JPH04131435U - Rotary membrane separator - Google Patents

Rotary membrane separator

Info

Publication number
JPH04131435U
JPH04131435U JP3845591U JP3845591U JPH04131435U JP H04131435 U JPH04131435 U JP H04131435U JP 3845591 U JP3845591 U JP 3845591U JP 3845591 U JP3845591 U JP 3845591U JP H04131435 U JPH04131435 U JP H04131435U
Authority
JP
Japan
Prior art keywords
membrane
liquid
flow path
treated
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3845591U
Other languages
Japanese (ja)
Other versions
JP2512582Y2 (en
Inventor
清 石井
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to JP1991038455U priority Critical patent/JP2512582Y2/en
Publication of JPH04131435U publication Critical patent/JPH04131435U/en
Application granted granted Critical
Publication of JP2512582Y2 publication Critical patent/JP2512582Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】 【目的】 回転式膜分離装置内の被処理液の供給・排出
による流動圧損を軽減させる。 【構成】 円板状支持体の両面に分離膜を具えた多数の
膜リーフを中空回転軸に積層してなる膜エレメントを、
膜リーフ間に容器に固定された可撓性の仕切りを介し、
各膜リーフに被処理液を並列に供給、排出させるための
供給流路と排出流路とを回転軸と平行で対称な位置に設
けてある容器内に、容器に固定された可撓性の仕切りが
膜リーフ間に介在する様に収納して、外部動力によって
回転させる。 【効果】 被処理液を並列供給、排出することにより、
圧損を大幅に軽減させ、その効果は膜リーフ数の略自乗
に比例する。
(57) [Summary] [Purpose] To reduce the flow pressure drop caused by supplying and discharging the liquid to be treated in the rotary membrane separator. [Structure] A membrane element consisting of a large number of membrane leaves with separation membranes on both sides of a disc-shaped support is stacked around a hollow rotating shaft.
Through a flexible partition fixed to the container between the membrane leaves,
A flexible tube fixed to the container is provided with a supply channel and a discharge channel for supplying and discharging the liquid to be treated in parallel to each membrane leaf in parallel and symmetrical positions with the rotation axis. The membrane is housed so that the partition is interposed between the membrane leaves and rotated by external power. [Effect] By supplying and discharging the liquid to be treated in parallel,
Pressure loss is significantly reduced, and the effect is approximately proportional to the square of the number of membrane leaves.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、平盤状の回転膜リーフと平盤状の固定仕切りを有する回転式膜分離 装置に関するものである。 This invention is a rotary membrane separation system with a flat rotating membrane leaf and a flat fixed partition. It is related to the device.

【0002】0002

【従来の技術】[Conventional technology]

膜分離において、膜を透過しない溶質や固体が膜表面に蓄積して起こる性能劣 化を軽減するために、被処理流体を膜表面に沿って流動させる、いわゆるクロス フロー濾過法が汎用されている。 In membrane separation, performance degradation occurs when solutes and solids that do not pass through the membrane accumulate on the membrane surface. In order to reduce the Flow filtration method is widely used.

【0003】 静止した膜モジュールのクロスフロー濾過法としては、被処理液をポンプで圧 送して、膜面に沿って所要の流速を与える方法が従来より実用に供されている。 流速が膜性能に及ぼす効果は、例えば鹹水や海水の逆浸透膜による脱塩では、主 として塩排除率の改善に顕著に現れる。また、高分子溶質や懸濁固体を含む果汁 、発酵液等、或いは各種排液等の限外濾過膜や精密濾過膜による処理では、主と して透過流束の改善に顕著に現れる。0003 In the cross-flow filtration method using a stationary membrane module, the liquid to be treated is pumped under pressure. Conventionally, methods have been put to practical use in which the membrane is fed at a desired flow rate along the membrane surface. The effect of flow rate on membrane performance is, for example, the main factor in the desalination of brine or seawater using reverse osmosis membranes. This is noticeable in the improvement of salt rejection rate. Also, fruit juice containing polymeric solutes and suspended solids , fermentation liquid, etc., or various waste liquids, etc., using ultrafiltration membranes or precision filtration membranes. This is noticeable in the improvement of permeation flux.

