JPH04131555A - Friction gearing method using magnet and device therefor - Google Patents
Friction gearing method using magnet and device thereforInfo
- Publication number
- JPH04131555A JPH04131555A JP25073490A JP25073490A JPH04131555A JP H04131555 A JPH04131555 A JP H04131555A JP 25073490 A JP25073490 A JP 25073490A JP 25073490 A JP25073490 A JP 25073490A JP H04131555 A JPH04131555 A JP H04131555A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- roll
- rail
- magnet
- pulley
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000005291 magnetic effect Effects 0.000 claims abstract description 122
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims description 24
- 230000005294 ferromagnetic effect Effects 0.000 claims description 24
- 230000005389 magnetism Effects 0.000 abstract description 4
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Pulleys (AREA)
- Friction Gearing (AREA)
- Transmission Devices (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、磁気利用の摩擦伝動方法並びにその装置に関
する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a friction transmission method using magnetism and an apparatus therefor.
「従来の技術並びに発明が解決しようとする課題」一般
に、動力伝達方法としては、下記の如き方法が知られる
ところである。"Prior Art and Problems to be Solved by the Invention" In general, the following methods are known as power transmission methods.
■ 各種ギアー群を用いて動力を伝達する方法。■ A method of transmitting power using various gear groups.
■ 原動側と従動部とで各種ボール、ローラ等を挟んで
、該原動側部材と従動部材上の間をスプリング等で押圧
し、この押圧力で得られる原動側部材と従動部材との相
互間に摩擦抵抗力を生ぜしめて動力を伝達する方法。■ Various balls, rollers, etc. are sandwiched between the driving side and the driven part, and the space between the driving side member and the driven member is pressed by a spring, etc., and the mutual distance between the driving side member and the driven member obtained by this pressing force is A method of transmitting power by creating frictional resistance.
しかし、上記■の方法は、耐荷重が大きいことから広(
利用されているが、機構上ハラクラシュがあるために、
精密な始動停止、即ち所定の位置への位置決めが容易で
ない。又上記■の方法は、バンクランシュが少ないが、
主にスプリングにより原動側部材と従動部材との間を押
圧させて動力伝達のために摩擦抵抗を得る機構であるか
ら、原動側部材とローラ等の部材から成る従動部材とが
スプリングを含めてサンドインチ構造となって構造の複
雑化を招き、又部品点数も多く、しかも高速運転時には
、スプリングの追従性等に起因して振動が発生する虞れ
がある。However, method (■) above is widely used (
Although it is used, because there is a harakrash in the mechanism,
Precise starting and stopping, that is, positioning to a predetermined position is not easy. Also, the method of ■ above has fewer bancranches, but
It is a mechanism that mainly uses a spring to press between the driving side member and the driven member to obtain frictional resistance for power transmission. The inch structure results in a complicated structure, and the number of parts is large, and furthermore, during high-speed operation, there is a risk that vibrations may occur due to the followability of the spring.
そこで、本発明は、上記事情に鑑み、バックラッシュが
な(、又原動側部材と従動部材との間をスプリング等で
押圧して動力伝達のために摩擦抵抗力を得るといった構
造の複雑化を招くことなく、構造簡易にしてかつ過負荷
時に適度のスリップをさせることができることはもとよ
り位置決めに際しても超精密に為し得る磁気利用の摩擦
伝動方法並びにその装置を提供することを目的とする。In view of the above-mentioned circumstances, the present invention has been developed to prevent backlash (and to reduce the complexity of the structure by pressing a spring or the like between the driving member and the driven member to obtain frictional resistance for power transmission). To provide a friction transmission method using magnetism and a device therefor, which can have a simple structure and allow for moderate slip at the time of overload without causing damage, and can also perform ultra-precise positioning.
「課題を解決するための手段」
本発明は、上記目的を達成すべくなされたもので、請求
項(1)では、受動体を受けて動力を伝達する際に原動
ロールに磁力を付与させて、該原動ロールに上記受動体
をその磁力にて吸着させてその摩擦保持力にて動力を伝
達して成ることを特徴とする磁石利用の摩擦伝動方法で
ある。請求項(2)では、上記請求項(1)において、
原動ロールの径を各部分で変化させて、該原動ロールの
径が変化する周面に、位置換え自在に受動ロールを磁力
にて吸着させて動力を伝達して成ることを特徴とするも
のである。請求項(3)では受動体を受けて動力を伝達
する原動ロールがディスク状のマグネットと該マグネッ
トに添着される強磁性板から成り、上記受動体を強磁性
材で形成して成ることを特徴とす磁石利用の摩擦伝動装
置である。請求項(4)では上記請求項(3)において
、受動体が原動ロールのマグネットに吸着する極性のマ
グネットと、該マグネットに添着された強磁性板とから
成ってロール状に形成されてなることを特徴とするもの
である。"Means for Solving the Problems" The present invention has been made to achieve the above object, and in claim (1), magnetic force is applied to the driving roll when receiving the passive body and transmitting power. This is a friction transmission method using a magnet, characterized in that the passive body is attracted to the drive roll by its magnetic force, and power is transmitted by its friction holding force. In claim (2), in the above claim (1),
