JPH04128683A - Underground specific inductive capacity measuring device - Google Patents

Underground specific inductive capacity measuring device

Info

Publication number
JPH04128683A
JPH04128683A JP2249388A JP24938890A JPH04128683A JP H04128683 A JPH04128683 A JP H04128683A JP 2249388 A JP2249388 A JP 2249388A JP 24938890 A JP24938890 A JP 24938890A JP H04128683 A JPH04128683 A JP H04128683A
Authority
JP
Japan
Prior art keywords
impedance
ground
antenna
underground
inductive capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2249388A
Other languages
Japanese (ja)
Inventor
Shinji Tonai
東内 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2249388A priority Critical patent/JPH04128683A/en
Publication of JPH04128683A publication Critical patent/JPH04128683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To quickly calculate the underground specific inductive capacity with high accuracy by radiating electromagnetic radio waves from the ground surface into the ground, and determining the specific inductive capacity which corresponds to the measured impedance by calculating operation. CONSTITUTION:An antenna 12 is installed on the ground surface of a place at which underground specific inductive capacity is known. By control of a calculation means 14, electromagnetic radio waves are then radiated through an impedance measuring means 13 from the antenna 12, and reflected waves from the ground are received by the antenna 12. According to the received results, the impedance measuring means 13 measures impedance in the ground in which the specific induction capacity is known. Then, the calculation means 14 makes an impedance/specific inductive capacity- conversion table regarding the specific induction capacity in the ground and the above measured impedance as correspondence data, and stores this table in memory, etc. Thus, by storing a number of values of impedance and corresponding specific inductive capacity measured by installing the antenna 12 on the ground surface at which the specific inductive capacity is known in the memory in the calculation means 14 as an impedance/specific inductive capacity-conversion table, the accuracy of calculating the specific inductive capacity can be improved.

Description

【発明の詳細な説明】 [産業の利用分野〕 この発明は、地中の比誘電率を測定することにより、地
中の物理特性を測定したり、地中埋設物を探査したりす
るのに利用する地中の比誘電率測定装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to measuring the physical properties of the earth and exploring underground objects by measuring the relative permittivity of the earth. This article relates to an underground dielectric constant measuring device to be used.

〔従来の技術〕[Conventional technology]

第3図は例えば[土の電気特性の簡易な測定法」(第2
0回土質工学研究発表会 D−2昭和60年6月)に示
された従来の地中の比誘電率測定装置を示す回路図であ
り、図において、1は高周波発信器、2は基準コンデン
サ、3は基準抵抗、4は試料としての土、5は土4を挾
む電極板、6は±4を挾んだ電極板5を、基準コンデン
サ2あるいは基準抵抗3の一方を介して高周波発信器1
に対し選択的に接続するためのスイッチである。
Figure 3 shows, for example, [Simple measurement method for electrical properties of soil] (2)
This is a circuit diagram showing a conventional underground dielectric constant measurement device presented at the 0th Soil Engineering Research Presentation D-2 June 1985. In the figure, 1 is a high frequency oscillator and 2 is a reference capacitor. , 3 is a reference resistor, 4 is soil as a sample, 5 is an electrode plate sandwiching the soil 4, and 6 is a high frequency transmission through the electrode plate 5 sandwiching ±4 through either the reference capacitor 2 or the reference resistor 3. Vessel 1
This is a switch for selectively connecting to.

次に動作について説明する。Next, the operation will be explained.

まず、比誘電率を知りたい土4を採取して、電極板5の
間に挾み込む。この場合、電極板5の間隔は常に所定の
値に保たれている。次に、スイッチ6によって基準コン
デンサ2を選択し、高周波発信器1より高周波電流を出
力して、これをその選択した基準コンデンサ2と土4と
の直列回路に印加する、次に、高周波発信器]−の両端
の電圧■。、基準コンデンサ2の両端の電圧■1、各電
極板5の両端の電圧V2 を電圧計等によって測定する
・このようにして測定された各電圧v0、V、、V。
First, the soil 4 whose dielectric constant is to be determined is sampled and placed between the electrode plates 5. In this case, the spacing between the electrode plates 5 is always maintained at a predetermined value. Next, the reference capacitor 2 is selected by the switch 6, a high frequency current is output from the high frequency oscillator 1, and this is applied to the series circuit of the selected reference capacitor 2 and the soil 4. ] The voltage across −■. , the voltage across the reference capacitor 2 1, and the voltage V2 across each electrode plate 5 are measured with a voltmeter or the like.The voltages v0, V, , V thus measured.

