JPH04131026A - Oxygen-supplying apparatus for culture on sea surface - Google Patents

Oxygen-supplying apparatus for culture on sea surface

Info

Publication number
JPH04131026A
JPH04131026A JP2249644A JP24964490A JPH04131026A JP H04131026 A JPH04131026 A JP H04131026A JP 2249644 A JP2249644 A JP 2249644A JP 24964490 A JP24964490 A JP 24964490A JP H04131026 A JPH04131026 A JP H04131026A
Authority
JP
Japan
Prior art keywords
seawater
air
compressed air
pipe
diaphragm pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2249644A
Other languages
Japanese (ja)
Inventor
Yasuhiko Fujiwara
靖彦 藤原
Kazuhiro Fukuda
数博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMAYUU KK
Mitsubishi Heavy Industries Ltd
Original Assignee
SAMAYUU KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMAYUU KK, Mitsubishi Heavy Industries Ltd filed Critical SAMAYUU KK
Priority to JP2249644A priority Critical patent/JPH04131026A/en
Publication of JPH04131026A publication Critical patent/JPH04131026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide the subject apparatus driving a diaphragm pump with compressed air, introducing compressed air by the head applied to a seawater ejection piping and continuously dispersing a large quantity of air in the form of fine bubbles. CONSTITUTION:Seawater is introduced into a diaphragm pump 9 through a suction pipe 12 provided with a strainer 11. Compressed air supplied from a compressor 1 driven by an engine 2 is introduced through a filter 3, a throttle valve 8 and a piping 6 into the diaphragm pump 9 to drive the pump. Separately, a part of the compressed air is passed through a throttle valve 7 and a down pipe of a vertical U-shaped pipe 13' and exhausted from the lower end of an air piping 6 in a riser. Seawater is intermittently ejected from the diaphragm 9 by the head difference H.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海面養殖用酸素供給装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an oxygen supply device for marine culture.

〔従来の技術〕[Conventional technology]

海面のいけすに酸素を供給する手段としては、例えば第
4図側面図に示すように、海面に付設され部分的に海水
に浸漬する水車19で海水をかきまぜたり、第5図に示
すように海上に設けられたコンプレッサー1で空気を直
接海水中に垂設された散気バイ116を経て送る等の手
段が知られているが、いずれも、十分な効果は得られて
いない。
As a means of supplying oxygen to a sea-surface tank, for example, as shown in the side view of Figure 4, sea water is stirred by a water wheel 19 attached to the sea surface and partially immersed in sea water, or as shown in Figure 5, a sea-water tank is stirred with water. Although there are known methods such as using a compressor 1 installed in the seawater to directly send air through an air diffuser 116 installed vertically into the seawater, none of these methods have been sufficiently effective.

〔発明が解決しようとする諜H〕[Spy H that invention tries to solve]

これは、第4図に示した水車の場合は、水面近くは効果
があっても水深8mにも及ぶいけすではほとんど効果が
無く、また第5図に示した散気パイプによる手段は吐出
する気泡が大き過ぎて、海水に溶は込む量は大気に戻る
量の1/300程度に過ぎず効率が悪いため、必要量の
酸素を供給するためには、いけすを気泡で充満させるく
らいの非現実的な多大の空気量が必要であることによる
In the case of the water turbine shown in Figure 4, although it is effective near the water surface, it is almost ineffective in a tank up to 8 m deep, and the means using the aeration pipe shown in Figure 5 discharges air bubbles. is so large that the amount that dissolves into seawater is only about 1/300 of the amount that returns to the atmosphere, making it inefficient, making it unrealistic to fill a tank with air bubbles to supply the required amount of oxygen. This is because a large amount of air is required.

なお、酸素供給装置の連続運転を可能にするためには、
空気のみを送出したり、海水のみ送出したりすることの
無いように自動的に吐出量を調整できる機能が必要であ
る。
In addition, in order to enable continuous operation of the oxygen supply device,
It is necessary to have a function that can automatically adjust the discharge amount so that only air or seawater is not sent out.

