JPH04131168A - Dry classifier - Google Patents

Dry classifier

Info

Publication number
JPH04131168A
JPH04131168A JP25314290A JP25314290A JPH04131168A JP H04131168 A JPH04131168 A JP H04131168A JP 25314290 A JP25314290 A JP 25314290A JP 25314290 A JP25314290 A JP 25314290A JP H04131168 A JPH04131168 A JP H04131168A
Authority
JP
Japan
Prior art keywords
gas
normal
air
viscosity
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25314290A
Other languages
Japanese (ja)
Inventor
Yoshihiro Maekawa
前川 義裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP25314290A priority Critical patent/JPH04131168A/en
Publication of JPH04131168A publication Critical patent/JPH04131168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To permit particles to be classified into more ultra-fine particles than attained by the conventional dry classifier by a method wherein, in a dry classifier for classifying the particles while carrying the same by a gaseous stream, the gaseous stream consists of the gas lower in viscosity than the air at normal temp. CONSTITUTION:In a dry classifier A for classifying particles while carrying the same by a gaseous stream, the gaseous stream consists of the gas lower in viscosity than the air at ordinary temp. In addition to cooled air, there are used as the aforesaid gas at least one kind of the gases or vapors selected from hydrogen, nitrogen, methane, ethane, propane, normal butane, normal pentane, normal hexane, normal heptane, normal octane, ethylene, propylene, carbon tetrachloride and chlorofluorocarbon. When the dew point of the aforesaid gas is not higher than its normal temp., it is a low temp. gas lower in viscosity than the normal temp. air. As a result, this method permits the particles to be classified inexpensively into more ultra-fine particles than attained by the conventional dry classifier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 2゜ 本発明は粉体の乾式分級機に関し、詳しくは粒子を気流
で搬送させながら分級する乾式分級機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] 2. The present invention relates to a dry classifier for powder, and more particularly to a dry classifier that classifies particles while being conveyed by an air current.

〔従来の技術〕[Conventional technology]

一般に、乾式分級機、例えば遠心分級機の限外粒径dt
hは、次式で表される。
Generally, the extreme particle size dt of a dry classifier, such as a centrifugal classifier
h is expressed by the following formula.

ここに、u、dは選別面の円周速度、μは気体粘度、r
は中心軸より選別面への半径、urは選別面に流入する
気体の半径方向の線速度、ρSは粉体の密度、ρは気体
の密度である。
Here, u and d are the circumferential velocity of the sorting surface, μ is the gas viscosity, and r
is the radius from the central axis to the sorting surface, ur is the linear velocity of the gas flowing into the sorting surface in the radial direction, ρS is the density of the powder, and ρ is the density of the gas.

乾式分級機の分級しうる限外粒径dthを、より小さく
する要求は極めて高いものかあり、従来は、遠心分級機
の回転速度を高めたり、つまり(1)式の選別面の円周
速度udを大きくしたり、半径rを大きくしたり、線速
度urを小さくしたりしていた。
There is an extremely high demand for reducing the ultimate particle diameter dth that can be classified by a dry classifier. The ud was increased, the radius r was increased, and the linear velocity ur was decreased.

そして、気体としては常温空気か用いられていた。The gas used was room temperature air.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、上記従来の乾式分級機において、(1)
式の選別面の円周速度ud、半径rをより大きくするこ
とは設備的に多大の費用を要し、しかも設備にも限界か
あり、線速度urを小さくするほど分級の精度は低下の
傾向を示し、あるいはいわゆる”トビ”と称する異状粗
大粒子の微粉域への混入チャンスを増大させるなと、こ
の方法によってはもはや限外粒径dthを小さくするこ
とはてきないという問題かあった。
However, in the above conventional dry classifier, (1)
Increasing the circumferential speed ud and radius r of the sorting surface in the formula requires a large amount of equipment costs, and there is also a limit to the equipment, and as the linear speed ur decreases, the accuracy of classification tends to decrease. There is a problem in that it is no longer possible to reduce the ultimate particle size dth by this method unless the chance of abnormal coarse particles, so-called "kite", being mixed into the fine powder region is increased.