It is characterized by changing the diameter of a driving roll in each part, and transmitting power by magnetically attracting a repositionable passive roll to the circumferential surface of the driving roll whose diameter changes. be. Claim (3) is characterized in that the driving roll that receives the passive body and transmits power is composed of a disk-shaped magnet and a ferromagnetic plate attached to the magnet, and the passive body is formed of a ferromagnetic material. This is a friction transmission device that uses magnets. Claim (4) provides that, in the above claim (3), the passive body is formed in a roll shape and includes a polar magnet that attracts the magnet of the driving roll, and a ferromagnetic plate attached to the magnet. It is characterized by:
請求項(5)では、上記請求項(3)において、原動ロ
ールが複数のマグネットと強磁性板とを交互に重層させ
て成ることを特徴とするものである。請求項(6)では
、上記請求項(4)において、ロール径が各部で相違す
る原動ロールの周面ば位置換え自在に受動ロールを磁力
にて吸着させて成ることを特徴とするものである。請求
項(7)では、請求項(4)において、受動ロールが複
数のマグネットと強磁性板とを交互に重層させてなるこ
とを特徴とするものである。請求項(8)では、請求項
(4)において、受動ロールが原動ロールの磁力にて吸
着される螺条部を有して回転自在でかつスラスト方向に
移動自在に配設されて成ることを特徴とするものである
。請求項(9)では、請求項(4)において、原動ロー
ルの端面に位置換え自在に受動ロールの周面を磁力にて
吸着させ、該受動ロールの周面に第2の受動ロールの端
面を磁力にて吸着させて成ることを特徴とするものであ
る。According to a fifth aspect of the present invention, in the above-mentioned aspect of the present invention, the driving roll is formed by alternately layering a plurality of magnets and ferromagnetic plates. According to claim (6), in the above-mentioned claim (4), a passive roll is magnetically attracted to the circumferential surface of a driving roll whose roll diameter differs in each part so as to be repositionable. . According to a seventh aspect of the invention, in the fourth aspect of the invention, the passive roll is formed by alternately layering a plurality of magnets and ferromagnetic plates. Claim (8) states that in Claim (4), the passive roll has a threaded portion that is attracted by the magnetic force of the driving roll, and is arranged to be rotatable and movable in the thrust direction. This is a characteristic feature. In claim (9), according to claim (4), the circumferential surface of a passive roll is repositionably attracted to the end surface of the driving roll by magnetic force, and the end surface of the second passive roll is attached to the circumferential surface of the passive roll. It is characterized by being attracted by magnetic force.
「実施例」
以下に、本発明に係る磁力利用の摩擦伝動方法並びに装
置の実施例を図面に基づき説明する。まず、第1図及び
第2図に示す第1実施例の装置並びに方法について説明
すれば、第1図及び第2図において、1は磁気プーリ、
2はレールである。"Embodiments" Below, embodiments of the friction transmission method and device using magnetic force according to the present invention will be described based on the drawings. First, the apparatus and method of the first embodiment shown in FIGS. 1 and 2 will be explained. In FIGS. 1 and 2, 1 is a magnetic pulley;
2 is a rail.
該磁気プーリ1は、ディスク状マグネット30両側に強
磁性材より成る磁極板4.5を固設させである。マグネ
ット3は、−両側にS極が、又他面側にN極が現われる
ように着磁させてあり、このため一方の磁極板40周面
がS極に帯磁し、又他方の磁極板5の周面がN極に帯磁
される。上記の如くマグネット3及び磁極板4.5より
成る磁気プーリ1の周面は、レール2の円形な断面形状
に見合うように同径の円弧形状に凹陥させである。The magnetic pulley 1 has magnetic pole plates 4.5 made of ferromagnetic material fixed to both sides of a disk-shaped magnet 30. The magnet 3 is magnetized so that the S pole appears on both sides and the N pole appears on the other side, so that the circumferential surface of one magnetic pole plate 40 is magnetized to the S pole, and the other magnetic pole plate 5 is magnetized. The circumferential surface of is magnetized to the north pole. As described above, the circumferential surface of the magnetic pulley 1 consisting of the magnet 3 and the magnetic pole plate 4.5 is recessed into an arc shape with the same diameter to match the circular cross-sectional shape of the rail 2.
一方レール2は強磁性材より成る丸棒状に形成されてい
る。磁極板4.5には回転軸6.7が突設されており、
該回転軸6.7を駆動源側の回転軸に連結するようにな
っている。磁気プーリ1の回転中心に軸孔を穿設させて
おき、該軸孔に駆動源側の回転軸を嵌着させることも可
能である。On the other hand, the rail 2 is formed into a round bar shape made of ferromagnetic material. A rotating shaft 6.7 is provided protruding from the magnetic pole plate 4.5.
The rotating shaft 6.7 is connected to a rotating shaft on the drive source side. It is also possible to drill a shaft hole in the rotation center of the magnetic pulley 1 and fit the rotation shaft on the drive source side into the shaft hole.
次に伝動方法を説明すれば、磁気プーリ1にレール2を
磁極板4.5から発生する磁力にて吸着させておき、該
磁気プーリ1を駆動源側の回転力を受けて回転すると、
磁気プーリ1に対するレール2の吸着力により生じた摩
擦力で該レール2が搬送される。この時、磁気回路は、
マグネ・7ト3から一方の磁極板5、レール2、他方の
磁極板4を経てマグネット3に戻る閉磁路になっている
。Next, to explain the transmission method, the rail 2 is attracted to the magnetic pulley 1 by the magnetic force generated from the magnetic pole plate 4.5, and when the magnetic pulley 1 is rotated by the rotational force of the drive source,
The rail 2 is conveyed by the frictional force generated by the attraction force of the rail 2 to the magnetic pulley 1. At this time, the magnetic circuit is
It is a closed magnetic path that returns from the magnet 3 to the magnet 3 via one magnetic pole plate 5, the rail 2, and the other magnetic pole plate 4.
