JPH0413044B2 - - Google Patents

Info

Publication number
JPH0413044B2
JPH0413044B2 JP62019323A JP1932387A JPH0413044B2 JP H0413044 B2 JPH0413044 B2 JP H0413044B2 JP 62019323 A JP62019323 A JP 62019323A JP 1932387 A JP1932387 A JP 1932387A JP H0413044 B2 JPH0413044 B2 JP H0413044B2
Authority
JP
Japan
Prior art keywords
die
plug
bearing
pipe material
approach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62019323A
Other languages
Japanese (ja)
Other versions
JPS63188422A (en
Inventor
Otonobu Sukimoto
Hiromune Chuma
Teruo Tate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP62019323A priority Critical patent/JPS63188422A/en
Priority to DE8888300558T priority patent/DE3864272D1/en
Priority to EP88300558A priority patent/EP0276958B1/en
Priority to US07/148,981 priority patent/US4805435A/en
Publication of JPS63188422A publication Critical patent/JPS63188422A/en
Publication of JPH0413044B2 publication Critical patent/JPH0413044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)
  • Extrusion Of Metal (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、アルミニウムパイプ材の引抜き用
金型、特に乾式複写機の感光ドラムやマグネツト
ローラースリーブ等の基体として使用されるよう
な表面に高度の平滑性が要求されるアルミニウム
パイプ材の製造に用いる引抜き用金型に関する。 なおこの明細書において、アルミニウムの語は
アルミニウム合金を含む意味において用いる。 従来の技術 従来、例えば静電複写機の感光ドラム用基体と
してのアルミニウムパイプ材は、まず押出法によ
り押出したパイプに引抜き加工を施して、寸法精
度、表面性状の向上を図つたのち、引抜きパイプ
の表面を精密切削加工により表面粗さが好ましく
はRmax0.8ないしは1μm程度以下となるように
平滑に仕上げることによつて製作されていた。 発明が解決しようとする問題点 ところが、上記のような製作工程を経る場合に
は、パイプの押出し、引抜き、精密切削工程を必
要とすることから、パイプ材の製造コストが高い
ものとなつており、昨今の複写機の低価格化の要
請に伴う感光ドラム自体の低価格化の要請に対処
するには限界があつた。 この発明はかかる事情に鑑みてなされたもので
あつて、従来品と同程度の表面平滑性を有するア
ルミニウムパイプ材を安価に提供することを目的
とするものである。 問題点を解決するための手段 上記目的において、発明者は種々実験と研究を
重ねた結果、従来、パイプ表面の精密切削加工前
に実施していたパイプ材の引抜き加工工程におい
て使用する引抜きダイスとプラグのアプローチ角
が、パイプ材表面の平滑性の良否に大きな影響を
及ぼすことを知見するとともに、該アプローチ角
を一定範囲内の大きさに設定することにより、精
密切削工程を経て得られたものと同等の表面平滑
性を実現しうることを見い出し、かかる知見の結
果この発明を完成しえたものである。 即ちこの発明は、ダイス孔13の入側に、引抜
き方向に孔径が連続的に縮小されたアプローチ部
14が形成されるとともに、このアプローチ部1
4の出側に連続して孔径一定のベアリング部15
が形成されたダイス1と、 引抜き方向に外径が連続的に拡大されたアプロ
ーチ部21と、このアプローチ部21の出側に連
続して形成された外径一定のベアリング部22を
有するプラグ2との組み合わせからなり、 かつ該プラグ2のベアリング部22の長さはダ
イス1のベアリング部15の長さよりも短く設定
されるとともに、前記プラグ2が前記ダイス1の
ダイス孔13に挿入配置され、プラグ2のベアリ
ング部22がダイス1のベアリング部15の長さ
方向における中間部に位置するように配置され、
かつ両ベアリング部が所定間〓を隔てて対向状に
配置されたアルミニウムパイプ材の引抜き用金型
であつて、 前記ダイス1のアプローチ角θ1が45〜75°の範
囲に設定されるとともに、前記プラグ2のアプロ
ーチ角θ2が10〜20°の範囲に設定されていること
を特徴とするアルミニウムパイプ材の引抜き用金
型を要旨とするものであり、該金型を用いてアル
ミニウムパイプを引抜き加工を実施するものであ
る。 実施例 次にこの発明の構成を図示実施例に基いて説明
する。 第1図及び第2図は玉引き方式用のダイスとプ
ラグを示すものである。 これらの図において、1は玉芯ダイス、2は玉
芯プラグである。ダイス1はダイスケース11
と、該ダイスケースに一体的に嵌合された、ダイ
ス鋼、超硬合金、セラミツクス等の材質からなる
ダイス本体12とからなるもので、中央にダイス
孔13を有すると共に、このダイス孔13の入側
に、引抜き方向に孔径が連続的に縮小されたアプ
ローチ部14が形成され、さらにこのアプローチ
部14の出側に連続して孔径一定のベアリング部
