JPH04130141A - Fiber-reinforced resin composition - Google Patents

Fiber-reinforced resin composition

Info

Publication number
JPH04130141A
JPH04130141A JP29912190A JP29912190A JPH04130141A JP H04130141 A JPH04130141 A JP H04130141A JP 29912190 A JP29912190 A JP 29912190A JP 29912190 A JP29912190 A JP 29912190A JP H04130141 A JPH04130141 A JP H04130141A
Authority
JP
Japan
Prior art keywords
component
fiber
resin
parts
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29912190A
Other languages
Japanese (ja)
Inventor
Shoichi Sato
正一 佐藤
Tooru Imanara
今奈良 徹
Takao Uematsu
植松 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP29912190A priority Critical patent/JPH04130141A/en
Publication of JPH04130141A publication Critical patent/JPH04130141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a fiber-reinforced resin composite material excellent in heat resistance, mechanical properties, and moldability, free from void and other defects, and having a high packing density by compounding an epoxy resin with specific compds. and molding the resulting compsn. by RIM or RTM method. CONSTITUTION:A fiber-reinforced resin compsn. is prepd. by compounding into the compsn. a reactive resin component comprising an epoxy resin having at least two epoxy groups in the molecule, a polyfunctional (meth)acrylate compd. having at least two (meth)acrylic groups in the molecule, a lip. carboxylic acid anhydride contg. a monofunctional carboxylic acid anhydride and/or a polycarboxylic acid anhydride obtd. by reacting a lower aliph. polyhydric alcohol with trimellitic acid or a deriv. thereof, a curing accelerator, and a radical polymn. initiator. A fiber-reinforced resin composite material excellent in heat resistance, mechanical properties, and moldability, free from void and other defects, and having a high packing density can be prepd. from this compsn. by reaction injection molding or by resin transfer molding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維強化樹脂組成物に関するものであり、特に
反応射出成形(RIM)、R(リインフォース)RIM
、 S(ス)ラクチュアル)RIMまたはレジン。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to fiber reinforced resin compositions, particularly reaction injection molding (RIM) and R (reinforce) RIM.
, S(s)lactual) RIM or resin.

トランスファー・モールディング(RTM)法により自
動車部品、電機部品等に適した複合材料を得る為の優れ
た樹脂特性と、成形性の良い繊維強化樹相接合材を与え
る樹脂組成物に関するものである。
The present invention relates to a resin composition that provides a fiber-reinforced dendritic bonding material with excellent moldability and excellent resin properties for obtaining composite materials suitable for automobile parts, electrical parts, etc. by the transfer molding (RTM) method.

[従来の技術] 繊維強化複合材は、自動車部品、電機部品、建材、船舶
、スポーツ用品、航空機部品等広い分野に利用され、プ
ラスチック化による軽量化が行なわれている。繊維強化
材としては、ガラス繊維、アラミド繊維、炭素繊維等が
用いられ、マトリックス樹脂もウレタン樹脂、不飽和ポ
リエステル樹脂、ビニルエステル樹脂、エポキシ樹脂等
様々のマトリックス樹脂が使用されている。また成形方
法についても、ハンドレイアップ成形、フィラメントワ
インディング成形、プルトルージョン成形、プリプレグ
を用いた圧力成形、BMC成形、SMC成形等様々な成
形方法により複合材が作られている。反応射出成形法に
ついても従来より確立された成形方法ではあるが、この
方法は成形サイクルタイムが短く、自動化により広範な
種々の成形品が得られる優れた成形法である。近年更に
この方法を用いた大型の成形、複雑形状物への要望が高
まっており、また構造材料としての高度な機械的特性と
耐熱性、耐久性等が要求されつつある。
[Prior Art] Fiber-reinforced composite materials are used in a wide range of fields such as automobile parts, electrical equipment parts, building materials, ships, sporting goods, and aircraft parts, and are being made into plastics to reduce their weight. As the fiber reinforcing material, glass fiber, aramid fiber, carbon fiber, etc. are used, and as the matrix resin, various matrix resins such as urethane resin, unsaturated polyester resin, vinyl ester resin, and epoxy resin are used. Composite materials are also produced by various molding methods such as hand lay-up molding, filament winding molding, pultrusion molding, pressure molding using prepreg, BMC molding, and SMC molding. The reaction injection molding method is also a conventionally established molding method, but this method is an excellent molding method that has a short molding cycle time and can produce a wide variety of molded products through automation. In recent years, there has been an increasing demand for large-scale molding and complex-shaped products using this method, and there is also a growing demand for high mechanical properties, heat resistance, durability, etc. as structural materials.

従来、反応射出成形を利用した繊維強化材には種々のマ
トリックス樹脂が用いられている。主なマトリックス樹
脂の特徴と欠点を示すと、ウレタン樹脂は硬化速度は速
いが耐熱性が不十分であり、不飽和ポリエステル樹脂も
硬化速度が速い特徴を有するが、他の特性を十分に満足
しない。またビニルエステル樹脂は、耐食性、作業性に
優れているが、エポキシ樹脂に比べ複合材料物性、耐熱
性が低い傾向にあり硬化収縮により表面性の悪化等をも
たらす、一方エポキシ樹脂は比較的良好な耐熱性と優れ
た耐食性、機械的強度を有する反面硬化速度が遅く粘度
が高い等の欠点があり、また耐衝撃性、強靭性の不足が
指摘されている。これらのエポキシ樹脂について更に特
性の高度化を目指し検討されているが、低粘度かつ耐熱
性と高靭性を共に満足することは難しく、特に強化繊維
を用いた繊維強化樹脂複合材の場合、繊維固有の機械的
物性を十分に発現させるためには、樹脂硬化物の破断伸
びが強化繊維の破断伸び以上である必要がある。特に、
繊維強化樹脂複合材の疲労特性を十分高く保つためには
、硬化物の伸びは繊維の伸びよりもかなりの程度高い必
要がある。たとえば強化材とて伸度4%のガラス繊維を
用いた場合、樹脂の破断伸びはこの数値以上である必要
があり、これら諸条件を十分に満足する樹脂組成物は殆
ど知られていないのが現状である。
Conventionally, various matrix resins have been used in fiber reinforced materials using reaction injection molding. The main characteristics and drawbacks of matrix resins are that urethane resin has a fast curing speed but insufficient heat resistance, and unsaturated polyester resin also has a fast curing speed but does not fully satisfy other characteristics. . Furthermore, although vinyl ester resins have excellent corrosion resistance and workability, they tend to have lower composite material properties and heat resistance than epoxy resins, resulting in deterioration of surface properties due to curing shrinkage.On the other hand, epoxy resins have relatively good properties. Although it has heat resistance, excellent corrosion resistance, and mechanical strength, it has drawbacks such as slow curing speed and high viscosity, and it has also been pointed out that it lacks impact resistance and toughness. Although studies are being conducted to further improve the properties of these epoxy resins, it is difficult to satisfy both low viscosity, heat resistance, and high toughness.Especially in the case of fiber-reinforced resin composites using reinforcing fibers, In order to fully exhibit the mechanical properties of the resin, the elongation at break of the cured resin must be greater than the elongation at break of the reinforcing fiber. especially,
In order to maintain sufficiently high fatigue properties of fiber-reinforced resin composites, the elongation of the cured product needs to be considerably higher than the elongation of the fibers. For example, when glass fiber with an elongation of 4% is used as a reinforcing material, the elongation at break of the resin must exceed this value, and there are almost no known resin compositions that fully satisfy these conditions. This is the current situation.