そこで、上記従来技術の有する問題点を解決するため、
本発明は、多大の費用をかけることなく、従来の乾式分
級機ては実現できなかった更に小さい限外粒径dthに
分級しうる乾式分級機を提供することを目的とする。
Therefore, in order to solve the problems of the above-mentioned conventional technology,
An object of the present invention is to provide a dry classifier that can classify particles into even smaller ultraparticle diameters dth that could not be achieved with conventional dry classifiers without incurring a large amount of expense.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明にかかる乾式分級機の
特徴構成は、冒記〔産業上の利用分野〕に記載の乾式分
級機において、搬送気流か常温空気よりも粘度の低い気
体からなる点にある。
In order to achieve the above object, the characteristic structure of the dry classifier according to the present invention is that, in the dry classifier described in the above [Industrial Application Field], the conveying air stream is made of a gas having a lower viscosity than normal temperature air. It is in.

前記気体か、水素、窒素、メタン、エタン、プロパン、
ノルマルブタン、ノルマルペンタン、ノルマルヘキサン
、ノルマルヘプタン、ノルマルオクタン、エチレン、プ
ロピレン、四塩化炭素、フロンなどから選はれた1種ま
たは2種以上のガスまたは蒸気であると都合がよい。
The above gases include hydrogen, nitrogen, methane, ethane, propane,
It is convenient to use one or more gases or vapors selected from normal butane, normal pentane, normal hexane, normal heptane, normal octane, ethylene, propylene, carbon tetrachloride, chlorofluorocarbon, and the like.

又、これらの気体を大気圧下て取扱う場合は沸点か常温
以上の液体の蒸気、たとえばノルマルブタン、ノルマル
ペンタン、ノルマルヘキサン、ノルマルオクタン、四塩
化炭素、フロンなどの蒸気は比較的低い温度で取扱って
も蒸気の凝縮を生ずることがない利点かある。
Also, when handling these gases under atmospheric pressure, liquid vapors above the boiling point or room temperature, such as n-butane, n-pentane, n-hexane, n-octane, carbon tetrachloride, and fluorocarbons, should be handled at relatively low temperatures. However, there is an advantage that no steam condensation occurs.

前記気体の露点が常温以下である場合でも、常温空気よ
りも粘度が低い低温の気体であれはよい。
Even if the dew point of the gas is below room temperature, it may be a low temperature gas that has a lower viscosity than room temperature air.

〔作用・効果〕[Action/Effect]

次に、本発明にかかる乾式分級機の作用・効果を説明す
る。
Next, the functions and effects of the dry classifier according to the present invention will be explained.

本発明の乾式分級機か上記構成となっているので、常温
空気よりも低粘度の気体を、例えは分級室に導入するこ
とにより、前記(1)式から明らかなように、分級てき
る限外粒径を確実に小さくすることかできる。つまり、
常温空気より粘度の低い気体を気流として用いると、気
流中における落下粒子の抵抗か小さくなって粒子か落下
しやすくなり、気流とともに排出採取される粒子径が一
層小さくてきるのである。
Since the dry classifier of the present invention has the above configuration, by introducing a gas having a lower viscosity than air at room temperature into the classification chamber, it is possible to limit the classification, as is clear from equation (1) above. It is possible to reliably reduce the outer particle size. In other words,
When a gas with a lower viscosity than air at room temperature is used as an air stream, the resistance of falling particles in the air stream becomes smaller, making it easier for the particles to fall, and the diameter of the particles discharged and collected with the air stream becomes even smaller.

しかも、低粘度気体を搬送するのに従来技術を適用でき
るので、これの導入に要する費用は少なくてすむ。
Moreover, since conventional techniques can be applied to convey low viscosity gases, the cost required to introduce them can be reduced.