該磁力により生じた摩擦トルクは、磁気プーリ1の大き
さ、及びマグネット3の磁力の強さに関係し、摩擦トル
クによりレール側の受動力が大きい過負荷状態になった
時、磁気プーリ1とレール2の間にスリップが発生して
、過負荷による駆動源側の機器などの損傷を防くことも
可能である。レール2を直線的に移動させて磁気プーリ
2を回転させる逆の形式も採用できることは勿論である
。The friction torque generated by the magnetic force is related to the size of the magnetic pulley 1 and the strength of the magnetic force of the magnet 3. When the friction torque causes a large passive force on the rail side to become overloaded, the magnetic pulley 1 and It is also possible to prevent damage to equipment on the driving source side due to overload caused by slipping between the rails 2. Of course, the opposite method in which the rail 2 is moved linearly and the magnetic pulley 2 is rotated can also be adopted.
上記磁気プーリ1の形状は、第3図及び第4図に示す如
く被搬送物としてレール2が四角形状や六角形状などの
断面多角形状のものにあっては、それに見合う形状に形
成する。又第5図に示す如く、レール2が断面円形の一
部が半円弧状に切欠された溝8を有するものにあっては
、該溝8の形状に見合うように磁気プーリ1の周面を半
円弧形状に突設させるようにすることも可能である。The shape of the magnetic pulley 1 is formed to match the shape of the rail 2 as shown in FIGS. 3 and 4 when the object to be transported has a polygonal cross section such as a square or hexagon. Further, as shown in FIG. 5, if the rail 2 has a groove 8 with a circular cross section and a semicircular arc cut out, the circumferential surface of the magnetic pulley 1 should be shaped to match the shape of the groove 8. It is also possible to protrude in a semicircular arc shape.
第6回は第2実施例を示し、上記第1図及び第2図に示
す磁気プーリ1がレール2を挟んで2個対向状に配設し
、レール2に対する磁気ブーI71の磁力による吸着力
を倍増させたもので、この場合、何れか一方の磁気プー
リ1を駆動源で回転駆動させるか、又は両磁気プーリ1
を共に駆動源で回転駆動させる何れの方法であっても可
能である。The 6th session shows the second embodiment, in which two magnetic pulleys 1 shown in FIGS. 1 and 2 are arranged oppositely with the rail 2 in between, and the attraction force due to the magnetic force of the magnetic boot I71 to the rail 2. In this case, either one of the magnetic pulleys 1 is rotationally driven by a drive source, or both magnetic pulleys 1 are rotated.
It is possible to use any method in which both are rotationally driven by a driving source.
又、逆にレール2をエアーシリンダなどで直線的に移動
させ、これにより各磁気プーリ1を回転させることも可
能である。その他は上記第1実施例と同じである。Conversely, it is also possible to linearly move the rail 2 using an air cylinder or the like, thereby rotating each magnetic pulley 1. The rest is the same as the first embodiment.
この場合、レール2が断面円形であることから、第8図
に示す如く一方の磁気ブーIJ 1に対して他方の磁気
プーリ1を自由に角度差(傾斜角)を持たせることがで
きる。In this case, since the rail 2 has a circular cross section, the angle difference (inclination angle) between one magnetic pulley 1 and the other magnetic pulley 1 can be freely set as shown in FIG.
第7図は、第3実施例を示し、第5図に示す磁気プーリ
1の他側にも同一形状のレール2を逆向きにして配設し
、磁気プーリ1の回転により一方のレール2が一方向に
移動する時、他方のレール2が逆方向に移動するように
したもので、その他は上記第1実施例と同一である。FIG. 7 shows a third embodiment, in which a rail 2 of the same shape is arranged in the opposite direction on the other side of the magnetic pulley 1 shown in FIG. When moving in one direction, the other rail 2 moves in the opposite direction, and the rest is the same as the first embodiment.
第9図は第4実施例を示し、磁気プーリ1と同様にレー
ル9をそれぞれ長尺な磁極板l0111とマグネット1
2とを添着した三層構造にしたものである。マグネット
12は一方の磁極板10が添着される側をS極に、又他
方の磁極板11が添着される側をN極に着磁させてあり
、従って、上記一方の磁極板IOの磁気プーリ1と吸着
する端面がS極に、又他方の磁極板11の磁気プーリ1
に吸着する端面がN極にそれぞれ帯磁される。磁気プー
リ1の各磁極板4.5に対しては、レール9の各磁極板
10.11が互いに異極同士で対向して吸着力が作用す
るようにしてあって、磁気プーリ1及びレール9の相互
間で閉磁路の磁気回路が形成されるようになっている。FIG. 9 shows a fourth embodiment, in which, like the magnetic pulley 1, the rail 9 is connected to a long magnetic pole plate l0111 and a magnet 1, respectively.
It has a three-layer structure with 2 attached. The magnet 12 is magnetized so that the side to which one magnetic pole plate 10 is attached is the S pole, and the side to which the other magnetic pole plate 11 is attached is magnetized to the N pole. Therefore, the magnetic pulley of the one magnetic pole plate IO is The end surface that attracts 1 is the S pole, and the magnetic pulley 1 of the other magnetic pole plate 11
The end faces that are attracted to are respectively magnetized to N poles. Each magnetic pole plate 4.5 of the magnetic pulley 1 is arranged so that each magnetic pole plate 10.11 of the rail 9 faces each other with different polarities, so that an attractive force acts on the magnetic pulley 1 and the rail 9. A closed magnetic circuit is formed between the two.
