JPH04131310A - Manufacture of high purity steel powder - Google Patents

Manufacture of high purity steel powder

Info

Publication number
JPH04131310A
JPH04131310A JP2253325A JP25332590A JPH04131310A JP H04131310 A JPH04131310 A JP H04131310A JP 2253325 A JP2253325 A JP 2253325A JP 25332590 A JP25332590 A JP 25332590A JP H04131310 A JPH04131310 A JP H04131310A
Authority
JP
Japan
Prior art keywords
copper
powder
treatment
iron
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2253325A
Other languages
Japanese (ja)
Inventor
Tadao Kitazawa
北沢 忠雄
Toshitaka Inatomi
稲富 俊隆
Nobuhiro Momotake
百武 信弘
Katsumasa Mito
三戸 克正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTECIRIE CORP Ltd
Nippon Steel Corp
Original Assignee
ASTECIRIE CORP Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTECIRIE CORP Ltd, Nippon Steel Corp filed Critical ASTECIRIE CORP Ltd
Priority to JP2253325A priority Critical patent/JPH04131310A/en
Publication of JPH04131310A publication Critical patent/JPH04131310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture high purity copper powder by executing four processes of metallic copper precipitation, magnetic separating treatment, reduction treatment and drying treatment after forming oxidation preventing film to iron chloride solution containing copper. CONSTITUTION:Into the iron chloride solution containing copper, iron powder is charged and the metallic copper is precipitated and deposited (the first process), and this is taken out and after executing water washing treatment, the magnetic separating treatment is executed (the second process), and the reduction treatment is executed to the copper powder executing the magnetic separating treatment by using hydrogen gas (the third process), and after applying the oxidation preventing film on the copper powder, the drying treatment is executed (the fourth process). By this method, the copper fine powder having high purity and even particle size can be comparatively easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銅を含む塩化鉄溶液(塩化鉄廃液も含む)か
ら高純度の銅粉を製造する方法に関する〔従来の技術〕 一般的に廃液中の有価元素を回収する方法にっいては古
くから種々の方法が提案されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing high-purity copper powder from a copper-containing iron chloride solution (including iron chloride waste liquid) [Prior Art] Generally, Various methods have long been proposed for recovering valuable elements from waste liquid.

その代表的なものとして、特開昭41−123926号
公報に示すように、銅を含む溶液に黄銅鉱等を添加し、
100〜200°Cにて加圧反応させ銅を硫化物として
回収する方法が提案されている。
As a typical example, as shown in JP-A-41-123926, chalcopyrite etc. are added to a solution containing copper,
A method has been proposed in which copper is recovered as sulfide through a pressure reaction at 100 to 200°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の方法で銅を硫化物として回収して
も、純銅を得るには更に二次処理を行う必要があり、し
かも微粒tR粉を得ることは困難であるという問題点が
あった。
However, even if copper is recovered as sulfide by the above method, there is a problem in that it is necessary to further perform a secondary treatment to obtain pure copper, and it is difficult to obtain fine tR powder.

本発明はこのような事情に鑑みなされたもので、製造方
法が比較的容易でしかも純度の高い銅粉を製造する方法
を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for producing copper powder that is relatively easy to produce and has high purity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に沿う本発明に係る高純度銅粉の製造方法は、
銅を含む塩化鉄溶液に鉄粉を投入して金属銅を析出沈澱
させる第1工程と、該沈澱物を取り出し水洗処理を行っ
た後磁選処理を行う第2工程と、該磁選処理を行った銅
粉を水素ガスを使用する還元処理を行う第3工程と、該
還元処理された銅粉を酸化防止被膜を施し乾燥処理する
第4工程とを有して構成されている。
The method for producing high-purity copper powder according to the present invention that meets the above objectives is as follows:
A first step in which iron powder is put into an iron chloride solution containing copper to precipitate metallic copper, a second step in which the precipitate is taken out and washed with water, and then subjected to magnetic separation treatment, and the magnetic separation treatment is performed. The method includes a third step in which the copper powder is subjected to a reduction treatment using hydrogen gas, and a fourth step in which the reduced copper powder is coated with an antioxidant coating and dried.