前記気体が、水素、窒素、メタン、エタン、プロパン、
ノルマルオクタン、ノルマルブタン、ノルマルペンタン
、ノルマルヘキサン、ノルマルヘプタン、エチレン、プ
ロピレン、四塩化炭素、フ0ンなどから選ばれた1種ま
たは2種以上のガスまたは蒸気であると、常温空気より
低粘度の気体を確実に分級室に導入でき、且つ、ガス自
体のコストも高くないので好ましい結果か得られる。
The gas may be hydrogen, nitrogen, methane, ethane, propane,
When the gas or vapor is one or more selected from normal octane, normal butane, normal pentane, normal hexane, normal heptane, ethylene, propylene, carbon tetrachloride, fluorine, etc., the viscosity is lower than that of air at room temperature. The gas can be reliably introduced into the classification chamber, and the cost of the gas itself is not high, so favorable results can be obtained.

又、これらの気体を大気圧下で取扱う場合は沸点が常温
以上の液体の蒸気、たとえはノルマルブタン、ノルマル
ペンタン、ノルマルヘキサン、ノルマルオクタン、四塩
化炭素、フロンなとの蒸気を比較的低い温度で取扱って
も蒸気の凝縮を生ずることがない利点がある。これらの
蒸気は、一般に粘度が低く好ましい。
In addition, when handling these gases under atmospheric pressure, liquid vapors with boiling points above room temperature, such as n-butane, n-pentane, n-hexane, n-octane, carbon tetrachloride, and fluorocarbons, must be heated to a relatively low temperature. It has the advantage that vapor condensation does not occur even when handled at high temperatures. These vapors are generally preferred because of their low viscosity.

更に、前記気体の露点が常温以下である場合、冷却する
ことにより常温時よりも粘度か低くなるため、汎用の気
体冷却装置を用いることにより、容易に粘度の低い気体
が得られ、よって確実に分級できる限外粒径を小さくす
ることかできる。しかも、この方法によれば空気を冷却
させて用いることもでき、常温空気を用いた時に比べは
るかに限外粒径を小さくすることができる。
Furthermore, if the dew point of the gas is below room temperature, the viscosity will be lower than that at room temperature by cooling, so by using a general-purpose gas cooling device, a gas with low viscosity can be easily obtained, thereby ensuring reliable It is possible to reduce the ultimate particle size that can be classified. Moreover, according to this method, air can be cooled and used, and the extreme particle size can be made much smaller than when room temperature air is used.

以上のように、本発明によれば、格別大樹かりな装置を
要することなく、多大の費用をかけることもなく、従来
の乾式分級機ては実現できなかった一層小さい限外粒径
を分級しうる乾式分級機を提供することかできた。
As described above, according to the present invention, it is possible to classify even smaller extreme particle sizes that could not be achieved with conventional dry classifiers, without requiring particularly large equipment or incurring large costs. We were able to provide a dry classifier.

〔実施例〕〔Example〕

前記選別筒(3)は、その円錐周面上下方向に多数のス
リット状の孔(7)か形成されているとともに、下部は
円錐状に構成されていて、その全体か機側(1)上方に
配設されている軸受け(8)を介して軸(9)周りを回
転自在となるように、吊下げ構造をなす。このスリット
状の孔(7)は、気流か機側(1)を経て選別筒(3)
の内部を通過し上部排出口(4)へと排出されるように
連通されている。更に、気流はこの排出口(4)から固
気分離機(12)へと送られ、気体のみか気流導入路(
11)に送られて、再生使用されるようになっている。
The sorting cylinder (3) has a large number of slit-shaped holes (7) formed in the vertical direction on its conical circumferential surface, and has a conical lower part. It has a hanging structure so that it can freely rotate around a shaft (9) via a bearing (8) disposed in the shaft. This slit-shaped hole (7) passes through the airflow to the machine side (1) and then to the sorting tube (3).
It is communicated so that it passes through the inside of the tank and is discharged to the upper discharge port (4). Furthermore, the airflow is sent from this outlet (4) to the solid-gas separator (12), and whether only gas or airflow introduction path (
11) to be recycled and used.