【0004】 限外濾過法や精密濾過法では膜自身の透過抵抗よりも境界層の抵抗の方が一般 に大きく、一桁以上の場合も希ではない。この様に大きい境界抵抗をクロスフロ ーによって低減させるためには、必然的に被処理液の供給流量は莫大となり、し かもその大部分は膜を透過せずに膜モジュールから排出されるため、莫大な投入 エネルギーの大部分が浪費されることになる。0004 In ultrafiltration and precision filtration methods, the resistance of the boundary layer is generally more important than the permeation resistance of the membrane itself. It is large, and cases of more than one digit are not rare. In this way, a large boundary resistance can be In order to reduce this by However, most of it is discharged from the membrane module without passing through the membrane, so it requires a huge amount of input. Most of the energy will be wasted.

【0005】 この損失を軽減する方法としては、膜モジュールから排出される被処理液の大 部分を、背圧調圧弁を通して放圧することなく、膜モジュール入口に循環供給す る方法が採られており、この循環液に関しては流動圧損で失われたエネルギーを 補給すればよい。しかし、この様にしても高流速による圧損は大きく、大量のエ ネルギー補給を必要とするだけでなく、更に入口圧が膜モジュールの耐圧限度を 超えない様に流動長を制限する必要が生じる場合は、並列化、即ち供給流量の増 大による動力費及び設備費の増大が生じる欠点を有している。[0005] One way to reduce this loss is to increase the amount of liquid to be treated discharged from the membrane module. part is circulated to the membrane module inlet without pressure relief through the back pressure regulating valve. A method has been adopted to reduce the energy lost due to flow pressure drop for this circulating fluid. Just replenish. However, even with this method, the pressure drop due to high flow rate is large, and a large amount of air In addition to requiring energy replenishment, the inlet pressure may exceed the pressure limit of the membrane module. If it becomes necessary to limit the flow length so that it does not exceed the This has the disadvantage that power costs and equipment costs increase due to the large size.

【0006】 この問題を解決する方法として、被処理液を静止膜面に対し高速で流動させる 代りに、膜面或は膜面に対面する物体、壁面等を運動させることにより、膜面と 被処理液を相対的にクロスフロー状態とする方法が主に提案されている。[0006] As a way to solve this problem, the liquid to be treated is made to flow at high speed against the stationary membrane surface. Instead, by moving the membrane surface or an object, wall surface, etc. facing the membrane surface, the membrane surface can be moved. Mainly proposed are methods in which the liquid to be treated is brought into a relatively cross-flow state.

【0007】 平膜を用いた装置及び方法として、例えば特開昭48− 65179号公報には図3に 示すように液体導入口2と濃縮物排出口3を有する円筒容器1に対して中空回転 軸4と仕切り5を設け、中心に貫通孔を持つ円盤状膜支持体7の両表面に分離膜 8を被覆した膜リーフを膜リーフ内部9と回転軸中空部10が小孔6で連通する様 に取り付ける膜分離装置、及び回転軸を介して膜リーフを回転させることにより 、膜表面に高い速度勾配を生じさせる膜分離方法が開示されている。[0007] For example, Japanese Patent Application Laid-Open No. 48-65179 shows a device and method using a flat membrane as shown in Fig. 3. As shown, a hollow rotating container 1 has a liquid inlet 2 and a concentrate outlet 3. Separation membranes are installed on both surfaces of a disk-shaped membrane support 7 that has a shaft 4 and a partition 5 and has a through hole in the center. The membrane leaf covered with 8 is connected so that the inside 9 of the membrane leaf and the hollow part 10 of the rotating shaft communicate with each other through the small hole 6. By attaching the membrane separation device to the membrane and rotating the membrane leaf through the rotating shaft , discloses a membrane separation method that generates a high velocity gradient on the membrane surface.