15及びベアリング部15の外側にレリーフ部1
6有している。 一方、プラグ2は、引抜き方向に外径が連続的
に拡大されたアプローチ部21と、このアプロー
チ部21の出側に連続して形成された外径一定の
ベアリング部22と、このベアリング部22の出
側に形成され引抜き方向に外径が連続的に縮小す
るレリーフ部23を有している。また、プラグ2
のベアリング部22の長さ(l2)はダイス1のベ
アリング部15長さ(l1)よりも短く設定されて
いる。 そして、上記のダイス1及びプラグ2は、引抜
き加工に供されるに際し、第2図に示すようにプ
ラグ2がダイズ1のダイズ孔13に挿入され、か
つプラグ2のベアリング部22周面がダイス1に
おけるベアリング部15長さ方向のほぼ中央部周
面に対し、パイプ材の所期する肉厚に相当する空
〓部を介して対向状となるように組合わされ、も
つて引抜き加工用金型4が構成される。そして予
め押出機により押出されたパイプ材Aを該金型に
より第2図に鎖線で示すように引抜いて縮径す
る。この引抜きにより、パイプ材はまずダイズ1
のアプローチ部14にその外面を圧接されつつ縮
径され、さらにプラグ2のアプローチ部21に内
面を圧接されつつ両ベアリング部15,22の間
〓へと導かれ、該間〓を通過して引き出される。
なお、かかる引抜きは複数回繰返し行つてパイプ
材を順次的に縮径し、もつて最終製品を得るもの
とするのが一般的である。 而してこの発明では、前記ダイスアプローチ部
14のアプローチ角度θ1は45〜75°の範囲に設定
されなければならない。ダイス1のアプローチ角
度が45°未満では、おそらくはパイプ材がアプロ
ーチ部14を縮径されつつ通過するときにアプロ
ーチ部14から受ける圧力との関係に起因して、
肌荒れを生じてパイプ材に所期する表面平滑性を
与えることができない。逆に75°を超える場合に
は、焼付きを発生して同じくパイプ材表面の平滑
性を実現できないものとなる。好ましいダイスの
アプローチ角は60〜70°である。また、パイプ材
の外径を規定するベアリング部15の長さ(l1
は特に限定されるものではないが、15〜40mmの範
囲に設定するのが、より高品質のパイプ材となし
うる点で望ましい。即ち、ベアリング長さが15mm
未満ではパイプの真円度、肉厚等にばらつきを生
じて寸法が不安定となる虞れがあるからであり、
逆に40mmを超えると、焼付きを生じて表面平滑性
を備う虞れがあるからである。 また、この発明では、プラグのアプローチ角度
θ2が10〜20°の範囲に設定されなければならない。
アプローチ角度が10°未満ではおそらく両ベアリ
ング部15,22間へのパイプ材の導入が円滑を
欠くこととの関係で両ベアリング部15,22間
を通過した後のパイプ材表面に所期する平滑性を
実現できないためであり、逆に20°を超えて大に
設定された場合には、パイプ材の真円度、肉厚等
にばらつきを生じて寸法が不安定となるからであ
る。プラグ2の好ましいアプローチ角は13〜15°
である。また、プラグ2のベアリング部22の長
さ(l2)はこれも特に限定されるものではない
が、0.5〜3.0mmの範囲に設定するのが、やはり高
品質のパイプ材となしうる点で望ましい。即ち、
ベアリング長さが0.5mm未満ではパイプ材の寸法
が不安定となる虞れがあるからであり、逆に3.0
mmを超えると焼付きを生じて表面平滑性を損う虞
れがあるからである。なお第2図において示す3
は、プラグ2の後端部に取付けられたプラグ固定
用の支持棒である。またプラグ2のベアリング部
22の外径寸法及びダイズ1のベアリング部15
内径寸法は、所期するアルミニウムパイプ材の内
外径及び肉厚と関係で定められるものであること
はいうまでもない。 なお図示実施例では、プラグ2を支持棒3を介
して固定した玉引き方式により引抜きを行なう場
合の金型を示したが、プラグを固定しない浮きプ
ラグ引き方式によつて引抜きを行う場合の金型に
もこの発明を適用しうる。 発明の効果 この発明は上述の次第で、ダイス孔13の入側
に、引抜き方向に孔径が連続的に縮小されたアプ
ローチ部14が形成されるとともに、このアプロ
ーチ部14の出側に連続して孔径一定のベアリン
グ部15が形成されたダイス1と、引抜き方向に
外径が連続的に拡大されたアプローチ部21と、
このアプローチ部21の出側に連続して形成され
た外径一定のベアリング部22を有するプラグ2
との組み合わせからなり、かつ該プラグ2のベア
リング部22の長さはダイス1のベアリング部1
5の長さよりも短く設定されるとともに、前記プ
ラグ2が前記ダイズ1のダイズ孔13に挿入配置
され、プラグ2のベアリング部22がダイズ1の
ベアリング部15の長さ方向における中間部に位
置するように配置され、かつ両ベアリング部が所
定間〓を隔てて対向状に配置されたアルミニウム
パイプ材の引抜き用金型であつて、前記ダイス1
のアプローチ角θ1が45〜75°の範囲に設定される
とともに、前記プラグ2のアプローチ角θ2が10〜
20°の範囲に設定されていることを特徴とするも
のである。従つて、該金型を用いることにより、
後述の実施例の参酌によつても明らかなように、
引抜き加工工程終了後のアルミニウムパイプの表
面平滑性を、従来引抜き加工後に実施していた精
密切削加工と同程度のものとなすことができる。
この結果、もはや従来の精密切削加工工程は不要
となり、従つて該工程の省略化により、表面平滑
性に優れたアルミニウムパイプ材を生産効率良く
かつ安価に提供することが可能となる。 実施例 次にこの発明の実施例について説明する。 A3003アルミニウム合金からなる外径20mm、内
径17mm、肉厚1.5mmの押出しパイプ(調質H112)
を複数個用意し、これらにまず玉引き方式による
初段の引抜きを実施して、外径17.5mm、内径15.3
mm、肉厚1.1mmのパイプ材を得た。この引抜きは、
アプローチ角60°、ベアリング長さ20mmの超硬合
金製玉芯ダイスと、アプローチ角13°、ベアリン
グ長さ1.2mmの超硬合金製玉芯プラグとを第2図
のように組合せてなる金型を用いて行つた。 次に上記初段の引抜き工程を経た各アルニミウ