なお、上記鉄粉には、通常の機械処理(場合によっては
化学処理)によって製造される鉄粉の他、転炉回収精製
鉄粉(OGPという)を使用することも可能である。特
に、OGPを用いると他の鉄粉と異なり、活性表面の形
状とその形状特性(球状)から微粉鋼を得やすく好まし
い。
Note that, in addition to iron powder produced by ordinary mechanical processing (or chemical processing in some cases), it is also possible to use converter recovered refined iron powder (referred to as OGP) as the above-mentioned iron powder. In particular, it is preferable to use OGP because, unlike other iron powders, it is easy to obtain fine powder steel because of the shape of the active surface and its shape characteristics (spherical shape).

また、前記の第1工程における沈澱物を、例えばエーキ
ンス等の水洗処理にかえて、湿式サイクロンを用いて分
級し得られる回収物を磁選処理する第2工程を用いると
、微粒銅粉が得易く良好な結果を発揮できる。
In addition, if the second step of classifying the precipitate in the first step, for example, using a wet cyclone and magnetic separation treatment of the recovered material is used, instead of washing the precipitate with water such as Eakins, it is easier to obtain fine copper powder. Can produce good results.

〔作用〕[Effect]

第1工程においては塩化鉄系溶液に鉄粉を加えることに
よって次の反応によって銅が析出する。
In the first step, copper is precipitated by the following reaction by adding iron powder to the iron chloride solution.

2FeCI3  + Fe  −+ 3FeC1zCu
C1z   +  Fe   −+  FeCIz  
+Cu生した銅は過剰に投入された鉄粉の周囲に付着ま
たは銅単体で析出して沈澱する。この時の溶液の温度は
40〜1. O0°C3ORP C酸化還元電位)はO
〜〜350mV程度で行うのが好ましい。
2FeCI3 + Fe −+ 3FeC1zCu
C1z + Fe − + FeCIz
The +Cu produced copper adheres to the periphery of the excessively charged iron powder or precipitates as a single copper. The temperature of the solution at this time was 40-1. O0°C3ORP C redox potential) is O
It is preferable to conduct the test at a voltage of about 350 mV.

次に、第2工程において該沈澱物を取り出し水洗処理を
行うことによって、付着する塩素骨を除去し、次に磁選
処理を行うことによって、含有する鉄分を含む硼着分が
完全に除去され、銅粉が回収される。
Next, in the second step, the precipitate is taken out and washed with water to remove the attached chlorine bones, and then subjected to magnetic separation to completely remove the iron-containing boron content. Copper powder is collected.

第3工程においては、上記工程によって製造された銅粉
を水素ガスを用い100°C以1に加熱して還元する。
In the third step, the copper powder produced in the above step is reduced by heating to 100° C. or higher using hydrogen gas.

この反応を以下に示す。This reaction is shown below.

CuO+82  →Cu + H2O これによって一部酸化されている銅が還元された純銅と
なるので、第4工程において、再度酸化しないように、
酸化防止剤を加えて表面に酸化防止膜を作り、酸化防止
膜が破壊しない程度の温度で加熱し乾燥処理を行う。こ
れによって、99.9%以上の純銅を製造できる。
CuO+82 →Cu + H2O As a result, the partially oxidized copper becomes reduced to pure copper, so in the fourth step, to prevent it from oxidizing again,
An antioxidant is added to form an antioxidant film on the surface, and the material is heated and dried at a temperature that does not destroy the antioxidant film. This makes it possible to produce 99.9% or more pure copper.

また、第2工程において沈澱物をサイクロンで分級する
ことにより不純物を分離して高純度化が図れる。これは
第2工程の水洗処理にエーキンスを用いた場合番よその
機構上供給水が多量となり、その流速に伴って銅粉のキ
ャリーオーバーが発生するのに対し、湿式サイクロンは
小量のオーバーフロー水にできることからキャリーオー
バーの防止と共に分級粒度が任意に選択できる等の利点
がある。
Furthermore, in the second step, by classifying the precipitate with a cyclone, impurities can be separated and high purity can be achieved. This is because when Akins is used for the water washing process in the second step, a large amount of water is supplied due to the mechanism, and carryover of copper powder occurs due to the flow rate, whereas wet cyclone uses a small amount of overflow water. This has advantages such as prevention of carryover and the ability to arbitrarily select the classification particle size.

C実施例〕 続いて、添付した図面を参照しつつ、本発明を具体化し
た実施例につき説明し、本発明の理解に供する。
C Embodiment] Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.