もつとも、前記選別筒(3)の円錐周面上に設けられた
スリット状の孔(7)の代わりに種々の形状の孔か考え
られ、必ずしも図に示すようなスリット形状でなくても
よい。
However, instead of the slit-shaped hole (7) provided on the conical circumferential surface of the sorting cylinder (3), holes of various shapes can be considered, and the slit shape does not necessarily have to be as shown in the figure.

選別筒(3)の形状についても下向き円錐状である必要
はなく、円筒状のものでもよい。又、孔(7)はほぼ放
射状に配列された多数の回転選別羽根相互の間隔て形成
される流入通路であってもよい。
The shape of the sorting tube (3) does not necessarily have to be a downward conical shape, but may be cylindrical. Alternatively, the holes (7) may be inflow passages formed at intervals between a plurality of rotating sorting blades arranged substantially radially.

又、導入口(2)は、分級される原料粒子か粉体フィー
ダー(13)を介して流入される粒子導入路(10)と
、気流を導入する気流導入路(11)とか合流するよう
になっていて、気流導入路(11)には、低粘度気体発
生装置(5)として沸点か常温以上の液体を加熱して蒸
気とさせる装置、または露点か常温以下の気体の場合、
この気体を冷却し低温の気流を発生させる気体冷却装置
か設けられている。
Further, the inlet port (2) is configured to merge with a particle introduction path (10) through which raw material particles to be classified are introduced via the powder feeder (13) and an air flow introduction path (11) through which air flow is introduced. The air flow introduction path (11) is equipped with a low-viscosity gas generator (5) that heats a liquid with a boiling point or above room temperature to turn it into vapor, or in the case of a gas with a dew point or below room temperature,
A gas cooling device is provided to cool this gas and generate a low-temperature air flow.

次に、上記遠心分級機の作用を説明する。Next, the operation of the centrifugal classifier will be explained.

気体冷却装置(5)により冷却された空気を気流導入路
(11)から導入口(2)を通して機側(1)に導入す
ると共に、粒子導入路(10)から原料粒子を導入する
Air cooled by the gas cooling device (5) is introduced from the air flow introduction path (11) through the introduction port (2) to the machine side (1), and raw material particles are introduced from the particle introduction path (10).

同時に、軸(9)を回転させて選別筒(3)を回転させ
ると、機側(1)に導入された冷却空気か旋回し、この
旋回気流によって機側(1)内に遠心力場が形成される
ようになって、原料粒子か弾き飛ばされる。
At the same time, when the shaft (9) is rotated to rotate the sorting tube (3), the cooling air introduced into the machine side (1) swirls, and this swirling airflow creates a centrifugal force field inside the machine side (1). As it forms, raw material particles are thrown away.

そして、空気流は選別筒(3)のスリット孔(7)を通
って上部排出口(4)から排出される。機側(1)内に
導入された空気流に含まれる粗粒子は、下部排出口(6
)から取出されるが、微細粒子は気流とともにスリット
孔(7)を通って上部排出口(4)から排出され、この
ようにして正確に分級される。
The airflow then passes through the slit hole (7) of the sorting tube (3) and is discharged from the upper outlet (4). Coarse particles contained in the airflow introduced into the machine side (1) are removed from the lower outlet (6).
), the fine particles are discharged together with the air stream through the slit hole (7) through the upper outlet (4) and are thus accurately classified.