本発明はこのような事情に鑑みて提案されたもので、大
量の空気を微細な気泡として連続的に海水中に一様に分
散する海面養殖用酸素供給装置を提供することを目的と
する。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide an oxygen supply device for marine culture that continuously and uniformly disperses a large amount of air into seawater as fine bubbles.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、圧縮空気送給用のコンプレッサー
と、同コンプレッサー出口の圧縮空気で駆動され、海水
を吸入してこれを間欠的に吐出するダイヤプラムポンプ
と、同ダイヤフラムポンプの吐出海水をいけす内の散気
パイプまで導く加圧吐出パイプと、同加圧吐出パイプの
途中に、前記コンプレッサー出口の圧縮空気の一部を絞
り弁を通じて注入するエア配管とを具え、同エア配管の
加圧吐出パイプへの注入口が前記ダイヤフラムポンプの
海水吸入口よりも下方に設けられていることを特徴とす
る。
To this end, the present invention provides a compressor for supplying compressed air, a diaphragm pump that is driven by the compressed air at the outlet of the compressor, sucks in seawater and discharges it intermittently, and a diaphragm pump that pumps the seawater discharged from the diaphragm pump. A pressurized discharge pipe that leads to an aeration pipe inside the pipe, and an air pipe that injects a part of the compressed air from the compressor outlet through a throttle valve in the middle of the pressurized discharge pipe. It is characterized in that the injection port to the pipe is provided below the seawater inlet of the diaphragm pump.

〔作用〕[Effect]

このような構成によれば、加圧吐出バイブ内の圧力は各
いけすの絞り弁によって海水吐出時の圧損を生し、ここ
へさらに圧縮空気と海水を注入し続けることによって保
たれる。
According to such a configuration, the pressure inside the pressurized discharge vibrator is maintained by causing a pressure drop when seawater is discharged by the throttle valve of each cage, and by continuing to inject compressed air and seawater thereto.

ダイヤフラムポンプは駆動源の圧縮空気と同圧の吐出側
圧力になると停止し、吐出側圧力が低下すると、作動し
出す特性と、そのスプールの切替作用で断続的な作動、
すなわち吐出と停止を繰り返す特性があり、これを利用
して、加圧吐出パイプ内に常時圧縮空気を注入口、ダイ
ヤフラムポンプで加圧注水を行う。
Diaphragm pumps stop when the discharge side pressure reaches the same pressure as the compressed air of the drive source, and start operating when the discharge side pressure decreases, and the spool switching action allows for intermittent operation.
In other words, it has a characteristic of repeatedly discharging and stopping, and by utilizing this characteristic, compressed air is constantly injected into the pressurized discharge pipe using an inlet and a diaphragm pump is used to inject pressurized water.

ダイヤフラムポンプの断続的作動によって海水の吐出中
は圧縮空気の注入が停止し、海水の停止中のみ圧縮空気
が注入されるように、加圧パイプの濁水と空気の注入口
にへ、ド差を設けこれによって吐出口のヘッド差の分だ
けダイヤフラムポンプが高圧吐出でき、吐出停止中は圧
縮空気側が高圧となるため、圧縮空気と海水がダイヤフ
ラムポンプの作動にあわせて交互に加圧注入される。
Due to the intermittent operation of the diaphragm pump, the injection of compressed air is stopped while seawater is being discharged, and a difference between the turbid water and air inlets of the pressurizing pipe is made so that compressed air is injected only when the seawater is stopped. This allows the diaphragm pump to discharge at a high pressure by the head difference between the discharge ports, and while the discharge is stopped, the compressed air side is at high pressure, so compressed air and seawater are alternately injected under pressure in accordance with the operation of the diaphragm pump.

圧縮空気の注入量は絞り弁で調整され、絞り弁は加圧吐
出バイブ内が空気だけになった場合に空気の通過圧損で
圧縮空気源の圧力を保ち、ダイヤフラムポンプが正常に
作動できるようにする。
The amount of compressed air to be injected is adjusted by a throttle valve, and the throttle valve maintains the pressure of the compressed air source by passing air pressure when there is only air inside the pressurized discharge vibrator, so that the diaphragm pump can operate normally. do.