ムパイプに、アプローチ角、ベアリング長さを下
記第1表に示すように各種に変えた超硬合金製玉
芯ダイスとプラグとを第2図のように組合せてな
る金型を用いて玉引き方式による2回目の引抜き
を実施し、外径16mm、内径14.4mm、肉厚0.8mmの
最終パイプ材を得た。 そして上記により得られた各パイプ材の表面粗
さを測定した。その結果を併せて第1表に示す。
Industrial Application Field This invention is applicable to aluminum pipe drawing dies, especially aluminum pipes that are used as substrates for photosensitive drums, magnetic roller sleeves, etc. of dry copying machines, and that require a high degree of surface smoothness. This invention relates to a drawing mold used for manufacturing pipe materials. In this specification, the term aluminum is used to include aluminum alloys. Conventional technology Conventionally, for example, aluminum pipe materials used as substrates for photosensitive drums in electrostatic copying machines were first extruded by extrusion, then subjected to drawing processing to improve dimensional accuracy and surface quality. The surface is manufactured by precision cutting to smooth the surface so that the surface roughness is preferably Rmax 0.8 or 1 μm or less. Problems to be Solved by the Invention However, when going through the above-mentioned manufacturing process, pipe extrusion, drawing, and precision cutting processes are required, making the manufacturing cost of the pipe material high. However, there has been a limit to the ability to meet the recent demand for lower prices for photosensitive drums, which is accompanied by lower prices for copying machines. The present invention was made in view of the above circumstances, and it is an object of the present invention to provide an aluminum pipe material having surface smoothness comparable to that of conventional products at a low cost. Means for Solving the Problems For the above purpose, the inventor has conducted various experiments and research, and has developed a drawing die that is used in the drawing process of pipe materials, which was conventionally carried out before precision cutting of the pipe surface. We discovered that the approach angle of the plug has a large effect on the smoothness of the pipe material surface, and by setting the approach angle within a certain range, we achieved a precision cutting process. It was discovered that it was possible to achieve surface smoothness equivalent to that of the conventional method, and as a result of this knowledge, the present invention was completed. That is, in the present invention, an approach portion 14 whose hole diameter is continuously reduced in the drawing direction is formed on the entrance side of the die hole 13, and this approach portion 1
A bearing part 15 with a constant hole diameter is connected to the exit side of 4.