まず、塩化鉄系溶液の一例である塩化鉄系廃液(例えば
、エツチング廃液)10を用意し、撹拌槽11に入れて
鉄粉の一例である転炉回収精製鉄粉を投入しながら、攪
拌する。なお、この場合にORPは0〜−350+V程
度を保持し、溶液の温度は40〜100 ”Cになるよ
うに周囲から温水あるいは電気によって加熱する構造と
しておく。
First, an iron chloride-based waste liquid (e.g., etching waste liquid) 10, which is an example of an iron chloride-based solution, is prepared, placed in a stirring tank 11, and stirred while adding recovered and refined iron powder recovered from a converter, which is an example of iron powder. . In this case, the ORP is maintained at about 0 to -350+V, and the solution is heated from the surroundings with hot water or electricity so that the temperature is 40 to 100''C.

これによって前記した化学式によって示すように塩化鉄
系廃液中に含まれている銅が析出し懸濁液となるので、
別に用意された沈澱槽12に入れて沈澱物を取り出し容
器I3に入れる。この場合、回収した沈澱物14が酸化
しないように容器13に水張りをしておくのが好ましい
As a result, the copper contained in the iron chloride waste liquid precipitates and becomes a suspension, as shown by the chemical formula above.
The mixture is placed in a separately prepared sedimentation tank 12, and the precipitate is taken out and placed in a container I3. In this case, it is preferable to fill the container 13 with water so that the recovered precipitate 14 is not oxidized.

次に、この沈澱物14姦こは塩素骨が含まれている(8
〜10%程度)ので、水洗いすることによって除去する
必要があるが、該エーキンス16によって徐々に上部に
攪拌移動させながら行う。この場合、沈澱物14がエー
キンス16によって掻き上げられる1m以内の部分に水
放出口を配置して充分に塩化物溶液を除去するようにす
ると共に、該播き上げられた沈澱物14が空気に触れる
と酸化するので、エーキンス16の上部にて酸化防止剤
(芝池工業株式会社会社製BT−7)を混合して、個々
の粒子を酸化防止剤の被膜によって覆うようにし、容器
17に集める。なお、上記エーキンスにて撹拌能力が不
足する場合には、エアバブリングあるいは酸化を防止す
るため窒素ガスバブリングを行うことも可能である。こ
れによって塩素骨が0.05%以下となる。
Next, this sediment 14 contains chlorine bones (8
~10%), so it is necessary to remove it by washing with water, but this is done while stirring and moving it gradually to the top using the Akins 16. In this case, a water outlet is placed within 1 m from where the precipitate 14 is scraped up by the Eakins 16 to sufficiently remove the chloride solution, and the flung precipitate 14 is exposed to the air. Therefore, an antioxidant (BT-7 manufactured by Shibaike Kogyo Co., Ltd.) is mixed in the upper part of the Akins 16 so that each particle is covered with a film of the antioxidant, and collected in a container 17. In addition, if the stirring capacity of the above-mentioned Akins is insufficient, it is also possible to perform air bubbling or nitrogen gas bubbling to prevent oxidation. This reduces the chlorine content to 0.05% or less.

次乙こ、該容器に集められた沈澱物(銅分を65%前後
、鉄分を20%程度含む)を磁力選別機1日によって磁
選処理を行うが、この磁力選別機18は寞施例シこおい
ては2000〜10000ガウス程度の磁場を発生する
装置を使用した。該磁力選別機18の磁場を強くし、複
数回(5回以上)通過させることによって、最終製品と
して99%以上の純度を有する純銅粉が回収できる。
Next, the precipitate (containing about 65% copper and about 20% iron) collected in the container is subjected to magnetic separation using a magnetic separator 18. Here, a device that generates a magnetic field of about 2,000 to 10,000 Gauss was used. By increasing the magnetic field of the magnetic separator 18 and passing it through multiple times (5 or more times), pure copper powder having a purity of 99% or more can be recovered as a final product.

次に、該銅粉中には銅の酸化物を含むので、水素ガス中
に入れて高温度(約800”C)で7〜8Hの還元処理
を行う。この場合付着していた酸化防止膜は150’C
程度で破れ気化して無くなる。
Next, since the copper powder contains copper oxide, it is placed in hydrogen gas and subjected to a 7-8H reduction treatment at a high temperature (approximately 800"C). In this case, the anti-oxidation film that was attached is 150'C
It will break and vaporize and disappear.