【0008】 静止円盤状膜リーフ間に回転する仕切りを介在させることによっても、被処理 液の共廻りによる速度勾配の減少を防ぎ、膜面剪断速度を高める効果が期待され る。例えば特開昭49− 74175号公報には、膜リーフの中心孔は液密に封止され、 膜透過液は膜リーフ外周部から容器外に取り出され、膜リーフ間に設けられた仕 切りが、膜リーフ中心孔を非接触的に貫通する回転軸によって回転して被処理液 を膜面に平行に流動させる装置を開示している。[0008] By interposing rotating partitions between stationary disk-shaped membrane leaves, the It is expected to prevent the decrease in velocity gradient due to synergistic circulation of liquid and increase the shear rate on the membrane surface. Ru. For example, in Japanese Patent Application Laid-open No. 49-74175, the center hole of the membrane leaf is sealed liquid-tightly, The membrane permeate is taken out of the container from the outer periphery of the membrane leaves, and passed through the membrane provided between the membrane leaves. The cutter is rotated by a rotating shaft that passes through the center hole of the membrane leaf in a non-contact manner to release the liquid to be treated. The present disclosure discloses an apparatus for causing a flow of water parallel to the membrane surface.

【0009】[0009]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

従来の回転式膜分離装置は、上述の様に被処理液を高流量で供給する必要がな い長所を有しているが、一方で図3から明らかな様に、被処理液が全膜リーフ間 を直列に流れるため流路が長くなり、同じ供給流量であっても各膜リーフ間を並 列に流れる場合に比較して、圧損が格段に大きい。従って、有効濾過圧を確保す るために供給圧力を高くせざるを得ず、それだけ所要エネルギーが増大する短所 を有している。 Conventional rotary membrane separators do not need to supply the liquid to be treated at a high flow rate, as mentioned above. However, as is clear from Figure 3, the liquid to be treated is distributed between all the membrane leaves. Flows in series, the flow path becomes long, and even if the supply flow rate is the same, the flow between each membrane leaf becomes parallel. The pressure loss is much larger than when the flow is in a column. Therefore, ensuring effective filtration pressure The disadvantage is that the supply pressure has to be high in order to have.

【0010】0010

【課題を解決するための手段】[Means to solve the problem]

膜分離装置への被処理液の流入、流出量が与えられたとき、流動圧損を最小に する方法は各膜リーフと仕切り間の流路がすべて並列となる様に被処理液を分配 することである。 Minimize the flow pressure drop when the amount of inflow and outflow of the liquid to be processed into the membrane separator is given. The method is to distribute the liquid to be treated so that the flow paths between each membrane leaf and the partition are all parallel. It is to be.

【0011】 即ち、本考案は、内部に膜透過液流路を有する平盤状支持体の両面に分離膜を 具え、外周部は液密に封止して成る膜リーフを一定間隔で中空回転軸に貫通し、 該膜リーフの透過液流路と該中空回転軸の中空部とは回転軸壁の小孔を介して連 通し、且つ外部とは液密に封止されて成る膜エレメントを容器内に回転可能な様 に配し、該膜リーフ間には固定平盤状仕切りを有する回転式膜分離装置において 、各膜リーフに被処理液を並列に供給し、排出させる構造の供給流路と排出流路 とを該容器に回転軸と平行に設けてなることを特徴とする回転式膜分離装置に関 する。この様な構成により、被処理液は充分な流路断面積を有する供給流路によ って実質的に無視できる低圧損で全膜リーフに運ばれ、各膜リーフで処理された 液は充分な流路断面積を有する排出流路を、実質的に無視できる極低圧損で通過 して排出される。[0011] That is, the present invention has separation membranes on both sides of a flat support having a membrane permeate flow path inside. The outer circumference is liquid-tightly sealed, and the membrane leaves are penetrated at regular intervals through a hollow rotating shaft. The permeate flow path of the membrane leaf and the hollow part of the hollow rotating shaft are connected through a small hole in the rotating shaft wall. The membrane element is rotatable inside the container and is sealed liquid-tightly from the outside. In a rotary membrane separator having a fixed plate-like partition between the membrane leaves, , a supply channel and a discharge channel configured to supply and discharge the liquid to be treated in parallel to each membrane leaf. The present invention relates to a rotary membrane separator characterized in that do. With this configuration, the liquid to be treated is supplied to the supply channel with a sufficient cross-sectional area. is transported to all membrane leaves with practically negligible low pressure drop and processed at each membrane leaf. The liquid passes through a discharge channel with a sufficient cross-sectional area with extremely low pressure loss that can be virtually ignored. and is discharged.