A plug 2 having: a die 1 having a diameter formed thereon; an approach portion 21 whose outer diameter is continuously enlarged in the drawing direction; and a bearing portion 22 having a constant outer diameter formed continuously on the exit side of the approach portion 21. and the length of the bearing part 22 of the plug 2 is set shorter than the length of the bearing part 15 of the die 1, and the plug 2 is inserted into the die hole 13 of the die 1, The bearing part 22 of the plug 2 is located at the middle part in the length direction of the bearing part 15 of the die 1,
and a mold for drawing aluminum pipe material, in which both bearing parts are arranged facing each other with a predetermined distance apart, and the approach angle θ 1 of the die 1 is set in a range of 45 to 75 degrees, The gist of this invention is a mold for drawing aluminum pipe material, characterized in that the approach angle θ 2 of the plug 2 is set in the range of 10 to 20 degrees, and the mold is used to draw aluminum pipes. This is a drawing process. Embodiments Next, the configuration of the present invention will be explained based on illustrated embodiments. Figures 1 and 2 show dies and plugs for the beading method. In these figures, 1 is a ball-core die and 2 is a ball-core plug. Dice 1 is in dice case 11
and a die body 12 made of a material such as die steel, cemented carbide, or ceramics, which is integrally fitted into the die case, and has a die hole 13 in the center. An approach portion 14 whose hole diameter is continuously reduced in the drawing direction is formed on the entry side, and a bearing portion 15 with a constant hole diameter is formed continuously on the exit side of the approach portion 14, and a relief portion 1 is formed on the outside of the bearing portion 15.
It has 6. On the other hand, the plug 2 includes an approach portion 21 whose outer diameter is continuously enlarged in the pulling direction, a bearing portion 22 with a constant outer diameter formed continuously on the exit side of the approach portion 21, and a bearing portion 22 having a constant outer diameter. It has a relief part 23 that is formed on the exit side and whose outer diameter continuously decreases in the drawing direction. Also, plug 2
The length (l 2 ) of the bearing part 22 of the die 1 is set shorter than the length (l 1 ) of the bearing part 15 of the die 1 . When the die 1 and the plug 2 are subjected to a drawing process, the plug 2 is inserted into the soybean hole 13 of the soybean 1 as shown in FIG. The bearing part 15 in 1 is assembled so as to be opposed to the circumferential surface of the approximately central part in the length direction with a hollow part corresponding to the desired wall thickness of the pipe material being interposed therebetween, and is also used as a drawing mold. 4 is composed. Then, the pipe material A, which has been extruded in advance by the extruder, is pulled out from the mold as shown by the chain line in FIG. 2 to reduce its diameter. By this drawing, the pipe material first becomes soybean 1
Its diameter is reduced while its outer surface is pressed against the approach portion 14 of the plug 2, and its inner surface is brought into pressure contact with the approach portion 21 of the plug 2 while being guided between the two bearing portions 15 and 22, passing through the gap and being pulled out. It will be done.
Note that this drawing is generally repeated several times to sequentially reduce the diameter of the pipe material, thereby obtaining the final product. According to the present invention, the approach angle θ 1 of the die approach section 14 must be set within the range of 45 to 75 degrees. If the approach angle of the die 1 is less than 45°, this is probably due to the relationship with the pressure received from the approach section 14 when the pipe material passes through the approach section 14 while being reduced in diameter.
The surface becomes rough and the desired surface smoothness cannot be imparted to the pipe material. On the other hand, if the angle exceeds 75°, seizure will occur and the pipe material surface will not be able to achieve smoothness. The preferred die approach angle is 60-70°. In addition, the length (l 1 ) of the bearing part 15 that defines the outer diameter of the pipe material
is not particularly limited, but it is desirable to set it in the range of 15 to 40 mm, since this can result in higher quality pipe material. That is, the bearing length is 15mm
If it is less than that, there is a risk of variations in the roundness, wall thickness, etc. of the pipe, resulting in unstable dimensions.