この場合、機側(1)に導入される空気は冷却されてい
るので、前記(1)式における気体粘度μが小さくなり
、従って、分級される粒子径か従来の遠心分級機による
ものより一層細かくなる結果が得られた。
In this case, since the air introduced into the machine side (1) is cooled, the gas viscosity μ in equation (1) above becomes smaller, and therefore the particle size to be classified is much smaller than that with a conventional centrifugal classifier. A finer result was obtained.

例えは−73°Cの空気を用いた場合、27℃の空気に
比較して粘度は約70%に低下し、従って分級される限
界粒子径を現状の遠心分級機により分級される限界粒子
径の約85%にまで下げることができる。
For example, when air at -73°C is used, the viscosity decreases to about 70% compared to air at 27°C. can be reduced to about 85%.

また、気流として露点か常温以上の蒸気を用いる場合は
冷却により粘度を下げることは出来ないか、前述したノ
ルマルヘキサンその他の蒸気は、たとえ常温以上ても空
気に比較して粘度が非常に低い。例えは、低粘度気体と
して400にのノルマルオクタン蒸気(粘度 7.3μ
Pa−5)を用いると、分級される限界粒子径を現状の
遠心分級機により分級される限界粒子径の約64%にま
で下げることかできた。
In addition, when using steam with a dew point or room temperature or higher as the air stream, it is not possible to lower the viscosity by cooling, or the vapors such as normal hexane mentioned above have a very low viscosity compared to air even at room temperature or higher. For example, 400% normal octane vapor (viscosity 7.3μ) is used as a low viscosity gas.
Using Pa-5), it was possible to reduce the critical particle size to be classified to about 64% of the critical particle size classified by the current centrifugal classifier.

〔別実施例〕[Another example]

上記実施例では、気流として冷却空気を用いたか、これ
の代わりに水素、窒素、メタン、エタン、プロパン、ノ
ルマルブタン、ノルマルペンタン、ノルマルヘキサン、
ノルマルヘプタン、ノルマルオクタン、エチレン、プロ
ピレン、四塩化炭素、フロンなとの低粘度気体を単独ま
たは混合して用いてもよい。
In the above examples, cooling air was used as the air flow, or instead of hydrogen, nitrogen, methane, ethane, propane, n-butane, n-pentane, n-hexane,
Low viscosity gases such as normal heptane, normal octane, ethylene, propylene, carbon tetrachloride, and chlorofluorocarbons may be used alone or in combination.

これらの気体を、気体冷却装置(5)を通して冷却して
用いると、−層低粘度の気流か得られて好ましい。
It is preferable to use these gases after cooling them through the gas cooling device (5) because a low-viscosity airflow can be obtained.

又、上記の実施例では内部回転機構を有する遠心分級機
を示したか、本発明を実施するに当り、これに限られる
ものではなく、内部回転機構を持たない遠心分級機、例
えは、自由うず型分級機として知られているようなもの
、特公昭31−6939号公報の第1図、第2図に記載
の分級機のようなものてもよいし、特公昭32−275
1号公報の第1図乃至第5図に記載の分級機でもよい。
Further, although the above embodiments show a centrifugal classifier having an internal rotation mechanism, the present invention is not limited to this, and a centrifugal classifier without an internal rotation mechanism, for example, a free swirl A classifier known as a type classifier, such as the classifier shown in Figures 1 and 2 of Japanese Patent Publication No. 31-6939, may be used, or a classifier such as the classifier shown in Figures 1 and 2 of Japanese Patent Publication No. 31-6939, or Japanese Patent Publication No. 32-275
The classifier shown in FIGS. 1 to 5 of Publication No. 1 may also be used.

又、付着気流を利用(コアンダー効果を利用)した実公
昭44−21415号公報の第1図乃至第7図に記載の
いわゆる慣性分級機のようなものであってもよい。
Alternatively, it may be a so-called inertial classifier as shown in FIGS. 1 to 7 of Japanese Utility Model Publication No. 44-21415, which utilizes adhesion airflow (utilizes the Coander effect).