その他は上記第1実施例と同一である。The rest is the same as the first embodiment.
磁気プーリ1及びレール9の形状は、第9図に示す六角
形状の他、第10図に示すレール9が断面四角形で磁気
プーリ1が該レール9の形状に見合う形状にし、又、第
11図に示す如くレール9が断面円形で磁気プーリ1が
該レール9の形状に見合う形状にすることが可能である
。第12図に示す如くレール9が断面四角形状であって
も、磁気プーリ1のレール9を受ける周面を単に平坦に
した形状も可能であり、更には、第13図に示す如く磁
気プーリ1の周面の一側にフランジ13を形成させても
可能である。更に、第14図に示す如く、磁気プーリ1
及びレール9のマグネ・ノド3.12と磁性板1O21
1との数を増やして多層状にし、磁気プーリ1とレール
9との吸着力、つまり摩擦抵抗力を増大させ、延いては
伝達す−;き動力の増大化を図ったものである。その他
は第1実施例と同一である。In addition to the hexagonal shape shown in FIG. 9, the shape of the magnetic pulley 1 and the rail 9 is such that the rail 9 shown in FIG. 10 has a square cross section and the magnetic pulley 1 has a shape that matches the shape of the rail 9. As shown in FIG. 2, the rail 9 has a circular cross section, and the magnetic pulley 1 can be shaped to match the shape of the rail 9. Even if the rail 9 has a rectangular cross section as shown in FIG. 12, it is also possible to simply flatten the peripheral surface of the magnetic pulley 1 that receives the rail 9. Furthermore, as shown in FIG. It is also possible to form the flange 13 on one side of the circumferential surface. Furthermore, as shown in FIG.
and magnetic throat 3.12 of rail 9 and magnetic plate 1O21
The number of magnetic pulleys 1 and 1 is increased to form a multilayer structure, thereby increasing the adhesion force between the magnetic pulley 1 and the rail 9, that is, the frictional resistance force, thereby increasing the transmitted force. The rest is the same as the first embodiment.
第15図は第5実施例を示し、上記第1実施例乃至第4
実施例に示す磁気プーリ1及びレール2.9の互いに吸
着する表面にゴム、合成樹脂又は防錆性のある金属膜を
形成したもので、摩擦係数の増大と防錆効果を得るよう
にしたもので、その他は各実施例と同一である。FIG. 15 shows a fifth embodiment, and shows the first to fourth embodiments.
Rubber, synthetic resin, or rust-proof metal film is formed on the mutually adhering surfaces of the magnetic pulley 1 and rail 2.9 shown in the example, so as to increase the coefficient of friction and obtain a rust-preventing effect. The rest is the same as each embodiment.
第16図は第6実施例を示し、磁気プーリ1を多数のマ
グネント3と磁極板4.5とを積層させた多層構造にし
、その周面を山形が多数連なる形状に形成し、一方レー
ル2としては上記第1実施例と同様に強磁性体から成っ
て磁気プーリ1と吸着する面が磁気プーリ1の周面形状
に見合う形状に形成しである。その他は上記第1実施例
及び第4実施例と同一である。又、17図に示す如くレ
ール2に代えて強磁性材から成る回転プーリ14を用い
ることも可能である。該回転プーリ14は、磁気プーリ
1の周面形状に見合う形状に形成しである。FIG. 16 shows a sixth embodiment, in which the magnetic pulley 1 has a multilayer structure in which a large number of magnets 3 and magnetic pole plates 4.5 are laminated, and its circumferential surface is formed in the shape of a series of many chevrons, while the rail 2 As in the first embodiment, the surface which is made of a ferromagnetic material and attracts the magnetic pulley 1 is formed in a shape that matches the circumferential shape of the magnetic pulley 1. The rest is the same as the first embodiment and the fourth embodiment. Further, as shown in FIG. 17, it is also possible to use a rotating pulley 14 made of a ferromagnetic material in place of the rail 2. The rotary pulley 14 is formed in a shape matching the circumferential shape of the magnetic pulley 1.
第18図及び第19図は第7実施例を示し、上記第1実
施例に示すものと同一構成の磁気プーリ1に強磁性材か
ら成る回転ブーリエ4を配設させて、該磁気プーリ1に
その磁力で回転プーリ14を吸着させるようにし、その
吸着時の摩擦抵抗力で磁気プーリ1の回転に伴い回転プ
ーリ14を追従させて回転させるようにしたものである
。この時、第20図に示す如く、回転プーリ14を断面
円形のものを用い、一方該回転プーリ14との相互間で
吸着される磁気プーリlの周面を回転プーリ14に見合
う形状に形成することで、モータ15で回転駆動される
磁気プーリ1を回転ブーIJ 14に対して回転させて
随意に角度差(傾斜角)を設定し得るようにすることも
可能である。18 and 19 show a seventh embodiment, in which a rotating boulier 4 made of a ferromagnetic material is disposed on a magnetic pulley 1 having the same configuration as that shown in the first embodiment, and The magnetic force is used to attract the rotary pulley 14, and the frictional resistance at the time of attraction causes the rotary pulley 14 to follow and rotate as the magnetic pulley 1 rotates. At this time, as shown in FIG. 20, the rotary pulley 14 is circular in cross section, and the peripheral surface of the magnetic pulley l, which is attracted between the rotary pulley 14 and the rotary pulley 14, is formed into a shape that matches the rotary pulley 14. By doing so, it is also possible to rotate the magnetic pulley 1, which is rotationally driven by the motor 15, with respect to the rotary boob IJ 14 to set an angular difference (inclination angle) as desired.