On the other hand, if it exceeds 40 mm, there is a risk that seizure may occur and the surface smoothness may deteriorate. Further, in this invention, the approach angle θ 2 of the plug must be set in the range of 10 to 20°.
If the approach angle is less than 10°, the introduction of the pipe material between the bearing parts 15 and 22 will probably be uneven, so the surface of the pipe material after passing between the bearing parts 15 and 22 will not have the desired smoothness. On the other hand, if the angle is set larger than 20°, the pipe material will have irregularities in roundness, wall thickness, etc., and the dimensions will become unstable. The preferred approach angle for plug 2 is 13-15°
It is. Furthermore, the length (l 2 ) of the bearing part 22 of the plug 2 is not particularly limited, but it is best to set it in the range of 0.5 to 3.0 mm, since this can be a high-quality pipe material. desirable. That is,
This is because if the bearing length is less than 0.5 mm, the dimensions of the pipe material may become unstable;
This is because if it exceeds mm, there is a risk of image sticking and loss of surface smoothness. Note that 3 shown in Figure 2
is a support rod for fixing the plug attached to the rear end of the plug 2. In addition, the outer diameter dimension of the bearing part 22 of the plug 2 and the bearing part 15 of the soybean 1
Needless to say, the inner diameter dimension is determined in relation to the inner and outer diameters and wall thickness of the intended aluminum pipe material. In the illustrated embodiment, a mold is shown for pulling out by a ball pulling method in which the plug 2 is fixed via a support rod 3, but a mold for pulling out by a floating plug pulling method in which the plug is not fixed is shown. This invention can also be applied to molds. Effects of the Invention According to the present invention, as described above, an approach portion 14 whose hole diameter is continuously reduced in the drawing direction is formed on the entrance side of the die hole 13, and an approach portion 14 is formed continuously on the exit side of the approach portion 14. A die 1 in which a bearing part 15 with a constant hole diameter is formed, an approach part 21 in which the outer diameter is continuously expanded in the drawing direction,
A plug 2 having a bearing portion 22 with a constant outer diameter formed continuously on the exit side of this approach portion 21
The length of the bearing part 22 of the plug 2 is the same as the bearing part 1 of the die 1.
5, the plug 2 is inserted into the soybean hole 13 of the soybean 1, and the bearing part 22 of the plug 2 is located at an intermediate part in the length direction of the bearing part 15 of the soybean 1. The die 1 is a drawing die for an aluminum pipe material, in which both bearing parts are arranged facing each other with a predetermined distance apart.
The approach angle θ 1 of the plug 2 is set in the range of 45 to 75°, and the approach angle θ 2 of the plug 2 is set in the range of 10 to 75°.
It is characterized by being set within a range of 20°. Therefore, by using the mold,
As is clear from consideration of the examples described below,
The surface smoothness of the aluminum pipe after the drawing process can be made comparable to the precision cutting process that was conventionally performed after the drawing process.
As a result, the conventional precision cutting process is no longer necessary, and by omitting this process, it becomes possible to provide an aluminum pipe material with excellent surface smoothness with high production efficiency and at a low cost. Examples Next, examples of the present invention will be described. Extruded pipe made of A3003 aluminum alloy with an outer diameter of 20 mm, inner diameter of 17 mm, and wall thickness of 1.5 mm (tempered H112)
Prepare several pieces, and first perform the first stage of drawing using the beading method to obtain an outer diameter of 17.5 mm and an inner diameter of 15.3 mm.
A pipe material with a wall thickness of 1.1 mm was obtained. This extraction is
A mold made by combining a cemented carbide ball core die with an approach angle of 60° and a bearing length of 20 mm and a cemented carbide ball core plug with an approach angle of 13° and a bearing length of 1.2 mm as shown in Figure 2. I did it using Next, each aluminum pipe that has gone through the first stage drawing process is fitted with a cemented carbide ball core die and plug as shown in Figure 2, with various approach angles and bearing lengths as shown in Table 1 below. A second drawing was carried out using the beading method using a mold made of the above, and a final pipe material with an outer diameter of 16 mm, an inner diameter of 14.4 mm, and a wall thickness of 0.8 mm was obtained. Then, the surface roughness of each pipe material obtained above was measured. The results are also shown in Table 1.