は、第4図に示すようなベクトル関係となり、@圧V1
の電圧V2と同相の成分aは、基準コンデンサ2の静電
容量をC2とすれば、 a=C,/C□         ・・・(1)となる
、一方、地中の電磁波の伝播速度■は、Cを光速、E、
を地中の比誘電率として、V与c/4τ       
 ・・・(2)で近似している。そこで、この(1)式
より求めた±4の静電容量C2と、電極板5の間隔dお
よび面積Sとから、±4の比誘電率E、を求めるとE、
          S となる。ただし、E、は真空の誘電率である。また、こ
のようにして得た誘電率を地中埋設物の有無判定の基準
にすることもできる。
has a vector relationship as shown in Fig. 4, and @pressure V1
If the capacitance of the reference capacitor 2 is C2, the component a that is in phase with the voltage V2 of is a=C,/C□ (1).On the other hand, the propagation speed of the electromagnetic wave underground is , C is the speed of light, E,
As the relative permittivity of the ground, V given c/4τ
...It is approximated by (2). Therefore, from the electrostatic capacitance C2 of ±4 obtained from equation (1), the spacing d of the electrode plates 5, and the area S, the relative permittivity E of ±4 is calculated as follows:
It becomes S. However, E is the dielectric constant of vacuum. Further, the dielectric constant obtained in this way can be used as a standard for determining the presence or absence of underground objects.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の地中の比誘電率測定装置は以上のように構成され
ているので、土の比誘電率を得るために現場の土を試料
として採取してこなければならないため、アスファルト
やコンクリートで舗装された場所では舗装面を破壊しな
ければならないばがりか、測定断面全体の平均的な比誘
電率を求めるためには、多数の測定ポイントの土を試料
として採取する必要があるなど、作業性に欠け、また採
取後の土の試料は経時的にその性質が変化する可能性が
高いところから、高い測定精度が得にくいなどの問題点
があった。
Conventional underground relative permittivity measurement equipment is configured as described above, so in order to obtain the relative permittivity of the soil, it is necessary to collect soil samples from the site. Not only would it be necessary to destroy the paved surface in places where the pavement was used, but it would also be difficult to work, as it would be necessary to collect soil samples from many measurement points in order to determine the average dielectric constant of the entire measurement cross section. There were problems such as chipping, and the high possibility that the properties of the soil sample would change over time after being collected, making it difficult to obtain high measurement accuracy.

この発明は上記のような問題点を解消するためになされ
たもので、予め実測値にもとづいて作成したインピーダ
ンス/比誘電率変換テーブルを用いて地中の比誘電率を
精度良く算出することができる地中の比誘電率測定装置
を得ることを目的とする。
This invention was made to solve the above problems, and it is possible to accurately calculate the relative permittivity of the ground using an impedance/relative permittivity conversion table created in advance based on actual measured values. The purpose of this study is to obtain an underground dielectric constant measuring device that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る地中の比誘電率測定装置は、地表面より
電磁波を地中に向けて放射し、その地中からの反射波を
受信するアンテナと、該アンテナおよび上記地中のイン
ピーダンスを測定するインピーダンス測定手段とを備え
、上記アンテナおよび比誘電率が既知の地中のインピー
ダンスにもとづいて予め作成したインピーダンス/比誘
電率変換テーブルを参照して、演算手段において上記測
定したインピーダンスに対応する比誘電率を演算によっ
て求めるようにしたものである。
The underground dielectric constant measuring device according to the present invention includes an antenna that radiates electromagnetic waves from the ground surface toward the ground and receives reflected waves from the ground, and measures the impedance of the antenna and the ground. and an impedance measuring means to calculate the ratio corresponding to the measured impedance in the calculation means by referring to an impedance/relative permittivity conversion table prepared in advance based on the impedance of the antenna and the underground where the relative permittivity is known. The dielectric constant is determined by calculation.

〔作用〕[Effect]

この発明における地中の比誘電率測定装置は、地表面に
設置したアンテナおよび地中のインピーダンスの測定値
を、あらかじめ作成しておいたインピーダンス/比誘電
率変換テーブルと比較し。
The underground relative permittivity measurement device of the present invention compares the measured values of the impedance of an antenna installed on the ground surface and the underground with an impedance/relative permittivity conversion table prepared in advance.