第21図は第8実施例を示し、シリンダ16を回転自在
でかつスラスト方向にも移動自在に軸受17に支承させ
ておき、該シリンダ16の周面には強磁性材から成るス
プリング18を巻装したものである。該スプリング18
にはモータ15で駆動される上記各実施例と同一の磁気
プーリ1を吸着させである。そして、モータ15で磁気
プーリlを回転駆動させれば、該磁気プーリ1に吸着さ
れてその摩擦抵抗によりスプリング18も回転するが、
この時スプリング18の回転角に応じてシリンダ16が
スラスト方向に移動する。つまり、シリンダ16は、上
記磁気プーリ1の回転により所定の回転角と同時に所定
の移動量も得られて、非線形の移動制御が可能である。FIG. 21 shows an eighth embodiment, in which a cylinder 16 is rotatably supported on a bearing 17 so as to be movable in the thrust direction, and a spring 18 made of a ferromagnetic material is wound around the circumferential surface of the cylinder 16. It is equipped. The spring 18
The same magnetic pulley 1 as in each of the above embodiments, which is driven by a motor 15, is attracted thereto. When the magnetic pulley l is rotated by the motor 15, the spring 18 is attracted to the magnetic pulley 1 and rotates due to its frictional resistance.
At this time, the cylinder 16 moves in the thrust direction according to the rotation angle of the spring 18. In other words, the cylinder 16 can obtain a predetermined rotation angle and a predetermined movement amount simultaneously with the rotation of the magnetic pulley 1, and nonlinear movement control is possible.
シリンダ16の形状は円筒状に限らず、たいこ形や、コ
ーン形などの各種の形状が採用でき、かつこのような形
状に沿って上記スプリング18を巻装させることも可能
である。The shape of the cylinder 16 is not limited to a cylindrical shape, and various shapes such as a cylindrical shape and a cone shape can be adopted, and the spring 18 can be wound along such a shape.
第22図は、第9実施例を示し、上記各実施例の磁気プ
ーリlを原動ローラとして活用して、湾曲端面の吸着摩
擦面19を備えた強磁性板20を非線形の運動をさせる
ようにしたもので、強磁性板20の吸着摩擦面19に原
動から(磁気プーリ1)をその磁力にて吸着させて、該
原動ローラの回転で第22図に実線から一点鎖線で示す
如く吸着摩擦面19の端面形状に応じて非線形の移動を
させるものである。FIG. 22 shows a ninth embodiment, in which the magnetic pulley l of each of the above embodiments is utilized as a driving roller to cause a ferromagnetic plate 20 provided with an adsorption friction surface 19 on a curved end face to move nonlinearly. The magnetic pulley 1 is attracted to the attraction friction surface 19 of the ferromagnetic plate 20 by its magnetic force, and as the driving roller rotates, the attraction friction surface 19 is drawn from the solid line to the dashed line in FIG. The non-linear movement is performed according to the shape of the end face of 19.
第23図は第10実施例を示し、強磁性材から成って凹
状の湾曲面21を有する湾曲ローラ22を回転自在に軸
受23に支承させ、該湾曲面21には、同一の曲率の周
面を有する上記各実施例の磁気プーリ1を1個以上位置
換え自在にその磁力にて吸着させたものである。そして
、湾曲ローラ22を回転させれば上記各実施例と同様に
湾曲面21に吸着する磁気プーリ1が回転する。この時
磁気プーリ1を傾斜方向に回動させて湾曲面21との吸
着位置を変えれば、磁気プーリ1が吸着する位置の湾曲
面21の径が変化するので、湾曲ローラ22の回転数が
同一であっても、磁気プーリlの回転数が可変され、つ
まり変速機として活用し得るものである。磁気プーリ1
からは自在継手を介して回転力を取り出せばよい。又、
逆に、磁気プーリ1側を回転駆動させて湾曲ローラ22
を回転させることも可能である。FIG. 23 shows a tenth embodiment, in which a curved roller 22 made of a ferromagnetic material and having a concave curved surface 21 is rotatably supported on a bearing 23. One or more of the magnetic pulleys 1 of each of the above-mentioned embodiments having a magnetic pulley 1 are attracted by their magnetic force so as to be freely repositionable. Then, when the curved roller 22 is rotated, the magnetic pulley 1, which is attracted to the curved surface 21, rotates as in each of the above embodiments. At this time, if the magnetic pulley 1 is rotated in the inclination direction to change the attraction position with the curved surface 21, the diameter of the curved surface 21 at the position where the magnetic pulley 1 attracts changes, so the rotation speed of the curved roller 22 remains the same. However, the rotational speed of the magnetic pulley l can be varied, that is, it can be used as a transmission. magnetic pulley 1
The rotational force can be extracted from the universal joint. or,
Conversely, the bending roller 22 is rotated by rotating the magnetic pulley 1 side.
It is also possible to rotate.