【表】 上記結果から明らかなように、この発明に係る
引抜き加工用金型を用いれば、精密切削加工を施
した場合と同程度の表面粗さを有する表面平滑性
に優れたアルミニウムパイプ材を得ることができ
るものであることを確認し得た。 また、プラグアプローチ角度:13°、プラグベ
アリング長さ:1.2mm、ダイスベアリング長さ:
20mmに設定した以外は上記と同一条件のもとで、
ダイスアプローチ角度θ1を各種に変えたときのパ
イプ材の表面粗さを測定したところ第3図に示す
とおりであつた。 また、ダイスアプローチ角度:60°、ダイスベ
アリング長さ:20mm、プラグベアリング長さ:
1.2mmに設定した以外は前記と同一条件のもので、
プラグアプローチ角度θ2を各種に変えたときのパ
イプ材の表面粗さを測定したところ第4図に示す
とおりであつた。 また、ダイスアプローチ角度:60°プラグアプ
ローチ角度:13°、プラグベアリング長さ:1.2mm
に設定した以外は前記と同一条件のもとで、ダイ
スベアリング長さ(l1)を各種に変えたときのパ
イプ材の表面粗さを測定したところ第5図に示す
とおりであつた。 また、ダイスアプローチ角度:60°、ダイスベ
アリング長さ:20mm、プラグアプローチ角度:
13°に設定した以外は前記と同一条件のもとで、
プラグベアリング長さ(l2)を各種に変えたとき
のパイプ材の表面粗さを測定したところ第6図に
示すとおりであつた。 第3図及び第4図の結果から、ダイスアプロー
チ角度θ1を45〜75°、プラグアプローチ角度θ2
10〜20°に設定することでパイプ材の表面粗さを
良好なものになしうることがわかる。 一方、第5図及び第6図の結果から、ダイスベ
アリング長さ(l1)を15〜40mm、プラグベアリン
グ長さ(l2)を0.5〜3.0mmに設定した場合にも、
パイプ材の表面粗さを良好なものになしうること
がわかる。
[Table] As is clear from the above results, if the drawing die according to the present invention is used, aluminum pipe material with excellent surface smoothness and surface roughness comparable to that obtained by precision cutting can be produced. I was able to confirm that it was possible to obtain it. Also, plug approach angle: 13°, plug bearing length: 1.2mm, die bearing length:
Under the same conditions as above except that it was set to 20mm,
The surface roughness of the pipe material was measured when the die approach angle θ 1 was varied, and the results were as shown in FIG. Also, die approach angle: 60°, die bearing length: 20mm, plug bearing length:
Same conditions as above except that it was set to 1.2mm.
The surface roughness of the pipe material was measured when the plug approach angle θ 2 was varied, and the results were as shown in FIG. Also, die approach angle: 60° plug approach angle: 13°, plug bearing length: 1.2mm
The surface roughness of the pipe material was measured under the same conditions as above except that the length of the die bearing (l 1 ) was varied, and the results were as shown in FIG. Also, die approach angle: 60°, die bearing length: 20mm, plug approach angle:
Under the same conditions as above except that it was set to 13°,
The surface roughness of the pipe material was measured when the plug bearing length (l 2 ) was varied, and the results were as shown in FIG. From the results shown in Figures 3 and 4, the die approach angle θ 1 is 45 to 75°, and the plug approach angle θ 2 is
It can be seen that by setting the angle between 10 and 20 degrees, the surface roughness of the pipe material can be made good. On the other hand, from the results shown in Figures 5 and 6, even when the die bearing length (l 1 ) is set to 15 to 40 mm and the plug bearing length (l 2 ) is set to 0.5 to 3.0 mm,
It can be seen that the surface roughness of the pipe material can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはプラグの要部を示す拡大断面図、第
1図bはダイスの縦断面図、第2図は第1図a,
bに示したダイスとプラグを組合せた引抜き用金
型の縦断面図、第3図はダイスアプローチ角度θ1
とパイプ材の表面粗さとの関係を示すグラフ、第
4図はプラグアプローチ角度θ2とパイプ材の表面
粗さとの関係を示すグラフ、第5図はダイスベア
リング長さ(l1)とパイプ材の表面粗さとの関係
を示すグラフ、第6図はプラグベアリング長さ
(l2)とパイプ材の表面粗さとの関係を示すグラ
フである。 1……ダイス、14……アプローチ部、15…
…ベアリング部、2……プラグ、21……アプロ
ーチ部、22……ベアリング部、4……引抜き加
工用金型、A……パイプ材、θ1……ダイスのアプ
ローチ角、θ2……プラグのアプローチ角。
Figure 1a is an enlarged sectional view showing the main parts of the plug, Figure 1b is a longitudinal sectional view of the die, Figure 2 is Figure 1a,
A vertical cross-sectional view of the drawing die combining the die and plug shown in b, and Fig. 3 shows the die approach angle θ 1
Figure 4 is a graph showing the relationship between the plug approach angle θ 2 and the surface roughness of the pipe material, and Figure 5 is the relationship between the die bearing length (l 1 ) and the pipe material. FIG. 6 is a graph showing the relationship between the plug bearing length (l 2 ) and the surface roughness of the pipe material. 1... Dice, 14... Approach part, 15...