【0012】 各膜リーフに供給された被処理液のうち、膜表面を流れないで、膜リーフと容 器との間隙を流れる傍流は、エネルギーの損失となるので、極力抑える必要があ る。このためには、膜リーフと容器との間隙を最小にすることが必要であり、そ れには膜リーフが真円形で、容器内部の横断面も真円形であることが好ましい。 又、仕切りの共廻り防止手段を容器内壁より内側に設けることは、上記のエネル ギー損失の点からは好ましくない。容器自身が環状体を積層して形成する場合は 環状体間に挟持することが可能であるが、コスト高となる。容器を円筒からつく る場合は、回転軸に略平行に平盤状膜リーフの外周軌跡よりも外側に溝状に設け た被処理液供給流路及び/又は排出流路内に共廻り防止手段を設け、平盤状仕切 りの該供給流路及び/又は排出流路に当たる部分に突出部を設け、この突出部を 該共廻り防止手段に繋留させることにより膜リーフ及び仕切りと容器内壁との間 隙を最小とすることができる。0012 Of the liquid to be treated that is supplied to each membrane leaf, it does not flow on the membrane surface, but rather Side currents that flow through the gap with the container cause energy loss and must be suppressed as much as possible. Ru. This requires minimizing the gap between the membrane leaf and the container; In this case, it is preferable that the membrane leaf is a perfect circle and that the cross section inside the container is also a perfect circle. In addition, providing the means to prevent the partitions from rotating inward from the inner wall of the container reduces the energy consumption mentioned above. This is not preferable from the point of view of energy loss. If the container itself is formed by stacking annular bodies, Although it is possible to sandwich it between annular bodies, the cost is high. make a container from a cylinder When using a flat membrane leaf, a groove is provided approximately parallel to the axis of rotation and outside the outer circumferential locus of the flat membrane leaf. A counter-circulation prevention means is provided in the treated liquid supply flow path and/or discharge flow path, and a flat partition is installed. A protrusion is provided in the portion corresponding to the supply flow path and/or discharge flow path, and this protrusion is between the membrane leaf and partition and the inner wall of the container by being anchored to the co-rotation prevention means. The gap can be minimized.

【0013】 該供給流路及び/又は排出流路内に設ける仕切りの共廻り防止手段としては、 例えば棒状体を該流路内に流路に平行に設け、仕切板の突出部を該棒状体に嵌合 し、且つ周囲の滑らかな孔を設けて、該棒状体に通すことによって目的を達する ことができる。仕切り同志の間隔及び仕切りと膜リーフとの間隔はスペーサーを 通すことにより調整し、保持することができる。[0013] As the means for preventing the partitions provided in the supply flow path and/or the discharge flow path from rotating together, For example, a rod-shaped body is provided in the flow path parallel to the flow path, and the protrusion of the partition plate is fitted into the rod-shaped body. The purpose is achieved by providing a smooth hole around the rod and passing it through the rod-shaped body. be able to. Use spacers to adjust the distance between the partitions and the distance between the partition and the membrane leaf. It can be adjusted and held by passing it through.

【0014】 本考案に用いられる膜リーフとしては、例えばポリエチレン、ポリプロピレン 等のポリオレフィン類、ポリビニルクロライド、ポリメチルメタクリレート、ポ リスチレン等のビニル重合体、ポリアミド、ポリイミド、ポリエステル、ポリカ ーボネート、ポリスルホン、ポリエーテルスルホン等の縮重合体等のプラスチッ クから成る平盤状成形体の表面または内層に透過液流路を設けたもの、或はこれ ら材料から成る平板状成形体にスクリーンメッシュや不織布等の多孔シートを重 ねたもの、或はプラスチック粒体又は金属粒体焼結板、或はスクリーンメッシュ 、樹脂加工した織布、ブリッスルから成る織布、及び不織布等の耐圧且つ流体流 路をもつ平盤状のものを膜支持体とし、この膜支持体の両表面にポリアクリロニ トリル系、ポリスルホン系、ポリアミド系、ポリオレフィン系等の限外濾過膜又 は精密濾過膜、セルロースアセテート系、架橋ポリアミド系等の逆浸透膜やその 他の選択透過機能を有する平盤状分離膜を重ね、外周をポリウレタン系やエポキ シ系等の接着剤で封止したものを挙げることができる。[0014] The membrane leaf used in this invention is made of polyethylene, polypropylene, etc. polyolefins such as polyvinyl chloride, polymethyl methacrylate, Vinyl polymers such as listyrene, polyamides, polyimides, polyesters, polycarbonates plastics such as polycarbonates, polysulfones, polyethersulfones, etc. A flat plate-shaped molded body consisting of a molded body with a permeate flow path on the surface or inner layer, or A perforated sheet such as a screen mesh or non-woven fabric is layered onto a flat plate-shaped molded body made of materials such as Glue, plastic granules, metal granules, sintered plate, or screen mesh , resin-treated woven fabrics, bristle woven fabrics, and non-woven fabrics that are resistant to pressure and fluid flow. The membrane support is a flat plate with channels, and polyacrylon is coated on both surfaces of the membrane support. Ultrafiltration membranes such as tolyl, polysulfone, polyamide, polyolefin, etc. reverse osmosis membranes such as microfiltration membranes, cellulose acetate membranes, cross-linked polyamide membranes, etc. Layer other flat separation membranes with selective permeation function, and coat the outer periphery with polyurethane or epoxy. Examples include those sealed with an adhesive such as a cylindrical adhesive.