このように連続的に海水と空気を加圧し混合することが
可能となり、各いけずに有効な微細な気泡を大量に供給
することができ、いけす中に拡がった気泡が再び海水に
溶は込むことで、海水中の酸素濃度が上昇する。
In this way, it is possible to continuously pressurize and mix seawater and air, supplying a large amount of effective fine air bubbles to each tank, and the air bubbles that spread inside the tank dissolve into the seawater again. This increases the oxygen concentration in seawater.

口実施例〕 本発明を海面いけずに適用した一実施例を図面について
説明すると、第1図はその全体側面図、第2図は第1図
の鎖線枠で示す主要部の拡大図、第3図は第2図のダイ
ヤフラムポンプを示す縦断面図である。
Embodiment] An embodiment in which the present invention is applied to a marine vessel will be explained with reference to the drawings. Fig. 1 is an overall side view of the same, Fig. 2 is an enlarged view of the main part indicated by the chain line frame in Fig. FIG. 3 is a longitudinal sectional view showing the diaphragm pump of FIG. 2.

まず、第1図において、17は複数のいけすで、各いけ
す17の底面に沿って付設された水平散気管16に後記
する酸素供給装置18からそれぞれ分配管14を経て気
泡含有海水が供給される。
First, in FIG. 1, reference numeral 17 indicates a plurality of cages, and air bubble-containing seawater is supplied from an oxygen supply device 18 (to be described later) to a horizontal diffuser pipe 16 attached along the bottom of each cage 17 through a distribution pipe 14. .

10はサイレンサー 15は各分配管14に挿入された
オリフィスである。
10 is a silencer; 15 is an orifice inserted into each distribution pipe 14;

次に、酸素供給装置18の構造を説明すると、第2図に
おいて、エア配管6を経て導入される空気はエンジン2
により駆動されるコンプレッサー1により加圧され、フ
ィルター3でゴミが除去され、減圧弁4により使用圧力
に調整されたのち、一部の空気はルブリケータ−5で潤
滑油を混合され、絞り弁8を経てダイヤフラムポンプ9
に導入される。
Next, to explain the structure of the oxygen supply device 18, in FIG.
After being pressurized by a compressor 1 driven by a compressor 1, dust is removed by a filter 3, and the pressure is adjusted to the working pressure by a pressure reducing valve 4, some of the air is mixed with lubricating oil by a lubricator 5, and then a throttle valve 8 is applied. via diaphragm pump 9
will be introduced in

残部の空気はエア配管6.油除去用フィルター3.絞り
弁7を通り、ダイヤフラムポンプ9の鉛直U字管部13
”の立下り部内に鉛直下方に延びるエア配管6の下端か
ら  鉛直U字管部の立上り管部内に排出される。
The remaining air is taken from air piping 6. Oil removal filter 3. The vertical U-shaped pipe section 13 of the diaphragm pump 9 passes through the throttle valve 7.
Air is discharged from the lower end of the air pipe 6 extending vertically downward into the falling part of the vertical U-shaped pipe into the rising pipe part of the vertical U-shaped pipe part.

12はストレーナ−11を経て海水をダイヤフラムポン
プ9に導入する吸入パイプである。
12 is a suction pipe that introduces seawater into the diaphragm pump 9 through the strainer 11.

ここで、ダイヤフラムポンプ9は、第3図に示すように
、水平スプール9−1の両端にそれぞれダイヤプラムが
配設され、空気室aにエアが送られるとスプール9−1
は左方へ移動し、左室の海水が吐出口9−2を経て吐出
されると同時に右室に海水が吸入され、スプール9−1
がストローク端に達すると、ポートが切換ねり、エアは
右室に送られ、スプールは右方へ移動し、これにより右
室の海水が吐出されると同時に左室に外部海水が導入さ
れるようになっている。
Here, in the diaphragm pump 9, as shown in FIG. 3, diaphragms are arranged at both ends of a horizontal spool 9-1, and when air is sent to the air chamber a,
moves to the left, seawater in the left ventricle is discharged through the outlet 9-2, and at the same time seawater is sucked into the right ventricle, and the spool 9-1
When it reaches the end of its stroke, the port switches, air is sent to the right ventricle, and the spool moves to the right, allowing seawater in the right ventricle to be discharged and external seawater to be introduced into the left ventricle at the same time. It has become.