エポキシ樹脂について、特開昭63−218325号公
報に比較的硬化が速い脂環式アミン系硬化材によるエポ
キシ樹脂のRIM製造方法が記載されているが、これら
反応射出成形に必要な高硬化速度を有するエポキシ樹脂
は一般に極めて粘度が高いため、連続繊維、織物等あら
かじめ配備された強化材への含浸性が不十分で、成形品
中のボイドまたは未含浸部発生の原因となっている。特
に強化材を高密度に充填した場合にこの傾向は顕著であ
る。また特にアミン系硬化材においては安全衛生面、作
業環境の悪化等が問題となる場合がある。
Regarding epoxy resins, JP-A No. 63-218325 describes a RIM manufacturing method for epoxy resins using an alicyclic amine curing agent that cures relatively quickly. Generally, the epoxy resin has an extremely high viscosity, so it has insufficient impregnating properties into reinforcing materials such as continuous fibers and fabrics, which causes voids or unimpregnated areas in the molded product. This tendency is particularly noticeable when the reinforcing material is packed with high density. In addition, particularly in the case of amine-based hardening materials, there may be problems in terms of safety and health, deterioration of the working environment, etc.

これらの樹脂の低粘度化、可撓性付与の目的よりエポキ
シ樹脂に脂肪族のジグリシジルエーテル、−官能エポキ
シ化合物等の反応性希釈剤を添加することにか一般に知
られている。しかし反応性希釈剤を添加することにより
耐熱性、機械的特性、耐水性等の低下が顕著であり、要
求性能を満足することは難しい。特開平1−22848
号公報にポリカルボン酸無水物硬化剤系にビニル芳香族
単炭化水素を用い、粘度およびポットライフの改善と耐
熱性が向上する事が記載されている。しかしこの方法で
は、熱変形温度等の耐熱性は向上するものの硬化物の破
断伸びは不十分であり、強度は低下する。特開昭63−
170410号公報にエポキシ樹脂と重合性ビニル化合
物をイミダゾール化合物およびラジカル重合開始剤を用
い作業性と耐熱性を改善しているが、これらも上記同様
硬化物の耐熱性を保持したまま十分な破断伸びを得るこ
とは困難である。
It is generally known to add reactive diluents such as aliphatic diglycidyl ethers and -functional epoxy compounds to epoxy resins for the purpose of lowering the viscosity and imparting flexibility to these resins. However, by adding a reactive diluent, heat resistance, mechanical properties, water resistance, etc. are significantly reduced, making it difficult to satisfy the required performance. JP 1-22848
The publication describes that viscosity and pot life are improved and heat resistance is improved by using a vinyl aromatic monohydrocarbon in a polycarboxylic acid anhydride curing agent system. However, with this method, although the heat resistance such as the heat distortion temperature is improved, the elongation at break of the cured product is insufficient and the strength is reduced. Unexamined Japanese Patent Publication 1986-
No. 170410 discloses that the workability and heat resistance of an epoxy resin and a polymerizable vinyl compound are improved by using an imidazole compound and a radical polymerization initiator, but these also have sufficient elongation at break while maintaining the heat resistance of the cured product. is difficult to obtain.

また特公平1−29815号、特公平1−29816号
公報に多塩基酸無水物硬化剤系に不飽和ポリエステルま
たはエポキシビニルエステル樹脂を用いたプリプレグ及
び積層板の製造法が記載されている。これらの方法によ
り硬化速度および硬化物特性の改善がなされていが、こ
れらの樹脂組成物は比較的粘度が高< RJM成形時の
強化繊維との濡れ性、含浸性が不良となり、ボイド残存
の原因となる。更に表面平滑性の優れた成形品を得るこ
とは困難である。
Further, Japanese Patent Publication No. 1-29815 and Japanese Patent Publication No. 1-29816 describe methods for producing prepregs and laminates using unsaturated polyester or epoxy vinyl ester resins as a polybasic acid anhydride curing agent system. Although these methods have improved the curing speed and properties of the cured product, these resin compositions have a relatively high viscosity, resulting in poor wettability and impregnation with the reinforcing fibers during RJM molding, which may cause voids to remain. becomes. Furthermore, it is difficult to obtain molded products with excellent surface smoothness.

強靭性については、従来よりエポキシ樹脂にアクリルゴ
ムやカルボキシ基等の末端基を有するアクリロニトリル
−ブタジェン共重合物の添加により改善が行われている
Toughness has conventionally been improved by adding acrylic rubber or an acrylonitrile-butadiene copolymer having a terminal group such as a carboxyl group to an epoxy resin.

[発明が解決しようとする課題] しかしこれらの方法では樹脂の混合粘度の上昇と共に硬
化物の耐熱性、強度、弾性率、耐水性等の低下がある。
[Problems to be Solved by the Invention] However, in these methods, the mixed viscosity of the resin increases and the heat resistance, strength, elastic modulus, water resistance, etc. of the cured product decrease.

特にRIM成形に必要な低粘度、速硬化性を有し更に硬
化物の耐熱性、強靭性をも満足し、耐久性に優れた繊維
強化樹脂複合材を得ることはきわめて困難である。
In particular, it is extremely difficult to obtain a fiber-reinforced resin composite material that has the low viscosity and fast curing properties required for RIM molding, satisfies the heat resistance and toughness of the cured product, and has excellent durability.

[課題を解決するための手段] そこで本発明者は鋭意検討の結果エポキシ樹脂を用いた
反応射出成形に於けるかかる課題を解決すべく鋭意検討
した結果、エポキシ樹脂と特定の重合性不飽和基含有化
合物、液状のカルボン酸無水物硬化剤を用いることによ
り、100〜120°C程度の比較的低い温度で短時間
の成形が可能であり、高い耐熱性と高靭性及び高い充填
密度の連続繊維等により強化された実質的にボイド、未
含浸部のない優れた複合材特性を有する成形物を迅速に
得ることができることを見い出し、本発明を完成した。
[Means for Solving the Problems] Therefore, as a result of intensive studies, the present inventors have made intensive studies to solve the problems in reaction injection molding using epoxy resins, and found that epoxy resins and specific polymerizable unsaturated groups By using the containing compound and a liquid carboxylic acid anhydride curing agent, it is possible to mold for a short time at a relatively low temperature of about 100 to 120°C, creating continuous fibers with high heat resistance, high toughness, and high packing density. The present invention has been completed based on the discovery that it is possible to quickly obtain a molded product having excellent composite properties that is substantially free of voids and unimpregnated areas and is reinforced by the above methods.

すなわち本発明の目的は、反応射出成形またはRIM法
により成形サイクルタイムが短く、混合樹脂の低粘度化
による強化繊維の高充填化とマトリックス樹脂にエポキ
シ樹脂と特定の化合物を用いることにより高耐熱性、高
弾性および強靭性を両立し、優れた機械的特性と耐久性
を有する繊維強化樹脂複合材を提供するものである。
In other words, the purpose of the present invention is to shorten the molding cycle time by using reaction injection molding or RIM method, to increase the filling of reinforcing fibers by lowering the viscosity of the mixed resin, and to achieve high heat resistance by using an epoxy resin and a specific compound as the matrix resin. The present invention provides a fiber-reinforced resin composite material that has both high elasticity and toughness, and has excellent mechanical properties and durability.

そしてその目的は、反応性樹脂成分を混合後、ただちに
M&維強化材を載置した型内に注入して得られる繊維強
化樹脂複合材を製造するに際し、反応性樹脂成分として
下記A、 B、 C,D及びE成分を必須成分とする繊
維強化樹脂組成物により容易に達成される。
The purpose of this is to mix the reactive resin components and immediately inject them into a mold on which the M&fiber reinforcement is placed to produce a fiber-reinforced resin composite material.The following A, B, This can be easily achieved using a fiber-reinforced resin composition containing C, D and E components as essential components.

