube 11.

第11図に示すように、上昇分流にのって中段のカプセ
ル2が上昇し、照射筒11から取り出される。一方、下
降流は、下段のカプセル2を冷却しつつ、内筒14の受
座18の間隙を介して第1及び第3の小通路6a、6c
内へ流入し、流路9a、9cを通って水供給源80に戻
る。
As shown in FIG. 11, the middle capsule 2 rises along with the rising branch flow and is taken out from the irradiation tube 11. On the other hand, the downward flow cools the lower capsule 2 and flows through the gap between the seat 18 of the inner cylinder 14 and the first and third small passages 6a, 6c.
and returns to the water supply source 80 through channels 9a and 9c.

なお、最上段および中段のカプセル2を2個同時に取出
す場合も、上記と同じ流量制御範囲とすることができる
Note that even when the two capsules 2 in the uppermost and middle stages are taken out at the same time, the same flow rate control range as above can be achieved.

最下段のカプセル2を取り出す場合は、第3の流路9C
に送水する。このとき、流量を毎時2.4〜9.6m’
の範囲に制御する。水は、小通路6cの平行スリット孔
21を介してカプセル通路7に流入する。この孔21は
、最下段のカプセル2の下端部近傍に位置しており、孔
21から流入する水はここで上下に分かれて流れる。上
方への流れは下段のカプセル2の脇を通り抜け、カプセ
ル通路7を通って照射筒11外部へ搬出される。
When taking out the lowest capsule 2, use the third flow path 9C.
Water is sent to At this time, the flow rate is 2.4 to 9.6 m'/hour.
control within the range of Water flows into the capsule passage 7 through the parallel slit hole 21 of the small passage 6c. This hole 21 is located near the lower end of the lowermost capsule 2, and the water flowing through the hole 21 is divided into upper and lower portions and flows there. The upward flow passes through the side of the lower capsule 2, passes through the capsule passage 7, and is carried out to the outside of the irradiation tube 11.

第12図に示すように、上昇分流にのって最下段のカプ
セル2が上昇し、照射筒11から取り出される。なお、
流量を適当に調節することにより、最上段、中段、並び
に最下段のカプセル2を3個同時に取出すことも可能で
ある。
As shown in FIG. 12, the lowermost capsule 2 rises due to the rising branch flow and is taken out from the irradiation tube 11. In addition,
By appropriately adjusting the flow rate, it is also possible to take out three capsules 2 at the top, middle, and bottom tier at the same time.

なお、比較例として、上記平行スリット孔21の代わり
に、二種類の単一孔(幅24I×長さ25IIms幅2
4m1IX長さ30mIg)を用いて他の条件を同一に
して調べた。その結果、振動を生じることなく、かつ、
カプセルの引っ掛かりを生じることなく、3個のうち1
個を個別取出し得る流量制御範囲は、それぞれ毎時3.
7〜5.1 m’ 、毎時3.6〜5.8 m3であっ
た。これは、上記実施例の場合と比較すると、非常に狭
い範囲であり、実用的でないことが判明した。
As a comparative example, instead of the parallel slit hole 21, two types of single holes (width 24I x length 25IIms width 2
4m1IX length 30mIg) under the same conditions. As a result, there is no vibration and
1 out of 3 capsules without getting caught
The flow rate control range in which each individual sample can be taken out is 3.5% per hour.
7-5.1 m' and 3.6-5.8 m3 per hour. This is a very narrow range compared to the case of the above embodiment, and it has been found that this is not practical.

[発明の効果コ 本発明のカプセル輸送装置によれば、流量を微調整する
ことなく、複数のカプセルのうちから1個または2個の
カプセルを容易に個別取出しすることができる。すなわ
ち、個別取出し時における制御可能な流量の範囲が広(
、カプセルに振動を生じることなく、カプセルを照射筒
から確実に取り出すことができる。
[Effects of the Invention] According to the capsule transportation device of the present invention, one or two capsules can be easily taken out individually from a plurality of capsules without finely adjusting the flow rate. In other words, the range of controllable flow rate during individual extraction is wide (
, the capsule can be reliably taken out from the irradiation tube without causing any vibration to the capsule.