この種のダイヤフラムポンプ9は吐出側の海水圧力が供
給エア圧を越えると吐出を停止し、吐出側の圧力が低下
すればするほど、吐出量が増加する特性を有している。
This type of diaphragm pump 9 has a characteristic that it stops discharging when the seawater pressure on the discharge side exceeds the supply air pressure, and the discharge amount increases as the pressure on the discharge side decreases.

このような酸素供給装置18において、第2図に示すよ
うに、ダイヤフラムポンプ9は吐出パイプ13のヘッド
差Hの分だけその吐出能力に余裕ができるので、圧縮空
気の注入に打ち勝って吐出パイプ13内に海水を吐出す
る。
In such an oxygen supply device 18, as shown in FIG. 2, the diaphragm pump 9 has a margin in its discharge capacity corresponding to the head difference H between the discharge pipes 13, so that the diaphragm pump 9 can overcome the injection of compressed air and increase the discharge capacity of the discharge pipes 13. Discharges seawater inside.

ここで、ダイヤフラムポンプ9はその原理構造上、スプ
ールの作用により、海水を吐出するときと吐出しないと
きが交互にくり返えされる故、海水を吐出しないときに
吐出パイプ中の海水圧力が低下して圧縮空気が吐出パイ
プ13内に注入されることになり、この注入量はいけす
17に流入した海水量に相当する。
Here, due to its principle structure, the diaphragm pump 9 alternately discharges seawater and does not discharge seawater due to the action of the spool, so the seawater pressure in the discharge pipe decreases when seawater is not discharged. Compressed air is injected into the discharge pipe 13, and the amount of this injection corresponds to the amount of seawater that has flowed into the tank 17.

このようにじで海水と空気とを吐出パイプ中で交互に自
動的に注入することで、両者が加圧下で混合し、長い吐
出パイプ13を通る間に海水中に酸素がよく溶は込む。
By automatically injecting seawater and air alternately into the discharge pipe in this way, the two are mixed under pressure, and oxygen is well dissolved into the seawater while passing through the long discharge pipe 13.

ここで、吐出パイプ13中には常に海水を保持する必要
があるので、圧縮空気が直接吐出パイプ13内に流入す
ると、濁水をすべて押し出して了うことになるから、絞
り弁7により吐出パイプに流入する圧縮空気量を規制す
る。
Here, it is necessary to always maintain seawater in the discharge pipe 13, so if compressed air flows directly into the discharge pipe 13, all the turbid water will be pushed out. Regulates the amount of compressed air flowing in.

なお、絞り弁7を圧縮空気が流れる際に、絞り弁による
圧力損失が生し、吐出パイプ中の海水圧力が低下しても
、圧損の作用で、圧縮空気の圧力は低下しない。すなわ
ち、ダイヤフラムポンプ9は吐出パイプ13が空気で充
満しても、正常に作動し、吐出パイプ内には海水が継続
的に供給される。
Note that when the compressed air flows through the throttle valve 7, a pressure loss occurs due to the throttle valve, and even if the seawater pressure in the discharge pipe decreases, the pressure of the compressed air does not decrease due to the pressure loss. That is, the diaphragm pump 9 operates normally even if the discharge pipe 13 is filled with air, and seawater is continuously supplied into the discharge pipe.

このような装置によれば、連続的に海水と空気とを加圧
下で混合することが可能となり、各いけすに有益な微細
な気泡を大量に供給することができる。
According to such a device, it is possible to continuously mix seawater and air under pressure, and it is possible to supply a large amount of beneficial fine air bubbles to each cage.