この後、還元された銅粉を非酸化性雰囲気にて冷却し、
再度上記酸化防止剤をかけて銅粉の表面に酸化防止被膜
を形成させる。
After that, the reduced copper powder is cooled in a non-oxidizing atmosphere,
The above antioxidant is applied again to form an antioxidant coating on the surface of the copper powder.

この場合の酸化防止剤の混入は、上記エーキンスによっ
て行っても良いが、前原料の混入等を防止するため、別
設備でエーキンスを用意することも可能であり、更には
ミキサー等で酸化防止剤を所定量混入するようにしても
良い。
In this case, the antioxidant may be mixed in using the Akins mentioned above, but in order to prevent the mixing of previous raw materials, it is also possible to prepare the Akins in separate equipment, and furthermore, the antioxidant may be mixed in with a mixer etc. may be mixed in a predetermined amount.

次に、この酸化防止被膜が形成された銅粉を気流によっ
て乾燥する。この場合の乾燥温度は150°Cを越える
と酸化防止被膜が破壊されるので、通常は120°C程
度の熱風を使用して乾燥を行うこのようにして、製造さ
れた銅微粉の粒度は20〜30μm程度であった。
Next, the copper powder with the anti-oxidation coating formed thereon is dried by airflow. In this case, if the drying temperature exceeds 150°C, the antioxidant coating will be destroyed, so drying is usually done using hot air at about 120°C.The particle size of the fine copper powder produced in this way is 20°C. It was about ~30 μm.

また、この実施例においては、原料として塩化鉄系廃液
を使用したが、銅を溶解させた塩化鉄溶液を使用するこ
とも可能であり、更には鉄粉としてOGPを使用したが
、通常の精製鉄粉を使用することも可能である。更に、
本実施例では水洗処理としてエーキンスの場合について
述べたが、これに加えて湿式サイクロンで洗浄分離し沈
澱物を回収して前記同様に処理した場合も行った結果、
銅純度99.9%以上で、且つエーキンスよりも高い回
収歩留りが得られた。
In addition, in this example, iron chloride-based waste liquid was used as the raw material, but it is also possible to use an iron chloride solution in which copper is dissolved.Furthermore, OGP was used as the iron powder, but ordinary refined It is also possible to use iron powder. Furthermore,
In this example, the case of Eakins was described as the water washing process, but in addition to this, a case where the precipitate was washed and separated using a wet cyclone and the precipitate was collected and treated in the same manner as described above was also carried out.
A copper purity of 99.9% or more and a higher recovery yield than Ekins were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に係る高純度銅粉の製造方法は以上の説明からも
明らかなように、高純度で粒の揃った微粉が比較的簡単
な設備で製造できることが分かった。
As is clear from the above explanation, the method for producing high-purity copper powder according to the present invention has been found to be able to produce fine powder with high purity and uniform grains using relatively simple equipment.

また、塩化鉄系溶液として、エンチング廃液を使用し、
鉄粉として転炉回収精製鉄粉を使用することも可能であ
るので、これによって廃棄物の資源としての再生が有効
に行われることになる。
In addition, enching waste liquid is used as an iron chloride solution,
Since it is also possible to use converter recovered and purified iron powder as the iron powder, this allows effective recycling of waste as a resource.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る高純度銅粉の製造方法
を示すフロー図である。 (符号の説明〕 10− 塩化鉄系廃液、11− 撹拌槽、12−一−−
=−沈澱槽、13−−−容器、14沈澱物、16 −一
−−−エーキンス、17−−−容器、18−−−−−一
 磁力選別機
FIG. 1 is a flow diagram showing a method for producing high-purity copper powder according to an embodiment of the present invention. (Explanation of symbols) 10- Iron chloride waste liquid, 11- Stirring tank, 12-1--
=-Sedimentation tank, 13--Container, 14 Precipitate, 16-1--Akins, 17--Container, 18--Magnetic separator

Claims (1)