A成分:1分子中に2個以上のエポキシ基を有するエポ
キシ樹脂。
Component A: An epoxy resin having two or more epoxy groups in one molecule.

B成分:1分子中にアクリル又はメタクリル基を2個以
上有する多官能(メタ)アクリレート化合物。
Component B: A polyfunctional (meth)acrylate compound having two or more acrylic or methacrylic groups in one molecule.

C成分:単官能カルボン酸無水物およびlまたは低級脂
肪族多価アルコールとトリメリット酸またはその誘導体
との反応によって得られた多官能カルボン酸無水物を含
有する液状カルボン酸無水物。
Component C: A liquid carboxylic anhydride containing a monofunctional carboxylic anhydride and a polyfunctional carboxylic anhydride obtained by reacting l or lower aliphatic polyhydric alcohol with trimellitic acid or a derivative thereof.

D成分:硬化促進剤 E成分:ラジカル重合開始剤 以下本発明の詳細な説明する。D component: hardening accelerator E component: radical polymerization initiator The present invention will be explained in detail below.

本発明に於けるA成分であるエポキシ樹脂は分子末端に
2個以上のエポキシ基を有する化合物である。一般にこ
のようなエポキシ樹脂は、大過剰のエビハロヒドリン(
例えばエピクロルヒドリン)中、1006C以下の温度
でエビハロヒドリンを付加反応させ、次いで40〜10
0°Cの温度で減圧下前性アルカリ水溶液を滴下し、共
沸で系内の水を留去しながらエポキシ化する方法、また
不飽和二重結合部を過酢酸等でエポキシ化する方法等で
合成されるのが一般的である。
The epoxy resin which is component A in the present invention is a compound having two or more epoxy groups at the end of the molecule. Generally, such epoxy resins contain a large excess of shrimp halohydrin (
For example, shrimp halohydrin is subjected to an addition reaction in epichlorohydrin) at a temperature below 1006 C, and then 40 to 10
A method of dropping an aqueous alkaline solution under reduced pressure at a temperature of 0°C and epoxidizing while distilling off water in the system azeotropically, and a method of epoxidizing unsaturated double bonds with peracetic acid, etc. It is generally synthesized with

このエポキシ樹脂としては、ビスフェノールA1ビスフ
エノールF、ノボラック樹脂等とエピクロルヒドリンと
の反応生成物であるグリシジルエーテル型エポキシ樹脂
、グリシジルアミン型エポキシ樹脂、グリシジルエステ
ル型エポキシ樹脂、複素環式エポキシ樹脂、ハロゲン化
エポキシ樹脂等であり、これらの1種または2種以上を
併用して用いることが出来る。しかし本発明の目的の一
つである高含浸性を十分に達成させるためには、これら
単独または混合物が常温で液状であり、より低粘度のエ
ポキシ樹脂を用いるのが好ましい。
Examples of this epoxy resin include bisphenol A1 bisphenol F, glycidyl ether type epoxy resin which is a reaction product of novolak resin, etc. and epichlorohydrin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, heterocyclic epoxy resin, and halogenated epoxy resin. These are epoxy resins and the like, and one or more of these can be used in combination. However, in order to sufficiently achieve high impregnating properties, which is one of the objects of the present invention, it is preferable to use an epoxy resin that is liquid at room temperature and has a lower viscosity, either alone or as a mixture.

本発明におけるB成分である多官能(メタ)アクリル化
合物としては1分子中にラジカル重合性を有するアクリ
ルまたはメタクリル基を2個以上含有した化合物である
。この例としては、エチレングリコールジメタクリレー
ト、ジエチレングリコールジメタクリレート、1,4−
ブタンジオールジメタクリレート、1,6−ヘキサンシ
オールジ(メタ)アクリレート、トリメチロールプロパ
ントリメタクリレート、グリセリンジメタクリレート、
トリエチレングリコールジメタクリレート、ポリエチレ
ングリコールジ(メタ)アクリレート、1,3−ブタン
ジオールジメタクリレート、ネオベンチルグリコールジ
(メタ)アクリレート、1,10−デカンジオールジメ
タクリレート、ビスフェノールAのエチレンオキサイド
付加物ジ(メタ)アクリレート、ジブロモネオペンチル
グリコールジメタクリレート、テトラブロモビスフェノ
ールAのエチレンオキサイド付加物ジ(メタ)アクリレ
ート、トリエチレングリコールジアクリレート、エチレ
ンオキサイド変性ビスフェノールAジアクリレート、プ
ロピレンオキサイド変性ビスフェノールAジアクリレー
ト、トリメチロールプロパントリアクリレート、エチレ
ンオキサイド変性トリメチロールプロパントリアクリレ
ート、ペンタエリスリトールトリアクリレート、ペンタ
エリスリトールテトラアクリレート、ジペンタエリスリ
トールへキサアクリレート、水添ジシクロペンタジェニ
ルジアクリレート、プロピレンオキサイド変性ビスフェ
ノールAジアクリレート、トリメチロールメタントリメ
タクリレート、テトラメチロールメタントリアクリレー
ト等が挙げられる。この多官能(メタ)アクリレート化
合物は、A成分に用いられるエポキシ樹脂の種類に応じ
て適宜選択されるが、ビニル芳香族炭化水素または一官
能(メタ)アクリル化合物を用いた場合物性の低下は顕
著であるのに対し、多官能化合物を用いることにより、
本発明の一つの目的である硬化反応性の改良および強靭
性改良には特に効果が大きい。更に本発明のA成分であ
るエポキシ樹脂とC成分の液状カルボン酸無水物硬化剤
との組合せ、また付加重合硬化促進剤およびラジカル重
合開始剤を用いて加熱によりエポキシ基と不飽和基の同
時硬化を行うことにより、耐熱性(ガラス転移温度=T
g)および適度な硬化物の伸びを保持したまま弾性率を
向上し、衝撃強度等にも優れた強靭な樹脂硬化物が得ら
れる。
The polyfunctional (meth)acrylic compound which is component B in the present invention is a compound containing two or more radically polymerizable acrylic or methacrylic groups in one molecule. Examples of this include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,4-
Butanediol dimethacrylate, 1,6-hexanethiol di(meth)acrylate, trimethylolpropane trimethacrylate, glycerin dimethacrylate,
Triethylene glycol dimethacrylate, polyethylene glycol di(meth)acrylate, 1,3-butanediol dimethacrylate, neobentyl glycol di(meth)acrylate, 1,10-decanediol dimethacrylate, ethylene oxide adduct of bisphenol A (meth)acrylate, dibromoneopentyl glycol dimethacrylate, ethylene oxide adduct of tetrabromobisphenol A di(meth)acrylate, triethylene glycol diacrylate, ethylene oxide modified bisphenol A diacrylate, propylene oxide modified bisphenol A diacrylate, tri- Methylolpropane triacrylate, ethylene oxide modified trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, hydrogenated dicyclopentajenyl diacrylate, propylene oxide modified bisphenol A diacrylate, trimethylol Examples include methane trimethacrylate and tetramethylolmethane triacrylate. This polyfunctional (meth)acrylate compound is appropriately selected depending on the type of epoxy resin used for component A, but when a vinyl aromatic hydrocarbon or a monofunctional (meth)acrylic compound is used, the physical properties are significantly deteriorated. However, by using a polyfunctional compound,
It is particularly effective in improving curing reactivity and toughness, which are one of the objectives of the present invention. Furthermore, the epoxy group and the unsaturated group can be simultaneously cured by heating using a combination of the epoxy resin which is the A component of the present invention and the liquid carboxylic acid anhydride curing agent which is the C component, and an addition polymerization curing accelerator and a radical polymerization initiator. By doing this, heat resistance (glass transition temperature = T
g) A tough cured resin product with improved elastic modulus while maintaining appropriate elongation of the cured product and excellent impact strength etc. can be obtained.