【0015】 この様にして作製した膜リーフは、中空回転軸に嵌合し、その当接表面は弾性 O−リング、スペーサ、接着剤等で液密に封止する。一方、中空回転軸内空と支 持体の透過液流路とは回転軸壁に設けた小孔によって連通する様にする。又、本 考案においては、軽量且つ可撓性の仕切りが好適に用いられるが、その材料とし ては、例えばポリエチレン、ポリプロピレン等のポリオレフィン類、ポリビニル クロライド、ポリビニリデンクロライド、ポリテトラフルオロエチレン、ポリビ ニリデンフルオライド等のビニル重合体、ポリアミド、ポリイミド、ポリエステ ル等の縮合重合体、セルロースエステル等の有機高分子のフィルムまたはシート を挙げることができるが、これらに限定されるものではない。[0015] The membrane leaf prepared in this way is fitted onto a hollow rotating shaft, and its contact surface is elastic. Seal liquid-tight with an O-ring, spacer, adhesive, etc. On the other hand, the inside of the hollow rotating shaft and the supporting It communicates with the permeate flow path of the holder through a small hole provided in the wall of the rotating shaft. Also, books In the design, lightweight and flexible partitions are preferably used, but the materials used are For example, polyolefins such as polyethylene and polypropylene, polyvinyl Chloride, polyvinylidene chloride, polytetrafluoroethylene, polyvinylidene chloride Vinyl polymers such as nylidene fluoride, polyamides, polyimides, polyesters films or sheets of organic polymers such as cellulose esters, etc. These examples include, but are not limited to.

【0016】 本考案における仕切りは、その中心に回転軸の外径より太径の穴をもつ同心円 形状で、外周には係合のための突起等を有するものでも、或は円形に限定せず、 突起間を曲線又は直線で結ぶ多辺形でもよい。[0016] The partition in this invention is a concentric circle with a hole in its center that has a diameter larger than the outer diameter of the rotating shaft. The shape may have protrusions for engagement on the outer periphery, or it may not be limited to a circular shape. It may be a polygon in which the protrusions are connected by curves or straight lines.

【0017】 膜リーフと中空回転軸から成る構造体は、膜リーフを通常百枚以上積層するが 、膜エレメント長としては1〜3mが適当で実用的である。[0017] A structure consisting of membrane leaves and a hollow rotating shaft usually has more than 100 membrane leaves laminated. A suitable and practical membrane element length is 1 to 3 m.

【0018】[0018]