第24回は、第11実施例を示し、強磁性材から成るコ
ーンローラ24を回転自在に軸受23に支承させておき
、該コーンローラ24には上記各実施例の磁気プーリ1
を位置換え自在に吸着させたものである。そして、コー
ンローラ24を回転させれば、該コーンローラ24の周
面に吸着された磁気プーリlも上記各実施例と同様にし
て回転するが、該磁気プーリ1をコーンローラ24の周
面に沿って移動させると、該磁気プーリ1が吸着する位
置のコーンローラ24の径が変化する。従って、コーン
ローラ24の回転数が一定であっても、該コーンローラ
24との吸着位置が変化すると磁気プーリ1の回転数が
変化する所謂変速機構を呈する。この場合において、磁
気プーリ1側を回転駆動させることも可能である。The 24th time shows the 11th embodiment, in which a cone roller 24 made of a ferromagnetic material is rotatably supported on a bearing 23, and the cone roller 24 is equipped with the magnetic pulley 1 of each of the above embodiments.
is adsorbed so that it can be repositioned freely. When the cone roller 24 is rotated, the magnetic pulley l attracted to the circumferential surface of the cone roller 24 also rotates in the same manner as in each of the above embodiments. When the cone roller 24 is moved along the magnetic pulley 1, the diameter of the cone roller 24 at the position where the magnetic pulley 1 attracts changes. Therefore, even if the rotation speed of the cone roller 24 is constant, a so-called speed change mechanism is provided in which the rotation speed of the magnetic pulley 1 changes when the adsorption position with the cone roller 24 changes. In this case, it is also possible to rotate the magnetic pulley 1 side.
第25図は、第12実施例を示し、間隔をおいて2個の
強磁性円板25.26を軸受23にて回転自在に対向配
置させておき、各強磁性円板25.26間には上記各実
施例の如き構造の1個以上の磁気プーリ1を回転自在で
かつ各強磁性円板25.260回転中心に対して接離方
向に移動自在に配設する。磁気プーリ1は画強磁性円板
25.26の板面にその磁力で吸着されることは上記実
施例と同様である。そして、一方の強磁性円板25を回
転駆動させれば、該強磁性円板25と吸着する磁気プー
リ1が回転する。強磁性円板25の回転中心を中心にし
て対向する磁気プーリ1の相互間では回転方向が逆向き
になる。更に該磁気プーリlに吸着する他方の強磁性円
板26も回転するが、上記一方の強磁性円板25の回転
方向とは逆向きに回転する。ここで磁気プーリlを強磁
性円板25.26の回転中心から接近し若しくは離間す
る方向に移動させれば、強磁性円板25.260回転中
心から磁気ブー’J 1が吸着する距離に応じて該磁気
ブーU 1の回転数が変化1.て、変速機能を呈する。FIG. 25 shows a twelfth embodiment, in which two ferromagnetic disks 25, 26 are arranged facing each other in a rotatable manner with a bearing 23 at an interval, and between each ferromagnetic disk 25, 26, In this embodiment, one or more magnetic pulleys 1 having a structure as in each of the embodiments described above are arranged to be rotatable and movable in directions toward and away from the center of rotation of each ferromagnetic disk 25,260. As in the above embodiment, the magnetic pulley 1 is attracted to the surface of the ferromagnetic disks 25 and 26 by its magnetic force. When one of the ferromagnetic discs 25 is driven to rotate, the magnetic pulley 1 that attracts the ferromagnetic disc 25 rotates. The rotation directions of the magnetic pulleys 1 facing each other around the center of rotation of the ferromagnetic disk 25 are opposite to each other. Furthermore, the other ferromagnetic disk 26 that is attracted to the magnetic pulley l also rotates, but in the opposite direction to the rotation direction of the one ferromagnetic disk 25. If the magnetic pulley l is moved toward or away from the center of rotation of the ferromagnetic disk 25.26, the distance from the center of rotation of the ferromagnetic disk 25.260 to which the magnetic boo 'J 1 is attracted will depend. When the rotation speed of the magnetic boo U1 changes 1. It has a speed change function.
上記他方の強磁性円板26は、有しない状態でも上記と
同様な動作を行う。The other ferromagnetic disk 26 performs the same operation as described above even when it is not included.
第26図は、第13実施例を示し、上記各実施例と同様
な構造の磁気プーリ1を2個用いて所謂傘歯車の如く利
用したもので、その他は上記第2実施例と同一である。FIG. 26 shows a thirteenth embodiment, in which two magnetic pulleys 1 having the same structure as in each of the above embodiments are used like a so-called bevel gear, and the rest is the same as in the above second embodiment. .
「発明の効果」
以上の如く、本発明に係る磁石利用の摩擦伝動方法並び
にその装置によれば、磁気により吸着力を利用して動力
伝達のための摩擦抵抗を得るようにしたものであるから
、過負荷に対する伝動部材相互間のスリップ値を磁力の
強さを変えることで自由に設定できることはもとより、
従来のギアによる場合の如く、バックラッシュもなくか
つギア振動の発生もない。更に従来の伝動部材相互間に
介在させたポール等のフリクションつまり摩擦抵抗をス
プリングの如き押圧部材で調整したものに比較して構造
の複雑化を招くことがなく、又高速駆動時の振動の発生
もない。しかも、回転角等の制iB位置も極めて正確に
位置決めし得て利用上類る便利である。"Effects of the Invention" As described above, according to the friction transmission method using magnets and its device according to the present invention, frictional resistance for power transmission is obtained by using attraction force by magnetism. , it is possible to freely set the slip value between the transmission members against overload by changing the strength of the magnetic force,
There is no backlash and no gear vibration occurs as with conventional gears. Furthermore, compared to conventional systems in which the friction of poles, etc. interposed between transmission members, or frictional resistance, is adjusted using pressing members such as springs, the structure does not become complicated, and vibrations do not occur during high-speed drive. Nor. In addition, the control position of the rotation angle and the like can be determined extremely accurately, which is very convenient for use.