...Bearing part, 2...Plug, 21...Approach part, 22...Bearing part, 4...Drawing mold, A...Pipe material, θ 1 ... Approach angle of die, θ 2 ... Plug approach angle.

Claims (1)

【特許請求の範囲】 1 ダイス孔13の入側に、引抜き方向に孔径が
連続的に縮小されたアプローチ部14が形成され
るとともに、このアプローチ部14の出側に連続
して孔径一定のベアリング部15が形成されたダ
イス1と、 引抜き方向に外径が連続的に拡大されたアプロ
ーチ部21と、このアプローチ部21の出側に連
続して形成された外径一定のベアリング部22を
有するプラグ2との組み合わせからなり、 かつ該プラグ2のベアリング部22の長さはダ
イス1のベアリング部15の長さよりも短く設定
されるとともに、前記プラグ2が前記ダイス1の
ダイス孔13に挿入配置され、プラグ2のベアリ
ング部22がダイス1のベアリング部15の長さ
方向における中間部に位置するように配置され、
かつ両ベアリング部が所定間〓を隔てて対向状に
配置されたアルミニウムパイプ材の引抜き用金型
であつて、 前記ダイス1のアプローチ角θ1が45〜75°の範
囲に設定されるとともに、前記プラグ2のアプロ
ーチ角θ2が10〜20°の範囲に設定されていること
を特徴とするアルミニウムパイプ材の引抜き用金
型。 2 ダイス1のベアリング長さ(l1)が15〜40mm
の範囲に設定されている特許請求の範囲第1項記
載のアルミニウムパイプ材の引抜き用金型。 3 プラグ2のベアリング長さ(l2)が0.5〜3.0
mmの範囲に設定されている特許請求の範囲第1項
または第2項記載のアルミニウムパイプ材の引抜
き用金型。
[Claims] 1. An approach portion 14 whose hole diameter is continuously reduced in the drawing direction is formed on the inlet side of the die hole 13, and a bearing with a constant hole diameter is formed continuously on the outlet side of the approach portion 14. The die 1 has a die 1 formed with a portion 15, an approach portion 21 whose outer diameter is continuously enlarged in the drawing direction, and a bearing portion 22 with a constant outer diameter formed continuously on the exit side of the approach portion 21. The length of the bearing part 22 of the plug 2 is set shorter than the length of the bearing part 15 of the die 1, and the plug 2 is inserted into the die hole 13 of the die 1. is arranged so that the bearing part 22 of the plug 2 is located at an intermediate part in the length direction of the bearing part 15 of the die 1,
and a mold for drawing aluminum pipe material, in which both bearing parts are arranged facing each other with a predetermined distance apart, and the approach angle θ 1 of the die 1 is set in a range of 45 to 75 degrees, A mold for drawing aluminum pipe material, characterized in that an approach angle θ 2 of the plug 2 is set in a range of 10 to 20°. 2 Bearing length (l 1 ) of die 1 is 15 to 40 mm
A mold for drawing aluminum pipe material according to claim 1, which is set in the range of . 3 Bearing length (l 2 ) of plug 2 is 0.5 to 3.0
The mold for drawing aluminum pipe material according to claim 1 or 2, wherein the mold is set in the range of mm.
JP62019323A 1987-01-29 1987-01-29 Drawing die for aluminum pipe Granted JPS63188422A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62019323A JPS63188422A (en) 1987-01-29 1987-01-29 Drawing die for aluminum pipe
DE8888300558T DE3864272D1 (en) 1987-01-29 1988-01-25 METHOD FOR PRODUCING ALUMINUM CYLINDERS WITH A VERY SMOOTH SURFACE.