【実施例】【Example】

本考案の実施例を図1〜2に示す。図2の左半分(縦線のハッチング部)は膜 リーフ面を示し、右半分(縦・横線のハッチング部)は仕切り面を示している。 図1において、円盤状膜支持体7の両面に分離膜8を重ね、外周部を接着剤で接 合封止した円盤状分離膜リーフが環状スペーサ11を介して一定間隔に重ねられ、 中空回転軸4に嵌合固定されている。円盤状支持体7の両表面には放射状に溝が 設けられており、不織布で裏打ちした分離膜8との間に形成された透過液流路は 中空回転軸4に設けられた小孔6を介して回転軸中空部10と連通している。また 、膜リーフと中空回転軸4からなる膜エレメントは環状スペーサー11によって液 密に結合されている。各膜リーフ間には可撓性フィルムシートから打ち抜いた図 2(右半分)に示す両耳付き環状の仕切り5が予め挿入されており、膜エレメン トを円筒容器1に収納組み立てる際に、孔12を円筒容器の内壁面の軸に平行、且 つ軸に対称の位置に溝状に設けられた被処理液の供給流路13及び/又は排出流路 14内に設けられた共廻り防止棒15に通すことによって、仕切り5は回転が抑止さ れ、軸方向への変位は自由の状態で各膜リーフ間に位置する。 An embodiment of the invention is shown in FIGS. 1-2. The left half of Figure 2 (hatched area with vertical lines) is the membrane The leaf surface is shown, and the right half (vertical/horizontal hatched part) shows the partition surface. In FIG. 1, separation membranes 8 are stacked on both sides of a disc-shaped membrane support 7, and the outer periphery is bonded with adhesive. The sealed disk-shaped separation membrane leaves are stacked at regular intervals via annular spacers 11, It is fitted and fixed to the hollow rotating shaft 4. There are radial grooves on both surfaces of the disc-shaped support 7. The permeate flow path formed between the separation membrane 8 and the separation membrane 8 lined with a non-woven fabric is The hollow rotating shaft 4 communicates with a hollow portion 10 of the rotating shaft through a small hole 6 provided therein. Also , a membrane element consisting of a membrane leaf and a hollow rotating shaft 4 is separated from the liquid by an annular spacer 11. tightly coupled. Between each membrane leaf is a diagram punched from a flexible film sheet. The annular partition 5 with both ears shown in 2 (right half) is inserted in advance, and the membrane element When storing and assembling the cylindrical container 1, the hole 12 should be parallel to the axis of the inner wall of the cylindrical container, and A supply flow path 13 and/or a discharge flow path for the liquid to be treated, which are provided in a groove shape at positions symmetrical about two axes. The rotation of the partition 5 is prevented by passing it through the anti-rotation rod 15 provided inside the partition 14. The membrane leaves are located between each membrane leaf in a state where displacement in the axial direction is free.

【0019】 被処理液は円筒容器1の片端部に設けられた液体導入口2から被処理液の供給 流路13に、実質的に圧損なしで流入し、回転している膜リーフの表面と回転して いない仕切り5の間を通り、膜透過液を失って被処理液排出流路14に到り、濃縮 物排出口3から流れ出る。[0019] The liquid to be treated is supplied from the liquid inlet 2 provided at one end of the cylindrical container 1. It enters channel 13 with virtually no pressure drop and rotates with the surface of the rotating membrane leaf. It passes between the empty partitions 5, loses the membrane permeate and reaches the treated liquid discharge channel 14, where it is concentrated. The material flows out from the material discharge port 3.

【0020】 中空回転軸4は、軸受け16で支持され、プーリー17を介して駆動ベルト(図示 しない)等によりモータで回転される。[0020] The hollow rotating shaft 4 is supported by a bearing 16 and is connected to a drive belt (not shown) via a pulley 17. Rotated by a motor.

【0021】 本実施例では仕切り5は軸方向に変位自由であるが、仕切り5間にも別途スペ ーサーを挿入することで軸方向の位置を共廻り防止棒15の位置で固定することも 可能である。[0021] In this embodiment, the partitions 5 can be freely displaced in the axial direction, but a separate space is also provided between the partitions 5. It is also possible to fix the axial position at the position of the co-rotation prevention rod 15 by inserting a It is possible.

【0022】[0022]

【考案の効果】[Effect of the idea]

本考案は、被処理液を並列供給、排出することにより、流動圧損を大幅に軽減 できるものであり、その効果は膜リーフ数の略自乗に比例して大きくなる。 This invention significantly reduces flow pressure loss by supplying and discharging the liquid to be treated in parallel. The effect increases approximately in proportion to the square of the number of membrane leaves.