図面は本発明に係る磁石利用の摩擦伝動方法並びにその
装置の実施例を示し、第1図は第1実施例を示す装置の
側面図、第2図は第1図の縦断面図、第3図乃至第5図
は第1図及び第2図に示す装置の変形例を示す構造図、
第6図は第2実施例を示す装置の構成図、第7図は第6
図の使用例を示す構成図、第8図は第3実施例を示す装
置の構成図、第9図は第4実施例を示す装置の構成図、
第10図乃至第14図は第9図の変形例を示す装置の構
成図、第15図は第5実施例を示す装置の構成図、第1
6図は第6実施例を示す装置の構成図、第17図は第1
6図に示す装置の変形例を示す構成図、第18図は第7
実施例を示す装置の構成図、第19図及び第20図は第
18図に示す装置の変形例を示す構成図、第21図は第
8実施例を示す装置の構成図、第22図は第9実施例を
示す装置の構成図、第23図は第10実施例を示す装置
の構成図、第24図は第11実施例を示す装置の構成図
、第25図は第12実施例を示す装置の構成図、第26
図は第13実施例を示す装置の構成図である。
1・・・磁気プーリ 2.9・・・レール3.12
・・・マグネット
4.5.10.11・・・磁極板
14・・・回転プーリ 16・・・シリンダ18・・
・スプリング 20・・・強磁極板22・・・湾曲ロ
ーラ 24・・・コーンローラ25.26・・・強磁
性円板
第1図
第2図
第3図
第4図
第5図
第9図
第17図
第15図
第18図
第19図
第2σ図The drawings show an embodiment of the friction transmission method using magnets and its device according to the present invention, FIG. 1 is a side view of the device showing the first embodiment, FIG. 2 is a longitudinal sectional view of FIG. 1, and FIG. 5 to 5 are structural diagrams showing modifications of the apparatus shown in FIGS. 1 and 2,
FIG. 6 is a configuration diagram of the device showing the second embodiment, and FIG.
8 is a configuration diagram of an apparatus showing a third embodiment, FIG. 9 is a configuration diagram of an apparatus showing a fourth embodiment,
10 to 14 are configuration diagrams of the device showing a modification of FIG. 9, FIG. 15 is a configuration diagram of the device showing the fifth embodiment, and FIG.
FIG. 6 is a configuration diagram of the device showing the sixth embodiment, and FIG. 17 is the first embodiment.
A configuration diagram showing a modification of the device shown in FIG. 6, and FIG.
19 and 20 are configuration diagrams showing a modification of the apparatus shown in FIG. 18, FIG. 21 is a configuration diagram of the apparatus showing the eighth embodiment, and FIG. FIG. 23 is a configuration diagram of the device showing the 9th embodiment, FIG. 23 is a configuration diagram of the device showing the 10th embodiment, FIG. 24 is a configuration diagram of the device showing the 11th embodiment, and FIG. Block diagram of the device shown, No. 26
The figure is a configuration diagram of an apparatus showing a thirteenth embodiment. 1...Magnetic pulley 2.9...Rail 3.12
... Magnet 4.5.10.11 ... Magnetic pole plate 14 ... Rotating pulley 16 ... Cylinder 18 ...
・Spring 20... Ferromagnetic pole plate 22... Curved roller 24... Cone roller 25.26... Ferromagnetic disc Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 9 Figure 17 Figure 15 Figure 18 Figure 19 Figure 2σ
Claims (9)
磁力を付与させて、該原動ロールに上記受動体をその磁
力にて、吸着させてその摩擦保持力にて動力を伝達して
成ることを特徴とする磁石利用の摩擦伝動方法。(1) When receiving a passive body and transmitting power, a magnetic force is applied to the driving roll, and the passive body is attracted to the driving roll by the magnetic force, and the power is transmitted by the frictional holding force. A friction transmission method using a magnet, which is characterized by:
ールの径が変化する周面に、位置換え自在に受動ロール
を磁力にて吸着させて動力を伝達して成ることを特徴と
する請求項(1)記載の磁石利用の摩擦伝動方法。(2) The diameter of the drive roll is changed in each part, and the drive roll is magnetically attracted to the circumferential surface where the diameter of the drive roll changes so that the drive roll can be repositioned, thereby transmitting power. A friction transmission method using a magnet according to claim (1).
スク状のマグネットと該マグネットに添着される強磁性
板とから成り、上記受動体を強磁性材で形成して成るこ
とを特徴とする磁石利用の摩擦伝動装置。(3) The driving roll that receives the passive body and transmits power is composed of a disk-shaped magnet and a ferromagnetic plate attached to the magnet, and the passive body is formed of a ferromagnetic material. Friction transmission device that uses magnets.
のマグネットと、該マグネットに添着された強磁性板と
から成ってロール状に形成されてなることを特徴とする
請求項(3)記載の磁石利用の摩擦伝動装置。(4) The passive body according to claim (3), characterized in that it is formed into a roll shape and includes a polar magnet that attracts the magnet of the driving roll, and a ferromagnetic plate attached to the magnet. Friction transmission device that uses magnets.
互に重層させて成ることを特徴とする請求項(3)記載
の磁石利用の摩擦伝動装置。(5) The friction transmission device using magnets according to claim (3), wherein the driving roll is formed by alternately layering a plurality of magnets and ferromagnetic plates.
置換え自在に受動ロールを磁力にて吸着させて成ること
を特徴とする請求項(4)記載の磁石利用の摩擦伝動装
置。(6) The friction transmission device using magnets according to claim (4), wherein the circumferential surface of the drive roll, which has different roll diameters at each portion, attracts the passive roll magnetically so as to be repositionable.