本発明では、上述の化合物以外に特性をそこなわない程
度の一官能(メタ)アクリレート化合物またエポキシ基
、水酸基等地の官能基を有する(メタ)アクリレート化
合物、重合性不飽和モノマー化合物1.T4和ポリエス
テル、ビニルエステル樹脂等地の不飽和系の化合物を併
用する事もできる。これらの樹脂組成物は硬化反応性、
低粘度化についても改善されている。更に不飽和基を有
するラジカル重合性化合物の欠点でもある成形時の硬化
収縮も小さく、表面性の良好な繊維強化樹脂複合材が得
られる。
In the present invention, in addition to the above-mentioned compounds, monofunctional (meth)acrylate compounds, (meth)acrylate compounds having functional groups such as epoxy groups and hydroxyl groups, and polymerizable unsaturated monomer compounds 1. Unsaturated compounds such as T4 polyester and vinyl ester resins can also be used together. These resin compositions have curing reactivity,
Improvements have also been made in lowering the viscosity. Furthermore, curing shrinkage during molding, which is a drawback of radically polymerizable compounds having unsaturated groups, is small, and a fiber-reinforced resin composite material with good surface properties can be obtained.

本発明におけるC成分であるカルボン酸無水物硬化剤は
室温において液状であり、単官能カルボン酸無水物単独
あるいは低級脂肪族多価アルコールとトリメリット酸ま
たはその誘導体の反応により得られる多官能カルボン酸
無水物を併用するものである。単官能カルボン酸無水物
としては3−メチルテトラヒドロ無水フタル酸、4−メ
チルテトラヒドロ無水フタル酸、3−メチルへキサヒド
ロ無水フタル酸、4−メチルへキサヒドロ無水フタル酸
、メチルナジック酸無水物、ドデセニル無水コハク酸お
よびそれらの構造異性体もしくは幾何異性体が例示され
る。そして単官能カルボン酸無水物としては、好ましく
は25°Cの粘度が500cps以下の液状の物がよい
。500cps以上では十分な低粘度化を達成すること
が難しい。
The carboxylic acid anhydride curing agent which is component C in the present invention is liquid at room temperature, and is a polyfunctional carboxylic acid obtained by reacting a monofunctional carboxylic anhydride alone or a lower aliphatic polyhydric alcohol with trimellitic acid or a derivative thereof. It is used in combination with anhydride. Examples of monofunctional carboxylic anhydrides include 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, methylnadic anhydride, and dodecenyl anhydride. Examples include succinic acid and structural or geometric isomers thereof. The monofunctional carboxylic acid anhydride is preferably a liquid having a viscosity of 500 cps or less at 25°C. At 500 cps or more, it is difficult to achieve a sufficiently low viscosity.

また多官能カルボン酸無水物としては低級脂肪族多価ア
ルコールとトリメリット酸またはその誘導体とを反応し
て得られた反応生成物を含有する液状変性物が挙げられ
るが、この多官能カルボン酸無水物の一成分である低級
脂肪族多価アルコールとしては好ましくは炭素原子数2
〜10個のものがよく、例えばエチレングリコール、プ
ロピレングリコール、1,4−ブタンジオール、グリセ
ロール、トリメチロールエタン、トリメチロールプロパ
ン、ペンタエリスリトール、ヘキサントリオ−ル等が挙
げられる。
Examples of polyfunctional carboxylic anhydrides include liquid modified products containing reaction products obtained by reacting lower aliphatic polyhydric alcohols with trimellitic acid or its derivatives; The lower aliphatic polyhydric alcohol which is a component of the product preferably has 2 carbon atoms.
It is preferable to use 1 to 10 of them, and examples thereof include ethylene glycol, propylene glycol, 1,4-butanediol, glycerol, trimethylolethane, trimethylolpropane, pentaerythritol, hexanetriol, and the like.

本発明で用いられるD成分である硬化促進剤としてはル
イス酸、BF3・アミン錯体、第三アミン及びその塩類
、イミダゾール及びその錯体、有機ホスフィン化合物等
が挙げられる。好ましくはイミダゾール、有機ホスフィ
ン化合物であり、イミダゾール化合物の例としては、2
−エチルイミダゾール、2−ウンデシルイミダゾール、
2−ペンタデシルイミダゾール、2−メチル−4−エチ
ルイミダゾール、1−ブチルイミダゾール、1−プロピ
ル−2−メチルイミダゾール、1−シアノエチル−2−
メチルイミダゾール、1−シアノエチル−2−ウンデシ
ルイミダゾール、1−シアノエチル−2−フェニルイミ
ダゾール、1−アジン−2−メチルイミダゾール、1−
アジン−2−ウンデシルイミダゾール等が例示され、有
機ホスフィン化合物の具体例は、トリフェニルホスフィ
ン、トリブチルホスフィン、トリシクロヘキシルホスフ
ィン、メチルジフェニルホスフィン等の第三ホスフィン
化合物、プチルリフェニルホスフィン、ジフェニルホス
フィン等の第二ホスフィン化合物、フェニルホスフィン
、オクチルホスフィン等の第一ホスフィン化合物、及び
ビス(ジフェニルホスフィノ)メタン、1,2−ビス(
ジフェニルホスフィノ)エタン等の第三ビスホスフィン
化合物が例示され、必要に応じこれらの一種またはそれ
以上を併用してもよい。
Examples of the curing accelerator used in the present invention as component D include Lewis acids, BF3/amine complexes, tertiary amines and their salts, imidazole and its complexes, and organic phosphine compounds. Preferred are imidazole and organic phosphine compounds, and examples of imidazole compounds include 2
-ethylimidazole, 2-undecylimidazole,
2-Pentadecylimidazole, 2-methyl-4-ethylimidazole, 1-butylimidazole, 1-propyl-2-methylimidazole, 1-cyanoethyl-2-
Methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-azine-2-methylimidazole, 1-
Examples of organic phosphine compounds include tertiary phosphine compounds such as triphenylphosphine, tributylphosphine, tricyclohexylphosphine, methyldiphenylphosphine, butyrrhiphenylphosphine, diphenylphosphine, etc. Secondary phosphine compounds, primary phosphine compounds such as phenylphosphine, octylphosphine, and bis(diphenylphosphino)methane, 1,2-bis(
Examples include tertiary bisphosphine compounds such as diphenylphosphino)ethane, and one or more of these may be used in combination as required.