【0023】 即ち、本考案装置と直列に被処理液が供給、排出される従来装置とを、同一の 膜リーフ数で同一流量の被処理液を流入させる場合について比較すると、本考案 のものは、並列給液により供給流量が各々の膜リーフに分流されるため、流量が 膜リーフ1枚毎に全量供給されていく従来のものに比し、膜リーフ1枚当りの供 給量が少なくなることによる膜リーフ数に略比例する圧損軽減効果と、流路長さ が膜リーフ長さの積層数倍になる従来のものに比し、本考案のものは1枚分の膜 リーフ長さですむことによる膜リーフ数に略比例する圧損軽減効果との重奏効果 、及び流路の折れ曲がりが非常に少ないことによる圧損軽減効果を奏するもので ある。[0023] In other words, the device of the present invention and the conventional device in which the liquid to be treated is supplied and discharged in series are the same. Comparing cases where the same flow rate of liquid to be treated flows in with the number of membrane leaves, the present invention With parallel liquid supply, the supply flow rate is divided to each membrane leaf, so the flow rate is reduced. Compared to the conventional system where the entire amount is supplied to each membrane leaf, the supply per membrane leaf is reduced. The pressure drop reduction effect is approximately proportional to the number of membrane leaves due to a decrease in the supply amount, and the flow path length Compared to the conventional method, in which the number of layers is multiplied by the length of the membrane leaf, the inventive method has the same number of layers as the length of the membrane leaf. Coupled with the pressure drop reduction effect that is approximately proportional to the number of membrane leaves due to the leaf length , and has the effect of reducing pressure loss due to very few bends in the flow path. be.

【0024】 また、仕切りを供給、排出流路で繋留することによって、膜リーフと容器のク リアランスを小さくし、コンパクト化できるうえ、さらに仕切り及び/又は膜リ ーフを可撓性とすれば、異物によって流路が閉塞した場合に一時的に膜リーフ及 び/又は仕切りが撓んで流路を拡張することにより、閉塞物を通過させることが 可能となり、流路閉塞を防止する効果も期待できる。[0024] In addition, by connecting the partitions with the supply and discharge channels, the membrane leaf and container can be closed. In addition to reducing the clearance and making it more compact, it is also possible to If the membrane leaf is flexible, the membrane leaf and and/or the partition flexes and expands the flow path, making it possible to pass through the blockage. This can be expected to be effective in preventing flow path blockages.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の一実施例を示す装置の縦断側面図であ
る。
FIG. 1 is a longitudinal sectional side view of an apparatus showing an embodiment of the present invention.

【図2】本考案の装置の横断面を示した断面図である。FIG. 2 is a sectional view showing a cross section of the device of the present invention.

【図3】従来の回転式膜分離装置の縦断側面図である。FIG. 3 is a longitudinal cross-sectional side view of a conventional rotary membrane separator.

【符号の説明】[Explanation of symbols]

1 円筒容器 2 液体導入口 3 濃縮物排出口 4 中空回転軸 5 仕切り 6 小孔 7 円盤状膜支持体 8 分離膜 9 膜リーフ内部 10 回転軸中空部 11 環状スペーサー 12 穴 13 供給流路 14 排出流路 15 共廻り防止棒 16 軸受け 17 プーリー 1 Cylindrical container 2 Liquid inlet 3 Concentrate outlet 4 Hollow rotating shaft 5 Partition 6 small hole 7 Disc-shaped membrane support 8 Separation membrane 9 Inside the membrane leaf 10 Rotating shaft hollow part 11 Annular spacer 12 holes 13 Supply channel 14 Discharge channel 15 Co-rotation prevention rod 16 Bearing 17 Pulley