また、本発明のカプセル輸送装置は、平行スリブト孔を
採用することにより、カプセルの個別取出し時における
流量配分の使用可能範囲を従来より拡大することができ
る。さらに、開口面積が小さくなるので、内筒の強度が
向上し、長寿命となる。
Moreover, by employing parallel ribbed holes, the capsule transportation device of the present invention can expand the usable range of flow rate distribution when individual capsules are taken out compared to the conventional method. Furthermore, since the opening area is reduced, the strength of the inner cylinder is improved, resulting in a longer life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係るカプセル輸送装置に用
いられる照射筒を示す縦断面図、第2図はカプセル輸送
装置の全体概要図、第3図は照射筒を上方から見て示す
平面図、第4図乃至第7図はそれぞれ照射筒の各部にお
ける横断面図、第8図は平行スリット孔と停止カプセル
との相対位置関係を説明するために内筒の一部を7拡大
して示す拡大図、第9図は照射筒を示す断面模式図、第
10図乃至第12図はそれぞれ照射筒の一部を示す断面
模式図である。 2・・・カプセル、6a、6b、6c・・・小通路、7
・・・カプセル通路、10・・・カプセル輸送装置、1
1・・照射筒、12・・・外筒、14・・・内筒、17
・・・仕切り、18・・・受座、21・・・平行スリッ
ト孔、50・・原子炉、60・・・ポンプ、70・・・
カプセル装入取出装置、80・・水供給源
FIG. 1 is a vertical cross-sectional view showing an irradiation tube used in a capsule transportation device according to an embodiment of the present invention, FIG. 2 is an overall schematic diagram of the capsule transportation device, and FIG. 3 is a plan view showing the irradiation tube viewed from above. 4 to 7 are cross-sectional views of various parts of the irradiation tube, and FIG. 8 is a partially enlarged view of the inner tube to explain the relative positional relationship between the parallel slit hole and the stop capsule. 9 is a schematic cross-sectional view showing the irradiation tube, and FIGS. 10 to 12 are schematic cross-sectional views showing a part of the irradiation tube. 2...Capsule, 6a, 6b, 6c...Small passage, 7
... Capsule passage, 10 ... Capsule transport device, 1
1... Irradiation tube, 12... Outer tube, 14... Inner tube, 17
... Partition, 18... Seat, 21... Parallel slit hole, 50... Nuclear reactor, 60... Pump, 70...
Capsule loading and unloading device, 80... water supply source

Claims (1)

【特許請求の範囲】[Claims] 外筒と、この外筒に挿入され、カプセルの通路を形成す
る内筒と、この内筒と前記外筒との間に形成された間隙
を複数の小通路に仕切る仕切りと、これら各小通路にそ
れぞれ流体を供給する流体供給手段と、を有し、前記カ
プセル通路および前記各小通路に連通する平行スリット
孔をそれぞれ前記内筒に形成し、これら各平行スリット
孔がカプセル停止位置におけるカプセル下部近傍に位置
することを特徴とするカプセル輸送装置。
an outer cylinder, an inner cylinder that is inserted into the outer cylinder and forms a passage for the capsule, a partition that partitions a gap formed between the inner cylinder and the outer cylinder into a plurality of small passages, and each of these small passages. a fluid supply means for supplying fluid to each of the inner cylinders, parallel slit holes communicating with the capsule passage and each of the small passages are formed in the inner cylinder, and each of the parallel slit holes is connected to a lower part of the capsule at the capsule stop position. A capsule transport device characterized by being located nearby.
JP2251723A 1990-09-25 1990-09-25 Capsule transporting device Pending JPH04131798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251723A JPH04131798A (en) 1990-09-25 1990-09-25 Capsule transporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251723A JPH04131798A (en) 1990-09-25 1990-09-25 Capsule transporting device

Publications (1)

Publication Number Publication Date
JPH04131798A true JPH04131798A (en) 1992-05-06

Family

ID=17227023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251723A Pending JPH04131798A (en) 1990-09-25 1990-09-25 Capsule transporting device

Country Status (1)

Country Link
JP (1) JPH04131798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor

Similar Documents

Publication Publication Date Title
EP3332177B1 (en) Energy-efficient high level device, plant and method for the use of thermal energy of solar origin
CS211991A3 (en) Bottom platform of fuel system for nuclear reactor
CN107107015B (en) For the method and apparatus of cross-flow reactor
FI69936C (en) KOKARREAKTOR MED DIFFOSOR I BRAENSLEPATRONER
JPH04131798A (en) Capsule transporting device
US5006305A (en) Device for guiding the control clusters of nuclear reactors
DK159481B (en) PROCEDURE FOR THE REMOVAL OF IONS FROM A CLEAR LIQUID OR SUSPENSION CONTAINING SUBSTANCE BY CONTACTING AN ION EXCHANGE AND APPARATUS FOR EXERCISING THE PROCEDURE
PL131092B1 (en) Storage container for granular solid materials
EP0050281A1 (en) Separation device in the high-gradient magnetic separation technique
US3889123A (en) Irradiation plant for flowable material
US4660713A (en) Transpot unit for tablets
JPS6140954B2 (en)
US4825668A (en) Installation for treating textile materials on material carriers by means of a fluid
US3264952A (en) Nuclear safety rod actuator
US3177121A (en) Swimming pool reactor for studying materials under irradiation
FI85069B (en) GEJD FOER ETT REGLERINGSSTAVKNIPPE I EN KAERNREAKTOR MED EN CENTRERANDE OCH VIBRERING FOERHINDRANDE PLACERINGSANORDNING.
US5230858A (en) Two compartment water rod for boiling water reactors
US3928129A (en) Nuclear reactor element
US3037120A (en) Storage arrangement
US4004971A (en) Gas cooled nuclear reactors
JPH0431794A (en) Irradiation cylinder of nuclear reactor
US5363421A (en) Control rod guide tube
AU2002300581B2 (en) Automatic Cooling of Irradiation Samples at a Research Reactor
JPH06167587A (en) Method and apparatus for inherent and sure control of reactivity of neutron chain reaction in nuclear reactor
JPH0229197B2 (en)