EP88300558A EP0276958B1 (en) 1987-01-29 1988-01-25 Method of producing aluminum drums having highly smooth surfaces
US07/148,981 US4805435A (en) 1987-01-29 1988-01-27 Method for producing aluminum drums having highly smooth surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019323A JPS63188422A (en) 1987-01-29 1987-01-29 Drawing die for aluminum pipe

Publications (2)

Publication Number Publication Date
JPS63188422A JPS63188422A (en) 1988-08-04
JPH0413044B2 true JPH0413044B2 (en) 1992-03-06

Family

ID=11996195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019323A Granted JPS63188422A (en) 1987-01-29 1987-01-29 Drawing die for aluminum pipe

Country Status (4)

Country Link
US (1) US4805435A (en)
EP (1) EP0276958B1 (en)
JP (1) JPS63188422A (en)
DE (1) DE3864272D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627231B2 (en) * 1990-11-16 1997-07-02 株式会社リコー Electrophotographic photoreceptor substrate and method of manufacturing the same
US6309195B1 (en) * 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
DE10127911B4 (en) * 2001-06-08 2008-12-18 Eastman Kodak Co. Method of making a cuff
DE102011054343B3 (en) * 2011-10-10 2012-05-10 Benteler Automobiltechnik Gmbh Method for manufacturing tubular body, involves bringing material to be transformed warmly in material-deforming tool and pressing material by mold of material-deforming tool in mold cavity
KR20230079785A (en) * 2021-11-29 2023-06-07 현대자동차주식회사 Drawing Method for Aluminum Material Axial Tube and Cowl Cross Bar Thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355734A (en) * 1943-05-06 1944-08-15 Bundy Tubing Co Floating pin mandrel
DE1817515U (en) * 1960-06-21 1960-09-01 Ver Leichtmetallwerke Gmbh DEVICE FOR DRAWING METAL PIPES, IN PARTICULAR SUCH MADE OF LIGHT METAL.
DE2131343A1 (en) * 1971-06-24 1973-01-11 Benteler Werke Ag METHOD AND DEVICE FOR COLD DRAWING METAL PIPES, IN PARTICULAR MADE OF STEEL
DE2217505C3 (en) * 1972-04-12 1974-09-26 Wieland-Werke Ag, 7900 Ulm Mandrel storage of a device for butting pipes
US4161112A (en) * 1978-02-21 1979-07-17 The Babcock & Wilcox Company Tube drawing technique
US4232541A (en) * 1979-01-23 1980-11-11 The Babcock & Wilcox Company Drawing technique

Also Published As

Publication number Publication date
DE3864272D1 (en) 1991-09-26
US4805435A (en) 1989-02-21
EP0276958A2 (en) 1988-08-03
EP0276958A3 (en) 1988-12-21
JPS63188422A (en) 1988-08-04
EP0276958B1 (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US20080072647A1 (en) Die, method of manufacturing stepped metal pipe or tube, and stepped metal pipe or tube
US3434322A (en) Method and apparatus for rolling bearing races
CA1106316A (en) Cold drawing of metal tubes
JPH0413044B2 (en)
US3288542A (en) Method of rolling bearing races
JP2007203343A (en) Shaping method and shaping die for cylindrical shaft
JPH0428402A (en) Internal high-fined tube and manufacture of internally high-finned type double tube
KR850001567B1 (en) Process for the manufacture of tubes on tube push bench apparatus
JPS6040625A (en) Working method of cylinder end part
EP0326085B1 (en) Production of nozzle member
JPS59163024A (en) Production of curved pipe material and press device thereof as well as formed product
JPH0191909A (en) Manufacture of aluminum pipe having proper surface roughness
JPH01245914A (en) Manufacture of metallic pipe excellent in out-of-roundness of outer diameter
JPS61219416A (en) Drawing method for irregular section pipe and its device
JPH0440090B2 (en)
JPS5849152Y2 (en) Upset steel pipe processing type structure
JPS6330095B2 (en)
US3537289A (en) Method of producing webbed steel pipes
JPH06304644A (en) Manufacture of tapered bore tube
JP2951211B2 (en) Metal tube with internal floating pattern, method for manufacturing the same, and mandrel for the manufacture
JPS6242682B2 (en)
RU2152283C1 (en) Method for making elbow
JPS6027414A (en) Production of blank pipe for bent pipe
JPS63235021A (en) Manufacture of hot extruded tube
JP2951212B2 (en) Metal tube with concave pattern on inner surface, method of manufacturing the same, and mandrel for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term