このような酸素供給装置によれば、海水と空気を混合し
加圧することが、連続的自動的かつ非常にシンプルな構
成で可能となる。またこの装置では海水と空気を加圧混
合すると、海水中に良く空気が9収され、散気パイプか
らは大量の倣細な気泡が発生し、周辺の酸素濃度が上昇
する。
According to such an oxygen supply device, it is possible to mix and pressurize seawater and air continuously, automatically, and with a very simple configuration. In addition, in this device, when seawater and air are mixed under pressure, a good amount of air is trapped in the seawater, and a large amount of fine air bubbles are generated from the aeration pipe, increasing the oxygen concentration in the surrounding area.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、圧縮空気送給用のコンプレッ
サーと、同コンプレッサー出口の圧縮空気で駆動され、
海水を吸入してこれを間欠的に吐出するダイヤフラムポ
ンプと、同ダイヤフラムポンプの吐出海水をいけす内の
散気パイプまで導く加圧吐出パイプと、同加圧吐出パイ
プの途中に、前記コンプレッサー出口の圧縮空気の一部
を絞り弁を通じて注入するエア配管とを具え、同エア配
管の加圧吐出パイプへの注入口が前記ダイヤフラムポン
プの海水吸入口よりも下方に設けられていることにより
、大量の空気を微細な気泡として連続的に海水中に一様
に分散する海面養殖用酸素供給装置を得るから、本発明
は産業上極めて有益なものである。
In short, according to the present invention, it is driven by a compressor for supplying compressed air and compressed air at the outlet of the compressor,
A diaphragm pump that sucks in seawater and discharges it intermittently, a pressurized discharge pipe that guides the seawater discharged from the diaphragm pump to an aeration pipe in the tank, and a compressor outlet in the middle of the pressurized discharge pipe. It is equipped with an air pipe for injecting a portion of compressed air through a throttle valve, and the inlet of the air pipe to the pressurized discharge pipe is provided below the seawater inlet of the diaphragm pump. The present invention is extremely useful industrially because it provides an oxygen supply device for marine culture that continuously and uniformly disperses air in seawater as fine bubbles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体側面図、第2図は
第1図の鎖線枠で示す主要部の拡大図、第3図は第2図
のダイヤフラムポンプを示す縦断面図である。 第4図、第5図はそれぞれ公知の水車式、散気パイプ式
いけす用酸素供給装置を示す側面図である。 1・・・コンプレッサー 2・・・エンジン、3・・・
フィルター、4・・・減圧弁、5・・・ルブリヶーター
6・・・エア配管、7・・・絞り弁、8・・・絞り弁、
9・・・ダイヤフラムポンプ、10・・・サイレンサー
11・・・ストレーナ−12・・・吸入パイプ、13・
・・吐出パイプ、14・・・分配管、15・・・オリフ
ィス、16・・・散気パイプ、17・・・いけす、18
・・・酸素供給装置、 第 因 第4 図 /9 第 図 −\/b
Fig. 1 is an overall side view showing one embodiment of the present invention, Fig. 2 is an enlarged view of the main part shown in the dashed line frame in Fig. 1, and Fig. 3 is a longitudinal sectional view showing the diaphragm pump of Fig. 2. be. FIG. 4 and FIG. 5 are side views showing known water wheel type and aeration pipe type oxygen supply devices for cages, respectively. 1... Compressor 2... Engine, 3...
Filter, 4... Pressure reducing valve, 5... Lubricator 6... Air piping, 7... Throttle valve, 8... Throttle valve,
9...Diaphragm pump, 10...Silencer 11...Strainer-12...Suction pipe, 13...
...Discharge pipe, 14... Distribution pipe, 15... Orifice, 16... Diffusion pipe, 17... Fish tank, 18
...Oxygen supply device, Factor 4 Figure/9 Figure-\/b

Claims (1)