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 内部に膜透過液流路を有する平盤状支持
体の両面に分離膜を具え、外周部は液密に封止して成る
膜リーフを一定間隔で中空回転軸に貫通し、該膜リーフ
の透過液流路と該中空回転軸の中空部とは回転軸壁の小
孔を介して連通し、且つ外部とは液密に封止されて成る
膜エレメントを容器内に回転可能な様に配し、該膜リー
フ間には固定平盤状仕切りを有する回転式膜分離装置に
おいて、各膜リーフに被処理液を並列に供給し、排出さ
せる構造の供給流路と排出流路とを該容器に回転軸と平
行に設けてなることを特徴とする回転式膜分離装置。
Claim 1: A hollow rotary shaft is provided with membrane leaves at regular intervals, which are provided with separation membranes on both sides of a flat support having a membrane permeate flow path therein, and whose outer periphery is liquid-tightly sealed. The permeate flow path of the membrane leaf and the hollow part of the hollow rotating shaft communicate with each other through a small hole in the rotating shaft wall, and a membrane element that is liquid-tightly sealed from the outside is rotated into a container. In a rotary membrane separator that has fixed flat partitions between the membrane leaves, the supply flow path and discharge flow are structured so that the liquid to be treated is supplied to and discharged from each membrane leaf in parallel. 1. A rotary membrane separation device, characterized in that a channel is provided in the container in parallel with a rotation axis.
【請求項2】 供給流路と排出流路を回転軸に対して対
称で互いに向かい合う位置に設けてなることを特徴とす
る請求項1記載の回転式膜分離装置。
2. The rotary membrane separation apparatus according to claim 1, wherein the supply flow path and the discharge flow path are provided at positions facing each other symmetrically with respect to the rotation axis.
【請求項3】 平盤状仕切りが、可撓性で回転軸方向に
変位可能であることを特徴とする請求項1記載の回転式
膜分離装置。
3. The rotary membrane separator according to claim 1, wherein the flat partition is flexible and movable in the direction of the rotation axis.
【請求項4】 平盤状仕切りの共廻り防止を供給流路及
び/又は排出流路に設けた繋留手段によって行うことを
特徴とする請求項1記載の回転式膜分離装置。
4. The rotary membrane separator according to claim 1, wherein the prevention of co-rotation of the flat partitions is achieved by anchoring means provided in the supply channel and/or the discharge channel.
JP1991038455U 1991-05-28 1991-05-28 Rotary membrane separator Expired - Lifetime JP2512582Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991038455U JP2512582Y2 (en) 1991-05-28 1991-05-28 Rotary membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991038455U JP2512582Y2 (en) 1991-05-28 1991-05-28 Rotary membrane separator

Publications (2)

Publication Number Publication Date
JPH04131435U true JPH04131435U (en) 1992-12-03
JP2512582Y2 JP2512582Y2 (en) 1996-10-02

Family

ID=31919959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991038455U Expired - Lifetime JP2512582Y2 (en) 1991-05-28 1991-05-28 Rotary membrane separator

Country Status (1)

Country Link
JP (1) JP2512582Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865179A (en) * 1971-12-06 1973-09-08
JPS6042222A (en) * 1983-08-15 1985-03-06 モビル オイル コ−ポレ−シヨン Treatment of zeolites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865179A (en) * 1971-12-06 1973-09-08
JPS6042222A (en) * 1983-08-15 1985-03-06 モビル オイル コ−ポレ−シヨン Treatment of zeolites

Also Published As

Publication number Publication date
JP2512582Y2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US5275725A (en) Flat separation membrane leaf and rotary separation apparatus containing flat membranes
US4756835A (en) Permeable membranes having high flux-density and low fouling-propensity
US5985146A (en) Sanitary rigid shell spiral wound element
US4855058A (en) High recovery spiral wound membrane element
US4802982A (en) Spiral-wound membrane with improved permeate carrier
US4990248A (en) Reverse osmosis apparatus
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
US5137637A (en) Rotational high flux membrane device
EP0251620B1 (en) Spiral wound membrane filtration device and filtration method using such device
JP6728171B2 (en) Membrane cartridge with integrated functions
JP6475326B2 (en) A spiral filtration assembly including an integral bioreactor
US10335737B2 (en) Filtration assembly including spiral wound bioreactors and membrane modules positioned in separate pressure vessels
US10286361B2 (en) Filtration assembly including spiral wound bioreactors and hyperfiltration membrane modules
US20190388839A1 (en) Spiral wound membrane rolls and modules
US4761229A (en) Multi-leaf membrane module
EP0367774B1 (en) Reverse osmosis apparatus
US3737043A (en) Membrane module
JP2019510623A (en) Bioreactor assembly
JPH11114381A (en) Spiral type membrane element
JP2526398Y2 (en) Rotary flat membrane separator
JPH04131435U (en) Rotary membrane separator
US3682318A (en) Tubular ultrafiltration membrane and support
US20210205759A1 (en) Potted flat sheet membrane filtration module
JP2994768B2 (en) Reciprocating membrane separation device
JP3041082B2 (en) Rotating flat membrane separation module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323532

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350