常温では液体であるが加熱により容易に気体となるよう
なものを気流として粒子を搬送させる場合は、第2乃至
4図のような装置で実施することができる。
When particles are conveyed by airflow using a substance that is a liquid at room temperature but easily becomes a gas when heated, it can be carried out using the apparatus shown in FIGS. 2 to 4.

即ち、第2図のものは粉体を含む低粘度気体の液化原液
タンク(20)からポンプ(21)により液化低粘度気
体を加熱管(22)の一端に導き、この加熱管(22)
の他端から粉体と低粘度気体とを遠心分級機(A)に噴
出させて分級するようになっている。そして、分級機(
A)の下部排出口から粗粉を回収するとともに、上部か
ら微粉を吸引しバグフィルタ−等を用いてこれを回収す
る。用いた低粘度気体は適宜回収し再使用するようにす
る。
That is, in the case shown in FIG. 2, the liquefied low-viscosity gas is guided from the liquefied stock solution tank (20) of the low-viscosity gas containing powder to one end of the heating tube (22) by the pump (21).
The powder and low-viscosity gas are ejected from the other end to a centrifugal classifier (A) for classification. Then, the classifier (
Coarse powder is collected from the lower discharge port of A), and fine powder is sucked from the upper part and collected using a bag filter or the like. The low viscosity gas used should be collected and reused as appropriate.

第3図のものは、第2図の装置と同様に粉体を含む低粘
度気体の液化原液タンク(20)からポンプ(21)に
より液化低粘度気体を加熱管(22)の一端に導き、こ
の加熱管(22)の他端から粉体と低粘度気体とをコア
ンダー効果を利用した分級機(A)に噴出させる方式の
ものである。
In the device shown in FIG. 3, the liquefied low-viscosity gas is guided from the liquefied stock solution tank (20) of low-viscosity gas containing powder to one end of the heating tube (22) by a pump (21), similar to the device shown in FIG. This is a system in which powder and low-viscosity gas are ejected from the other end of the heating tube (22) to a classifier (A) that utilizes the Coander effect.

第4図のものは、低粘度気体か常温では液体である場合
の装置構成であって、タンク(23)に収納されている
液化ガスを加熱管(22)を通して気体とし、これと粉
体フィーダー(13)からの粉体を合流させて、これら
を上述の各種分級機(A)に挿入して分級するものであ
る。
The one in Fig. 4 is an apparatus configuration in which the gas is low viscosity or liquid at room temperature, and the liquefied gas stored in the tank (23) is turned into gas through the heating pipe (22), and the powder feeder is connected to the liquefied gas stored in the tank (23). The powders from (13) are combined and then inserted into the above-mentioned various classifiers (A) for classification.

尚、本発明にかかる乾式分級機は集塵を目的とした装置
としても応用でき、その場合は、例えば前記機側(1)
の側壁に開口部を設けるようにすればよい。
In addition, the dry classifier according to the present invention can also be applied as a device for the purpose of dust collection, in which case, for example, the device side (1)
What is necessary is to provide an opening in the side wall.

その他、分級効果を上げるための各種付帯装置、例えば
、気流により搬送する粒子に衝撃波を与えて、搬送粒子
自体の凝集を防ぐ設備等を設けてもよい。
In addition, various auxiliary devices for increasing the classification effect may be provided, such as equipment that applies shock waves to the particles being transported by the airflow to prevent the transported particles themselves from agglomerating.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すか、該記入により本発明は添付図面の構造
に限定されるものではない。
It should be noted that the present invention is not limited to the structure shown in the accompanying drawings by adding reference numerals in the claims for convenient comparison with the drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる乾式分級機の一実施例を表す縦
断面概念図、第2図は本発明の別実施例を表す配置概念
図、第3図は本発明の更に別実施例を表す配置概念図、
第4図は本発明の更に別実施例を表す配置概念図である
。 (A)・・・・・・分級機
FIG. 1 is a conceptual vertical cross-sectional diagram showing one embodiment of the dry classifier according to the present invention, FIG. A conceptual diagram of the layout,
FIG. 4 is a conceptual layout diagram showing still another embodiment of the present invention. (A)・・・Classifier