【特許請求の範囲】[Claims] 圧縮空気送給用のコンプレッサーと、同コンプレッサー
出口の圧縮空気で駆動され、海水を吸入してこれを間欠
的に吐出するダイヤフラムポンプと、同ダイヤフラムポ
ンプの吐出海水をいけす内の散気パイプまで導く加圧吐
出パイプと、同加圧吐出パイプの途中に、前記コンプレ
ッサー出口の圧縮空気の一部を絞り弁を通じて注入する
エア配管とを具え、同エア配管の加圧吐出パイプへの注
入口が前記ダイヤフラムポンプの海水吸入口よりも下方
に設けられていることを特徴とする海面養殖用酸素供給
装置。
A compressor for supplying compressed air, a diaphragm pump that is driven by the compressed air at the outlet of the compressor, sucks in seawater and discharges it intermittently, and guides the discharged seawater from the diaphragm pump to the aeration pipe inside the cage. A pressurized discharge pipe, and an air pipe in the middle of the pressurized discharge pipe for injecting a part of the compressed air from the outlet of the compressor through a throttle valve, and an inlet of the air pipe to the pressurized discharge pipe is provided. An oxygen supply device for marine aquaculture, characterized in that it is provided below a seawater inlet of a diaphragm pump.
JP2249644A 1990-09-19 1990-09-19 Oxygen-supplying apparatus for culture on sea surface Pending JPH04131026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249644A JPH04131026A (en) 1990-09-19 1990-09-19 Oxygen-supplying apparatus for culture on sea surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249644A JPH04131026A (en) 1990-09-19 1990-09-19 Oxygen-supplying apparatus for culture on sea surface

Publications (1)

Publication Number Publication Date
JPH04131026A true JPH04131026A (en) 1992-05-01

Family

ID=17196090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249644A Pending JPH04131026A (en) 1990-09-19 1990-09-19 Oxygen-supplying apparatus for culture on sea surface

Country Status (1)

Country Link
JP (1) JPH04131026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112587A (en) * 1994-10-17 1996-05-07 F Tex:Kk Fine air bubble generator
JP2007136389A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Aeration device
CN104285876A (en) * 2014-09-24 2015-01-21 张家港市华申锦洲机械制造有限公司 Aquaculture oxygenation system
CN105948379A (en) * 2016-04-27 2016-09-21 广东海洋大学 Filtration treatment device for water source in natural sea area

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112587A (en) * 1994-10-17 1996-05-07 F Tex:Kk Fine air bubble generator
JP2007136389A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Aeration device
CN104285876A (en) * 2014-09-24 2015-01-21 张家港市华申锦洲机械制造有限公司 Aquaculture oxygenation system
CN105948379A (en) * 2016-04-27 2016-09-21 广东海洋大学 Filtration treatment device for water source in natural sea area

Similar Documents

Publication Publication Date Title
CN101065177B (en) Submerged cross-flow filtration
US7156377B2 (en) Water aeration device and method
US4735750A (en) Process and device for the dissolution of gas in liquid
CN1049845C (en) Method and apparatus for dissolution and mixture of gas and liquid
KR20130135980A (en) Membrane cleaning with pulsed airlift pump
US6142456A (en) Method and apparatus for dissolving and mixing gas and liquid
JPH09173804A (en) Method for dissolving and mixing gas and liquid and device therefor
JPH04334530A (en) Filter apparatus
US6986506B2 (en) Water aerator and method of using same
GB1382445A (en) Method and apparatus for dissolving a gas in a liquid
JPH04131026A (en) Oxygen-supplying apparatus for culture on sea surface
JP2005193140A (en) Method and apparatus for supplying oxygen into water
JPS63315195A (en) Partial water purification method in continuous water area
JP4530621B2 (en) Cleaning method for air diffuser
GB1592085A (en) Fish rearing apparatus
JP3582036B2 (en) Gas-liquid contact device
JP2010155213A (en) Minute bubble generation apparatus
JP2780721B2 (en) Jet pump
JP2010155212A (en) Minute bubble generation apparatus
JPH0828500A (en) Negative pressure forming device
US5364784A (en) Method for delivering oxygen to a cell culture medium
JPS5839840Y2 (en) Aeration device
RU156912U1 (en) DEVICE FOR GAS SURFACE OF LIQUID MEDIA
JP2803605B2 (en) Bubble removal device
JPH03103132A (en) Oxygen feeding apparatus of culture pond