互に重層させてなることを特徴とする請求項(4)記載
の磁石利用の摩擦伝動装置。(7) The friction transmission device using magnets according to claim (4), wherein the passive roll is formed by alternately layering a plurality of magnets and ferromagnetic plates.
条部を有して回転自在でかつスラスト方向に移動自在に
配設されて成ることを特徴とする請求項(4)記載の磁
石利用の摩擦伝動装置。(8) The magnet according to claim (4), wherein the passive roll has a threaded portion that is attracted by the magnet of the driving roll, and is arranged to be rotatable and movable in the thrust direction. Utilize friction transmission.
の周面を磁力にて吸着させ、該受動ロールの周面に第2
の受動ロールの端面を磁力にて吸着させて成ることを特
徴とする請求項(4)記載の磁石利用の摩擦伝動装置。(9) The circumferential surface of a passive roll is magnetically attracted to the end surface of the driving roll in a repositionable manner, and a second
5. The friction transmission device using a magnet according to claim 4, wherein the end face of the passive roll is attracted by magnetic force.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25073490A JPH04131555A (en) | 1990-09-20 | 1990-09-20 | Friction gearing method using magnet and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25073490A JPH04131555A (en) | 1990-09-20 | 1990-09-20 | Friction gearing method using magnet and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04131555A true JPH04131555A (en) | 1992-05-06 |
Family
ID=17212247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25073490A Pending JPH04131555A (en) | 1990-09-20 | 1990-09-20 | Friction gearing method using magnet and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04131555A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005523402A (en) * | 2002-02-16 | 2005-08-04 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Gear mechanism and rotary encoder provided with the gear mechanism |
JP2008261877A (en) * | 2008-05-20 | 2008-10-30 | Yasuhira:Kk | Jig for measuring cylindrical tool and form accuracy measuring apparatus equipped therewith |
JP2013087950A (en) * | 2011-10-14 | 2013-05-13 | Boeing Co:The | Apparatus and method utilizing magnetic force to apply force to material |
JP2017216277A (en) * | 2016-05-30 | 2017-12-07 | ラピアス電機株式会社 | Mechanical element |
-
1990
- 1990-09-20 JP JP25073490A patent/JPH04131555A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005523402A (en) * | 2002-02-16 | 2005-08-04 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Gear mechanism and rotary encoder provided with the gear mechanism |
US7694599B2 (en) | 2002-02-16 | 2010-04-13 | Dr. Johannes Heidenhain Gmbh | Gearing as well as a rotary encoder equipped with such gearing |
JP4741798B2 (en) * | 2002-02-16 | 2011-08-10 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Gear mechanism and rotary encoder provided with the gear mechanism |
JP2008261877A (en) * | 2008-05-20 | 2008-10-30 | Yasuhira:Kk | Jig for measuring cylindrical tool and form accuracy measuring apparatus equipped therewith |
JP4735865B2 (en) * | 2008-05-20 | 2011-07-27 | 株式会社ヤスヒラ | Cylindrical tool measuring jig and shape accuracy measuring device equipped with the jig |
JP2013087950A (en) * | 2011-10-14 | 2013-05-13 | Boeing Co:The | Apparatus and method utilizing magnetic force to apply force to material |
JP2017216277A (en) * | 2016-05-30 | 2017-12-07 | ラピアス電機株式会社 | Mechanical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2167641A (en) | Transmission mechanism | |
ES2151264T3 (en) | Motorized conveyor roller | |
US4651856A (en) | Torque limiting clutches controlled by permanent magnet means | |
JPH04131555A (en) | Friction gearing method using magnet and device therefor | |
JPS59217057A (en) | Power transmission apparatus utilizing permanent magnet | |
WO2021169138A1 (en) | Disc-type permanent-magnet gear, disc-type permanent-magnet gear-based transmission structure | |
JPS6265779A (en) | Bivrator device | |
JPS61180569A (en) | Magnetic force revolving device | |
JPH08336274A (en) | Magnetic screw transmission | |
US831685A (en) | Variable-speed device. | |
MXPA03004457A (en) | Method and device for transmitting force magnetically. | |
JP2001211633A (en) | Method for transferring magnet joint rotation to passive rotating body over space/bulkhead, by which one of magnet panels having n-pole and s-pole magnet surfaces on the same surface and either external or internal cylindrical circumference surface having n-pole and s-pole magnet surfaces on the same circumference surface passive-rotate by rotation induction stress of magnetic force when the other plane/surface is power- rotated when being flat-faced/circumference-faced each other | |
JPH03285556A (en) | Magnetic gear unit | |
US7622839B2 (en) | Magnetic belt and roller system | |
WO2004064238A1 (en) | Method and apparatus for controlling the object to move back and forth by a rotating magnet pole and obtaining kinetic energy | |
JP3632211B2 (en) | Flywheel | |
JPS63287358A (en) | Power transmission system | |
US20200076289A1 (en) | Magnetic coupling and method | |
JP2004324685A (en) | Continuously variable transmission | |
JPH04105544A (en) | Rotation transfer apparatus | |
JP3019022U (en) | Magnetic bevel wheel transmission | |
US11594947B2 (en) | Systems and methods for magnetic rotational coupling devices | |
JPS62114466A (en) | Rotating plate with magnet | |
JPS61191279A (en) | Unbalanced magnetism moving device | |
JPS5999167A (en) | Magnet autoclutch device |