本発明のE成分であるラジカル重合開始剤としては、多
官能(メタ)アクリレート化合物のラジカル重合性基を
加熱によりラジカルを発生し重合させる通常の有機過酸
化物が挙げられる。有機過酸化物の例としては、アゾイ
ソブチルニトリルのようなアゾ化合物、t−ブチルパー
ベンゾエート、t−ブチルパーオキシ−2−エチルヘキ
サノエート、を−プチルバーオキシイソブロピルカルボ
ネー)、1,1−ビス(t−ブチルパーオキシ)3,3
.5− )リメチルシクロヘキサン、n−ブチル−4,
4−ビス(t−ブチルパーオキシ)バレレート、ベンゾ
イルパーオキサイド、t−バーオクトエート、アセト酢
酸エステルパーオキサイド、メチルエチルケトンパーオ
キサイド、ジクミルパーオキサイド、t−ブチルハイド
ロパーオキサイド等が挙げられ、これらの1種または2
種以上を用いることが出来、更にジメチルパラトルイジ
ン、ジメチルアニリン、ジエチルアニリン、ラウリンメ
ルカプタン、ナフテン酸コバルト等の硬化促進剤の添加
も可能である。
Examples of the radical polymerization initiator that is component E of the present invention include common organic peroxides that generate radicals and polymerize radically polymerizable groups of polyfunctional (meth)acrylate compounds by heating. Examples of organic peroxides include azo compounds such as azoisobutylnitrile, t-butylperbenzoate, t-butylperoxy-2-ethylhexanoate, (butylperoxyisopropylcarbonate), 1, 1-bis(t-butylperoxy)3,3
.. 5-) Limethylcyclohexane, n-butyl-4,
Examples include 4-bis(t-butylperoxy)valerate, benzoyl peroxide, t-bar octoate, acetoacetate peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl hydroperoxide, etc. Type 1 or 2
More than one species can be used, and it is also possible to add curing accelerators such as dimethyl para-toluidine, dimethylaniline, diethylaniline, laurin mercaptan, and cobalt naphthenate.

本発明では、B成分である多官能(メタ)アクリレート
化合物をA成分100重量部に対して5〜200重量部
添加して用いるのが好ましく、更に好ましくは20〜1
50重量部である。この添加量が上記範囲より少ないと
、低粘度化、硬化反応性、耐熱性、弾性率、強靭性改良
に効果が少ない。また前述の範囲を越えると硬化収縮が
大きくなり、また硬化物の耐熱性、機械的物性が低下し
好ましくない。
In the present invention, it is preferable to add 5 to 200 parts by weight of the polyfunctional (meth)acrylate compound as component B to 100 parts by weight of component A, and more preferably 20 to 1 part by weight.
It is 50 parts by weight. If the amount added is less than the above range, there will be little effect on lowering the viscosity, improving curing reactivity, heat resistance, elastic modulus, and toughness. Moreover, if it exceeds the above-mentioned range, curing shrinkage will increase, and the heat resistance and mechanical properties of the cured product will deteriorate, which is not preferable.

またC成分である液状カルボン酸無水物硬化剤は、A成
分のエポキシ基に対してカルボン酸無水物官能基の当量
比が1.070.3〜1.0/1.4が好ましく、更に
好ましくは1.0 / 0.4〜1.0 / 1.2で
ある。カルボン酸無水物の当量比が上記範囲より少ない
と耐熱性、硬化物の破断伸びが低下し、また低粘度化の
効果も少なくなる。また上記の範囲を越えると耐熱性は
低下しやすく好ましくない。更に混合樹脂の低粘度化に
ついては単官能カルボン酸無水物を単独で用いた方がそ
の効果は大きいが、より速硬化性、耐熱性を向上させる
為には、多官能カルボン酸無水物を単官能カルボン酸無
水物に対して2〜80重量%、好ましくは5〜40重量
%用いるのがよい。この量が前述の範囲より少ないと速
硬化性、耐熱性の向上にあまり効果がなく、上記範囲よ
り多いと粘度が増大し目的とする成形物が得られにくく
なり好ましくない。
Further, in the liquid carboxylic anhydride curing agent which is component C, the equivalent ratio of the carboxylic anhydride functional group to the epoxy group of component A is preferably 1.070.3 to 1.0/1.4, and more preferably. is 1.0/0.4 to 1.0/1.2. If the equivalent ratio of the carboxylic acid anhydride is less than the above range, the heat resistance and elongation at break of the cured product will decrease, and the effect of lowering the viscosity will also decrease. Moreover, if it exceeds the above range, the heat resistance tends to deteriorate, which is not preferable. Furthermore, in terms of lowering the viscosity of the mixed resin, using a monofunctional carboxylic anhydride alone has a greater effect, but in order to improve faster curing and heat resistance, it is necessary to use a monofunctional carboxylic anhydride alone. It is preferable to use 2 to 80% by weight, preferably 5 to 40% by weight, based on the functional carboxylic acid anhydride. If this amount is less than the above range, it will not be very effective in improving fast curing properties and heat resistance, and if it is more than the above range, the viscosity will increase and it will be difficult to obtain the desired molded product, which is not preferable.

D成分の硬化促進剤の添加量は特に制限はなく、反応速
度を適度にコントロールする。この硬化促進剤はあらか
じめC成分中に均一に溶解して用いられるが、実質的に
エポキシ樹脂の単独重合を促進しないものであれば、A
およびB成分に混合して用いてもよい。この硬化促進剤
は通常A成分1oo重量部に対し0.1〜20重量部に
なるように配合するが、好ましくは1〜10重量部であ
る。
There is no particular restriction on the amount of curing accelerator added as component D, and the reaction rate is appropriately controlled. This curing accelerator is used by being uniformly dissolved in component C, but if it does not substantially promote the homopolymerization of the epoxy resin, A
It may also be used by mixing with component B. The curing accelerator is usually blended in an amount of 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, per 10 parts by weight of component A.

E成分のラジカル重合開始剤の添加量についても特に制
限はないが、通常B成分100重量部に対し0.05〜
20重量部になるように配合され、好ましくは0.2〜
10重量部である。
There is no particular restriction on the amount of radical polymerization initiator added as component E, but it is usually 0.05 to 100 parts by weight of component B.
It is blended so that it is 20 parts by weight, preferably 0.2 to 20 parts by weight.
It is 10 parts by weight.

A、 B、 C3成分混合物は比較的低粘度であり、高
充填密度を有する高レベルの繊維強化樹脂複合材が得ら
れ、従来よりエポキシ樹脂系の欠点であった粘度、硬化
反応性、硬化物の強靭性を改善している。
The mixture of the three components A, B, and C has a relatively low viscosity, and a high-quality fiber-reinforced resin composite material with a high packing density can be obtained. improved toughness.

RIM成形においてA成分とB成分とからなるA液/C
成分とD成分およびE成分よりなるB液の混合割合は1
/1容量部に近い程その計量精度、混合性は良好である
が、この点にいても本発明のカルボン酸無水物硬化剤系
はアミン硬化剤系に対し配合比のずれは少なく優れてい
る。
In RIM molding, liquid A/C consists of component A and component B.
The mixing ratio of component and B liquid consisting of D component and E component is 1
The closer it is to 1 part by volume, the better the measurement accuracy and mixing properties, but even in this respect, the carboxylic acid anhydride curing agent system of the present invention is superior to the amine curing agent system with less deviation in blending ratio. .

成形は、A液、B液反応性樹脂成分をミキシングヘッド
またはスタティックミキサー等により高速で混合後、所
定の温度に加熱保持された金型内に注入し硬化、脱型に
より完了する。繊維強化材はマット状、繊維状等でも良
いし、必要に応じてウレタン、エポキシ等の発泡材を芯
材として用いたサンドインチ構造として、あらかじめ型
内にプリセットする。また短繊維等を樹脂に混合し注入
することも可能である。本発明の目的である成形物は短
時間の成形サイクルにより製造され、注入から脱型まで
に必要な時間は10分以内、好ましくは5分以内、更に
好ましくは3分以内である。実際に成形に必要な温度及
び時間は反応性樹脂組成、成形物の形状厚さ等により適
宜決定される。本発明の樹脂組成物は、ゲル化後の硬化
反応性が高いため脱型性にも優れている。また成形物は
所要に応じ短時間の熱処理を行い硬化を完結させる事に
より優れた耐熱性と機械的特性を有する繊維強化樹脂複
合材が得られる。
Molding is completed by mixing the reactive resin components of liquid A and liquid B at high speed using a mixing head or a static mixer, and then injecting the mixture into a mold heated and maintained at a predetermined temperature, curing, and demolding. The fiber reinforcing material may be in the form of a mat, fibers, etc., and if necessary, it is preset in a mold as a sandwich structure using a foam material such as urethane or epoxy as a core material. It is also possible to mix short fibers and the like with the resin and inject it. The molded article that is the object of the present invention is manufactured by a short molding cycle, and the time required from injection to demolding is within 10 minutes, preferably within 5 minutes, and more preferably within 3 minutes. The temperature and time actually required for molding are appropriately determined depending on the composition of the reactive resin, the shape and thickness of the molded product, etc. The resin composition of the present invention has high curing reactivity after gelling, and therefore has excellent demoldability. Further, by subjecting the molded product to a short heat treatment to complete curing as required, a fiber-reinforced resin composite material having excellent heat resistance and mechanical properties can be obtained.