【特許請求の範囲】[Claims] (1)銅を含む塩化鉄溶液に鉄粉を投入して金属銅を析
出沈澱させる第1工程と、該沈澱物を取り出し水洗処理
を行った後磁選処理を行う第2工程と、該磁選処理を行
った銅粉を水素ガスを使用する還元処理を行う第3工程
と、該還元処理された銅粉を酸化防止被膜を施し乾燥処
理する第4工程とを有してなることを特徴とする高純度
銅粉の製造方法。
(1) A first step in which iron powder is added to an iron chloride solution containing copper to precipitate metallic copper, a second step in which the precipitate is taken out and washed with water, and then subjected to magnetic separation treatment; and the magnetic separation treatment The method is characterized by comprising a third step of subjecting the reduced copper powder to a reduction treatment using hydrogen gas, and a fourth step of applying an antioxidant coating to the reduced copper powder and drying it. A method for producing high-purity copper powder.
JP2253325A 1990-09-22 1990-09-22 Manufacture of high purity steel powder Pending JPH04131310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253325A JPH04131310A (en) 1990-09-22 1990-09-22 Manufacture of high purity steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253325A JPH04131310A (en) 1990-09-22 1990-09-22 Manufacture of high purity steel powder

Publications (1)

Publication Number Publication Date
JPH04131310A true JPH04131310A (en) 1992-05-06

Family

ID=17249738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253325A Pending JPH04131310A (en) 1990-09-22 1990-09-22 Manufacture of high purity steel powder

Country Status (1)

Country Link
JP (1) JPH04131310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066586A (en) * 2007-09-14 2009-04-02 Trinity Resources Technology Holding Inc Waste liquid treating method, waste liquid treating apparatus and waste liquid treating system
JP2011195954A (en) * 2010-02-25 2011-10-06 Hitoshi Arai Method for producing fine copper powder, and copper conductive paste using the fine copper powder produced by the production method
JP2013177677A (en) * 2012-01-30 2013-09-09 Furukawa Electric Co Ltd:The Method for producing copper fine particle, copper fine particle dispersion, and method for preserving copper fine particle dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066586A (en) * 2007-09-14 2009-04-02 Trinity Resources Technology Holding Inc Waste liquid treating method, waste liquid treating apparatus and waste liquid treating system
JP4714206B2 (en) * 2007-09-14 2011-06-29 トリニティ リソーシズ テクノロジー ホールディング,インク. Waste liquid treatment method, waste liquid treatment apparatus, and waste liquid treatment system
JP2011195954A (en) * 2010-02-25 2011-10-06 Hitoshi Arai Method for producing fine copper powder, and copper conductive paste using the fine copper powder produced by the production method
JP2013177677A (en) * 2012-01-30 2013-09-09 Furukawa Electric Co Ltd:The Method for producing copper fine particle, copper fine particle dispersion, and method for preserving copper fine particle dispersion

Similar Documents

Publication Publication Date Title
JP2000515585A (en) Mineral leaching process at atmospheric pressure
JPH10503552A (en) Chemical value recovery method from industrial waste
Zhou et al. A kinetic study of the leaching of a low-grade niobium–tantalum ore by concentrated KOH solution
Sinha et al. Recovery of manganese from ferruginous manganese ore using ascorbic acid as reducing agent
Martinez et al. Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process
US5762891A (en) Process for stabilization of arsenic
CA1040434A (en) Post-treatment of ilmenite ore subjected to selective chlorination treatment
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
Priya et al. High-purity copper recycled from smelter dust by sulfation roasting, water leaching and electrorefining
JP2002511527A (en) Steel mill dust treatment method by wet processing
Shariat et al. Rhenium recovery from Sarcheshmeh molybdenite concentrate
Abou-El-Sherbini Simultaneous extraction of manganese from low grade manganese dioxide ore and beneficiation of sulphur slag
JPH04131310A (en) Manufacture of high purity steel powder
Li et al. Preparation of ZnSO4· 7H2O and separation of zinc from blast furnace sludge by leaching-purification-crystallization method
Liu et al. Removal of cadmium and arsenic from Cd-As-Pb-bearing dust based on peroxide leaching and coprecipitation
US5082638A (en) Process of recovering non-ferrous metal values, especially nickel, cobalt, copper and zinc, by using melt and melt coating sulphation, from raw materials containing said metals
Mukongo et al. Zinc recovery from the water-jacket furnace flue dusts by leaching and electrowinning in a SEC-CCS cell
EP0175824A1 (en) Production of fine spherical copper powder
US4645532A (en) Production of fine spherical copper powder
Cao et al. Separation and recovery of iron and arsenic from acid leaching wastewater by valence state transformation
Liu et al. Effect of solution potential on selective separation of metals from acid wastewater by controlling potential
CA1180902A (en) Process for recovering metals
US1937633A (en) Process of treating zinc ores
US2031947A (en) Process for the refining of alloys
US3744990A (en) Process for the beneficiation of waste copper slag by removal and recovery of its content of copper and zinc