Claims (1)

【特許請求の範囲】 1、粒子を気流で搬送させながら分級する乾式分級機(
A)において、前記気流が常温空気よりも粘度の低い気
体からなることを特徴とする乾式分級機。 2、前記気体が、水素、窒素、メタン、エタン、プロパ
ン、ノルマルブタン、ノルマルペンタン、ノルマルヘキ
サン、ノルマルヘプタン、ノルマルオクタン、エチレン
、プロピレン、四塩化炭素、フロンから選ばれた1種ま
たは2種以上のガスまたは蒸気である請求項1記載の乾
式分級機。 3、前記気体の露点が常温以下である場合、常温空気よ
りも粘度が低い低温の気体である請求項1または2記載
の乾式分級機。
[Claims] 1. Dry classifier that classifies particles while transporting them with air current (
The dry classifier according to A), wherein the air flow is made of a gas having a lower viscosity than air at room temperature. 2. The gas is one or more selected from hydrogen, nitrogen, methane, ethane, propane, normal butane, normal pentane, normal hexane, normal heptane, normal octane, ethylene, propylene, carbon tetrachloride, and fluorocarbons. The dry classifier according to claim 1, which is a gas or steam. 3. The dry classifier according to claim 1 or 2, wherein when the dew point of the gas is below room temperature, it is a low temperature gas having a lower viscosity than room temperature air.
JP25314290A 1990-09-20 1990-09-20 Dry classifier Pending JPH04131168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25314290A JPH04131168A (en) 1990-09-20 1990-09-20 Dry classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25314290A JPH04131168A (en) 1990-09-20 1990-09-20 Dry classifier

Publications (1)

Publication Number Publication Date
JPH04131168A true JPH04131168A (en) 1992-05-01

Family

ID=17247100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25314290A Pending JPH04131168A (en) 1990-09-20 1990-09-20 Dry classifier

Country Status (1)

Country Link
JP (1) JPH04131168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504176A (en) * 1999-07-14 2003-02-04 アストラゼネカ・アクチエボラーグ Filter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504176A (en) * 1999-07-14 2003-02-04 アストラゼネカ・アクチエボラーグ Filter device

Similar Documents

Publication Publication Date Title
US6155751A (en) Flow development chamber for creating a vortex flow and a laminar flow
US2104683A (en) Dust separator
US4052255A (en) Spray dryer discharge system
US3720314A (en) Classifier for fine solids
US3112239A (en) Method and apparatus for preparing very soluble fine powders from liquids
JPH1066897A (en) Cyclone, especially cyclone dust collector and cyclone classifier
JPH0217921A (en) Separation of gaseous mixture
US4020564A (en) Drier for temperature sensitive materials
JPH0525717Y2 (en)
US3317145A (en) Method and means for pulverizing and drying solids
EP0552837B1 (en) Improved centrifugal particle classifier having uniform influx distributor
JPH04131168A (en) Dry classifier
US20050139523A1 (en) Apparatus and method for air classification and drying of particulate matter
JP3592520B2 (en) Airflow classifier
US3360870A (en) Apparatus for pulverizing and drying solids
US2989146A (en) Separating apparatus
WO1996031294A1 (en) Apparatus for classification of particulate material
JP4747130B2 (en) Powder classifier
CN112439559A (en) Superfine powder gas-phase classification equipment and classification method thereof
CN112439558A (en) Superfine powder gas-phase classification equipment
US2944632A (en) Centrifugal dust collector
US3550921A (en) Fluid energy processing system
JPS60161721A (en) Method and apparatus for mixing powders by air stream
SU1535655A1 (en) Method of centrifugal classification of powders
JP2020006290A (en) Pneumatic sorter