またこれらの成分の他に、反応性、耐熱性、強靭性等を
低下させない程度のエポキシド反応性希釈剤を添加して
も良い。反応性希釈剤の例としては、フェニルグリシジ
ルエーテル、ブチルグリシジルエーテル、アルキルグリ
シジルエーテル、スチレンオキサイド、オクチレンオキ
サイド及びこれらの混合物が挙げられる。
In addition to these components, an epoxide-reactive diluent may be added to an extent that does not reduce reactivity, heat resistance, toughness, etc. Examples of reactive diluents include phenyl glycidyl ether, butyl glycidyl ether, alkyl glycidyl ether, styrene oxide, octylene oxide, and mixtures thereof.

この他、シラン、チタネート化合物等のカップリング剤
、高級脂肪酸およびワックス等の離型剤、ハロゲン、リ
ン化合物等の難燃性付与剤、消泡剤、着色剤等の添加剤
も必要に応じ用いることが8来る。
In addition, additives such as coupling agents such as silane and titanate compounds, mold release agents such as higher fatty acids and waxes, flame retardant agents such as halogens and phosphorus compounds, antifoaming agents, and coloring agents are also used as necessary. 8 things are coming.

本発明で使用される連続繊維強化材としては、ガラス繊
維、アラミド繊維、ポリエステル繊維、炭素繊維、炭化
ケイ素繊維、アルミナ繊維等であり、これらはテープ、
シート状物、マット状物、織物、編物等の形態で使用さ
れ、必要特性に応じこれら種々の組合せで用いられる。
Continuous fiber reinforcement materials used in the present invention include glass fibers, aramid fibers, polyester fibers, carbon fibers, silicon carbide fibers, alumina fibers, etc., and these include tapes,
It is used in the form of sheets, mats, woven fabrics, knitted fabrics, etc., and in various combinations of these depending on the required characteristics.

また必要に応じこれらの短繊維強化材も使用される。繊
維強化材の容積含有量は、樹脂成分との合計容量の2〜
70%が好ましく、必要特性に応じてその構成および量
が適宜選択される。
Further, these short fiber reinforcing materials may also be used if necessary. The volume content of the fiber reinforcement is 2 to 2 of the total volume with the resin component.
70% is preferable, and its composition and amount are appropriately selected depending on the required characteristics.

また本発明のエポキシ樹脂組成物は反応射出成形、RT
M成形に適するが、公知の成形方法たとえばフィラメン
トワインディング法、プルトルージョン法等によっても
所望の複合材料に成形され有用である。
Furthermore, the epoxy resin composition of the present invention can be processed by reaction injection molding, RT
Although it is suitable for M molding, it is also useful to mold it into a desired composite material by known molding methods such as filament winding method, pultrusion method, etc.

[実施例] 以下に実施例をあげて更に詳細に説明するが、本発明は
その要旨を越えない限りこれら実施例によって制限され
るものではない。なお例中の部は、特に倒起しない限り
重量基準であり、エポキシ樹脂とカルボン酸無水物の配
合比は、すべてエポキシl酸無水物=1.0当量比とし
た。
[Examples] The present invention will be described in more detail with reference to Examples below, but the present invention is not limited by these Examples unless the gist thereof is exceeded. Note that parts in the examples are based on weight unless otherwise specified, and the blending ratios of epoxy resin and carboxylic acid anhydride were all such that epoxy acid anhydride = 1.0 equivalent ratio.

なお樹脂特性として、120°Cに於けるゲル化時間(
GT)はJSR型キュラストメーターによるトルク発生
時間より求めた。また樹脂硬化物の物性は300 X 
300mmの金型を用いてオーブン中で120°CI0
.5時間および150°C/1時間の硬化を行ない注型
板を作製し測定した。繊維強化複合材は反応射出装置(
ポリウレタンエンジニアリング社製“MC102−N”
)を用い、120’Cに加熱保持された400 X70
0X3mmの平板金型に射出注入後5分で脱型した。硬
化物のガラス転移温度(Tg)はTMA法により、熱膨
張曲線の変化より求め、またこの樹脂硬化物および繊維
強化した複合材の曲げ特性および強靭性に対応する破断
歪みは、ASTM −D 790に準拠し東洋ボールド
ウィン社製”UTM−5T”により3点曲げ試験より求
めた。樹脂特性評価結果を第1表に示す。
The resin properties include gelation time at 120°C (
GT) was determined from the torque generation time using a JSR type Curastometer. In addition, the physical properties of the cured resin are 300
120° CI0 in oven using 300mm mold
.. After curing for 5 hours and at 150°C for 1 hour, a cast plate was prepared and measured. Fiber-reinforced composites are manufactured using reaction injection equipment (
“MC102-N” manufactured by Polyurethane Engineering Co., Ltd.
) and heated and held at 120'C.
The mold was demolded 5 minutes after injection into a 0x3 mm flat plate mold. The glass transition temperature (Tg) of the cured product was determined from the change in thermal expansion curve using the TMA method, and the breaking strain corresponding to the bending properties and toughness of the cured resin product and fiber-reinforced composite was determined according to ASTM-D 790. It was determined by a three-point bending test using "UTM-5T" manufactured by Toyo Baldwin Co., Ltd. in accordance with the following. The resin property evaluation results are shown in Table 1.

実施例I A成分としてビスフェノールA型ジグリシジエーテル(
″エピコート827”、油化シェル社製)60部、B成
分としてトリメチロールプロパントリアクリレート(“
NKエステルTMPT ”、新中村化学社製)40部、
またC成分としてメチルテトラヒドロ無水フタル酸(“
MT 500 ”、新日本理化社製)55部、D成分と
して2−エチル−4−メチルイミダゾール(“2部4M
Z”、四国化成工業社製)6部およびE成分として1,
1−ビス(t−ブチルパーオキシ)3.3.5− )リ
メチルシクロヘキサン(“パーへキサ3M”、日本油脂
社製)1部を混合、脱泡後80°Cに加熱した金型に注
入し、注型板を作製した。
Example I As component A, bisphenol A diglycidether (
"Epicote 827", manufactured by Yuka Shell Co., Ltd.) 60 parts, trimethylolpropane triacrylate ("
NK ester TMPT”, manufactured by Shin Nakamura Chemical Co., Ltd.) 40 copies,
In addition, methyltetrahydrophthalic anhydride (“
55 parts of 2-ethyl-4-methylimidazole (2 parts of 4M
Z", manufactured by Shikoku Kasei Kogyo Co., Ltd.) 6 parts and 1 part as E component,
1 part of 1-bis(t-butylperoxy)3.3.5-)limethylcyclohexane ("Perhexa 3M", manufactured by NOF Corporation) was mixed, and after defoaming, it was placed in a mold heated to 80°C. A casting plate was prepared.

また60°Cに加熱、脱泡保持したA、 B成分よりな
るA液と60°Cに加熱、脱泡後窒素シールしたC1D
、 E成分よりなるB液をRIM装置を用い、ガラス繊
維コンテイニアスストランドマット(”C3M8600
”、旭ファイバーガラス社製、強化材の重量二FAW=
600g/m2)を4プライ[繊維強化材容積含有、量
: Vf=30.2%]積層し、設置後20kg / 
0m2に型締めした。
In addition, A liquid consisting of components A and B was heated to 60°C and kept defoamed, and C1D was heated to 60°C and sealed with nitrogen after defoaming.
Using a RIM device, liquid B consisting of component E was added to glass fiber continuous strand mat ("C3M8600").
”, manufactured by Asahi Fiber Glass Co., Ltd., weight of reinforcement material 2FAW=
600g/m2) were laminated in 4 plies [volume content of fiber reinforcement material, amount: Vf=30.2%], and after installation 20kg/
The mold was clamped to 0m2.

成形品は実質的に未含浸部、ボイドがなく、表面性の良
好な成形物が得られた。この複合材の曲げ強度は32.
4kg / mm2で曲げ弾性率は1.230kg /
mm’であった。
The molded product was substantially free of unimpregnated areas and voids, and had good surface properties. The bending strength of this composite material is 32.
At 4kg/mm2, the flexural modulus is 1.230kg/mm2.
It was mm'.

実施例2 実施例1同様に、C成分の“MT 500 ”をメチル
テトラヒドロ無水フタル酸にトリメリット酸トリグリセ
ライド15%含有の多官能硬化剤(“MTA 15 ”
、新日本理化社製)58部に替え注型板を作製した。
Example 2 Similarly to Example 1, component C "MT 500" was mixed with methyltetrahydrophthalic anhydride and a polyfunctional curing agent containing 15% trimellitic acid triglyceride ("MTA 15").
, manufactured by Shin Nippon Rika Co., Ltd.), and a casting plate was prepared instead of 58 parts.

実施例3 実施例1同様に、A成分としてビスフェノールF型ジグ
リシジルエーテル(“エピクロン830”、大日本イン
キ化学社製)を50部、B成分としてテトラメチルロー
ルメタンテトラアクリレート(“NKエステルA−TM
MT”、新中村化学社製)50部、C成分として“MT
 500 ”を47部、D成分とL テ” 2部4MZ
 ”を5部およびE成分“′パーへキサ3M″を1部用
い注型板を作製した。
Example 3 Similarly to Example 1, 50 parts of bisphenol F type diglycidyl ether ("Epiclon 830", manufactured by Dainippon Ink Chemical Co., Ltd.) was used as the A component, and tetramethylolmethanetetraacrylate ("NK ester A-") was used as the B component. TM
MT", manufactured by Shin Nakamura Chemical Co., Ltd.) 50 parts, "MT" as C component
500" 47 parts, D component and L Te" 2 parts 4MZ
A casting plate was prepared using 5 parts of ``Perhexa 3M'' and 1 part of E component ``Perhexa 3M''.

またRIM成形による“C8M 8600 ”を用いた
複合材の曲げ強度は34.3 kg / mm2で臼げ
弾性率は1.270kg / mm2であった。
Furthermore, the bending strength of the composite material using "C8M 8600" formed by RIM molding was 34.3 kg/mm2, and the crushing elastic modulus was 1.270 kg/mm2.

実施例4 実施例1と同様に、A成分として“エピクロン830”
を70部、B成分にビスフェノールFのエチレンオキサ
イド付加物ジメタクリレート(“KAYARADR−7
12”日本化薬社製)30部、C成分に“’MTA15
”を71部、D成分に“2部4MZ ”を7部、E成分
に゛パーへキサ3M″を1部用い注型板を作製した。
Example 4 Similar to Example 1, “Epicron 830” was used as the A component.
and 70 parts of bisphenol F ethylene oxide adduct dimethacrylate (KAYARADR-7) as component B.
12" manufactured by Nippon Kayaku Co., Ltd.) 30 parts, C component "'MTA15
A casting plate was prepared using 71 parts of ``2 Parts 4MZ'' as the D component, 7 parts of ``2 Parts 4MZ'' as the D component, and 1 part of Hyperhexa 3M'' as the E component.

実施例5 実施例1と同様に、A成分としてテトラグリシジルメタ
キシリレンジアミン(“TETRAD −X”、三菱瓦
斯化学社製)を60部、B成分に“R−712”を40
部、C成分として“MTA15”を104部、D成分と
して“2部4MZ ”を6部およびE成分として“パー
へキサ3M″を1部用いた。複合材の曲げ強度は32.
6 kg /mm2で曲げ弾性率は1.450 kg 
/ mm2であった。
Example 5 Similarly to Example 1, 60 parts of tetraglycidyl metaxylylene diamine ("TETRAD-X", manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the A component, and 40 parts of "R-712" was used as the B component.
104 parts of "MTA15" was used as the C component, 6 parts of "2 parts 4MZ" as the D component, and 1 part of "Perhexa 3M" as the E component. The bending strength of the composite material is 32.
At 6 kg/mm2, the bending modulus is 1.450 kg
/ mm2.

実施例6、及び7 実施例1と同様に、A成分として“TETRAD −X
”を50部、B成分として脂肪族環含有ジアクリレート
(“KAYARAD R−604”日本化薬社製)また
は水添ジシクロペンタジェニルジアクリレート(“DC
P −A”、東亜合成化学社製)を50部、またC成分
として”MTA15”を93部、D成分とL テ” 2
部4MZ ”を5部、E成分として“パーへキサ3M″
を1部を用いた。
Examples 6 and 7 Similarly to Example 1, “TETRAD-X” was used as the A component.
” and 50 parts of aliphatic ring-containing diacrylate (“KAYARAD R-604” manufactured by Nippon Kayaku Co., Ltd.) or hydrogenated dicyclopentadienyl diacrylate (“DC
50 parts of "P-A" (manufactured by Toagosei Kagaku Co., Ltd.), 93 parts of "MTA15" as component C, component D and L te" 2
Part 4MZ” is 5 parts, E component is “Parhexa 3M”
One part was used.

比較例1 実施例1と同様に、A成分に“エピクロン830”を5
0部、B成分にスチレンを50部、C成分に“MT50
0”を47部、D成分に“2部4MZ ”を5部、E成
分に何パーへキサ3M″を1部用い注型板を作製した。
Comparative Example 1 As in Example 1, 55% of “Epicron 830” was added to the A component.
0 parts, 50 parts of styrene for B component, "MT50" for C component
A casting plate was prepared using 47 parts of "0", 5 parts of "2 part 4MZ" for the D component, and 1 part of Hexa 3M" for the E component.

また調成形により“C8M 8600 ”を4ブライ(
Vf=30.5%)を積層した複合材の曲げ強度は18
.2kg / mm’であり、曲げ弾性率は940kg
 / mm2であった。成形品にはヒケ、クラックが発
生し、表面性は不良であった。
In addition, by adjusting molding, "C8M 8600" was made into 4 pieces (
The bending strength of the composite material laminated with Vf=30.5% is 18
.. 2 kg/mm' and the bending modulus is 940 kg
/ mm2. The molded product had sink marks and cracks, and its surface properties were poor.

比較例2〜4 実施例1と同様に、A成分として“エピクロン830”
を50部、B成分にトリアリルイソシアヌレート(“T
AIC” )またはt−ブチルメタクリレート(“ライ
トエステルTB”、共栄社油脂化学工業社製)または2
−フェノキシエチルメタクリレート(ライトエステルP
O1共栄社油脂化学工業社製)50部、C成分として“
MT 500 ”を47部、およびD成分として“2部
4MZ ”を5部、E成分として“パーへキサ3M”を
1部用いて注型板を作製した。
Comparative Examples 2 to 4 Similar to Example 1, “Epicron 830” was used as the A component.
and 50 parts of triallyl isocyanurate ("T") as component B.
AIC”) or t-butyl methacrylate (“Light Ester TB”, manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd.) or 2
-Phenoxyethyl methacrylate (Light Ester P
O1 (manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd.) 50 parts, as component C “
A casting plate was prepared using 47 parts of ``MT 500'', 5 parts of ``2 parts 4MZ'' as the D component, and 1 part of ``Perhexa 3M'' as the E component.

比較例5及び6 実施例1と同様に、A成分である“エビクロン830”
または“TETRAD−X”を100部、C成分として
“MT500”を94または173部、D成分として“
2部4MZ ”を10部用い注型板を作製した。
Comparative Examples 5 and 6 Same as Example 1, “Evicron 830” which is component A
Or 100 parts of "TETRAD-X", 94 or 173 parts of "MT500" as C component, "
A casting plate was prepared using 10 parts of 2 parts of 4MZ''.

[発明の効果] 本発明により耐熱性、機械的特性および成形性に優れた
実質的にボイド、欠陥のない高充填密度を有する繊維強
化樹脂複合材を、反応射出成形(RIM)またはRTM
法により製造することが出来る。
[Effects of the Invention] According to the present invention, a fiber-reinforced resin composite material having excellent heat resistance, mechanical properties, and moldability and having a high packing density and substantially free of voids and defects can be produced by reaction injection molding (RIM) or RTM.
It can be manufactured by the method.

Claims (1)

【特許請求の範囲】 1)反応性樹脂成分として下記A、B、C、D及びE成
分を必須成分とする繊維強化樹脂組成物。 A成分:1分子中に2個以上のエポキシ基を有するエポ
キシ樹脂。 B成分:1分子中にアクリル又はメタクリル基を2個以
上有する多官能(メタ)アクリレート化合物。 C成分:単官能カルボン酸無水物および/または低級脂
肪族多価アルコールとトリメリット酸またはその誘導体
との反応によって得られる多官能カルボン酸無水物を含
有する液状カルボン酸無水物。 D成分:硬化促進剤 E成分:ラジカル重合開始剤 2)繊維強化樹脂組成物が反応性樹脂成分を混合後、た
だちに繊維強化材を載置した型内に注入して得られる繊
維強化樹脂組成物である請求項1記載の樹脂組成物。 3)B成分の多官能(メタ)アクリレート化合物がA成
分100重量部に対し5〜200重量部である請求項1
記載の樹脂組成物。 4)C成分の液状カルボン酸無水物がA成分のエポキシ
基に対してカルボン酸無水物官能基の当量比が1.0/
0.3〜1.0/1.4の範囲である請求項1記載の樹
脂組成物。 5)多官能カルボン酸無水物が単官能カルボン酸無水物
に対して2〜80重量%含有した物である請求項1記載
の樹脂組成物。
[Scope of Claims] 1) A fiber-reinforced resin composition containing the following components A, B, C, D, and E as essential components as reactive resin components. Component A: An epoxy resin having two or more epoxy groups in one molecule. Component B: A polyfunctional (meth)acrylate compound having two or more acrylic or methacrylic groups in one molecule. Component C: A liquid carboxylic anhydride containing a polyfunctional carboxylic anhydride obtained by reacting a monofunctional carboxylic anhydride and/or a lower aliphatic polyhydric alcohol with trimellitic acid or a derivative thereof. Component D: Curing accelerator Component E: Radical polymerization initiator 2) Fiber reinforced resin composition obtained by mixing the reactive resin component and immediately injecting the fiber reinforced resin composition into a mold in which the fiber reinforcing material is placed. The resin composition according to claim 1. 3) Claim 1, wherein the polyfunctional (meth)acrylate compound as component B is 5 to 200 parts by weight based on 100 parts by weight of component A.
The resin composition described. 4) The liquid carboxylic anhydride of component C has an equivalent ratio of carboxylic anhydride functional groups to the epoxy group of component A of 1.0/
The resin composition according to claim 1, which has a molecular weight in the range of 0.3 to 1.0/1.4. 5) The resin composition according to claim 1, wherein the polyfunctional carboxylic anhydride is contained in an amount of 2 to 80% by weight based on the monofunctional carboxylic anhydride.
JP29912190A 1990-09-20 1990-09-20 Fiber-reinforced resin composition Pending JPH04130141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29912190A JPH04130141A (en) 1990-09-20 1990-09-20 Fiber-reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29912190A JPH04130141A (en) 1990-09-20 1990-09-20 Fiber-reinforced resin composition

Publications (1)

Publication Number Publication Date
JPH04130141A true JPH04130141A (en) 1992-05-01

Family

ID=17868394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29912190A Pending JPH04130141A (en) 1990-09-20 1990-09-20 Fiber-reinforced resin composition

Country Status (1)

Country Link
JP (1) JPH04130141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068779A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2020041157A (en) * 2016-12-21 2020-03-19 三菱ケミカル株式会社 Curable resin composition, and film, molding, prepreg and fiber-reinforced plastic including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068779A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2020041157A (en) * 2016-12-21 2020-03-19 三菱ケミカル株式会社 Curable resin composition, and film, molding, prepreg and fiber-reinforced plastic including the same
US11161975B2 (en) 2016-12-21 2021-11-02 Mitsubishi Chemical Corporation Curable resin composition, and film, molded article, prepreg, and fiber-reinforced plastic using said curable resin composition

Similar Documents

Publication Publication Date Title
US8487052B2 (en) Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
US4798761A (en) Epoxy resin compositions for use in low temperature curing applications
US5612424A (en) Fiber-reinforced resin composition
US8883938B2 (en) Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
CN110121529B (en) Resin composition for fiber-reinforced composite material, and molded article
JP3718295B2 (en) Vinyl ester resin composition and cured product
WO2017057689A1 (en) Curable epoxy resin composition, and fiber-reinforced composite material obtained using same
JP5381146B2 (en) Fiber reinforced prepreg and cured product
JPH04130141A (en) Fiber-reinforced resin composition
JPH05209040A (en) Fiber-reinforced resin composition
JP2010195886A (en) Resin composition for fiber-reinforced composite material, cured product of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the same
JP2010196017A (en) Resin composition for fiber-reinforced composite material, cured product of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the article
TW202248275A (en) Resin composition, prepreg, and fiber-reinforced plastic
JP2013100562A (en) Resin composition for fiber-reinforced composite material, cured material of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the same
JPH0725986A (en) Fiber-reinforced resin composition
JPH0721042B2 (en) Thermosetting resin composition
JP5609040B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING THE SAME
JPH0370740A (en) Preparation of fiber-reinforced resin molded product
TWI421269B (en) Epoxy resin composition
JPH0350244A (en) Epoxy resin composition for reaction injection molding
JPH01268716A (en) Production of cured resin molded article and combination of reactive composition for producing said article
CN113956441A (en) Die pressing free radical modified epoxy resin composition
JPH03281522A (en) Production of molded article of fiber-reinforced resin
JP2024047178A (en) Prepreg and fiber reinforced plastics
WO2023017855A1 (en) Resin composition and method for producing same, and composite material