上記測定値に対応する比誘電率を、アンテナを設置した
上記地中の比誘電率として求めることにより、WM単な
作業で迅速かつ高精度に所期の比誘電率測定データを得
られるようにし、必要に応じて、この結果を地中埋設物
の高精度探査に利用可能にする。
By determining the relative permittivity corresponding to the above measured value as the relative permittivity of the above-mentioned underground where the antenna is installed, it is possible to quickly and accurately obtain the desired relative permittivity measurement data with a simple WM operation. , If necessary, the results can be used for high-precision exploration of underground objects.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、11は地表面、12はアンテナ、13
はこのアンテナ12に接続されたインピーダンス測定手
段、14は演算手段である。
In Figure 1, 11 is the ground surface, 12 is the antenna, and 13
is an impedance measuring means connected to this antenna 12, and 14 is a calculation means.

次に動作について説明する。Next, the operation will be explained.

まず、地中の比誘電率が既知の場所の地表面にアンテナ
12を設置する。次に、演算手段14の制御によって、
インピーダンス測定手段13を介してアンテナ12から
電磁波を放射し、地中からの反射波をアンテナ12で受
信する。このため、この受信結果に従って、インピーダ
ンス測定手段13はアンテナと比誘電率が既知の地中の
インピーダンスを測定する。そして、演算手段14は地
中の比誘電率と上記測定したインピーダンスとを対応デ
ータとするインピーダンス/比vi電率変換テーブルを
作成して、これをメモリ等に記憶させる。このようにし
て、この比誘電率既知の地中の表面にアンテナ12を置
いて測定した数多くのインピーダンスとその比誘電率と
を、演算手段14内のメモリにインピーダンス/比誘電
率変換テーブルとして記憶させることによフて、比誘電
率算出精度を向上させることができる。
First, the antenna 12 is installed on the ground surface at a location where the relative dielectric constant of the ground is known. Next, under the control of the calculation means 14,
Electromagnetic waves are radiated from the antenna 12 via the impedance measuring means 13, and the antenna 12 receives reflected waves from underground. Therefore, in accordance with this reception result, the impedance measuring means 13 measures the impedance of the antenna and the ground whose dielectric constant is known. Then, the calculation means 14 creates an impedance/specific vi electric constant conversion table in which the relative permittivity of the ground and the impedance measured above are used as corresponding data, and stores this in a memory or the like. In this way, a large number of impedances and their relative permittivity measured by placing the antenna 12 on the underground surface of which the relative permittivity is known are stored in the memory in the calculating means 14 as an impedance/relative permittivity conversion table. By doing so, it is possible to improve the relative dielectric constant calculation accuracy.

次に、地中の比誘電率が未知の場所の地表面にアンテナ
12を置き、J〕記同様に電磁波を放射し、地中からの
反射波をそのアンテナ12で受信する。
Next, an antenna 12 is placed on the ground surface at a place where the relative permittivity of the ground is unknown, and electromagnetic waves are radiated in the same manner as in Section J], and the reflected waves from underground are received by the antenna 12.

これにより、演算手段14の制御によって、インピーダ
ンス測定手段】3はアンテナ12と比誘電率未知の地中
のインピーダンスを測定し、その値を演算手段14に取
り込む。演算手段14は測定した比誘1!率未知の地中
およびアンテナ12のインピーダンスと、上記インピー
ダンス/比誘電率変換テーブルとを比較参照することに
より、上記比誘電率未知の地中の比誘電率を算出する。
As a result, under the control of the calculating means 14, the impedance measuring means 3 measures the impedance between the antenna 12 and the ground whose relative permittivity is unknown, and inputs the value into the calculating means 14. The calculation means 14 calculates the measured relative index 1! By comparing and referring to the impedance of the underground where the relative permittivity is unknown and the impedance of the antenna 12 and the impedance/relative permittivity conversion table, the relative permittivity of the underground where the relative permittivity is unknown is calculated.

第2図はこの発明を地中埋設物の探査に応用したものを
示す。同図において、21は地表面、22は電磁波を地
中に放射する送信アンテナ、23は地中からの反射波を
受信する受信アンテナ、24は電磁波を送信アンテナ2
2に送る送信器、25は受信アンテナ25からの受信信
号を受信する受信器、26は演算手段、27はインピー
ダンス測定手段、28は探査対象としての地中埋設物で
ある。
Figure 2 shows an application of this invention to the exploration of underground objects. In the figure, 21 is the ground surface, 22 is a transmitting antenna that emits electromagnetic waves underground, 23 is a receiving antenna that receives reflected waves from underground, and 24 is a transmitting antenna 2 that emits electromagnetic waves.
25 is a receiver that receives the received signal from the receiving antenna 25, 26 is a calculation means, 27 is an impedance measurement means, and 28 is an underground object as an exploration target.

次に動作について説明する。Next, the operation will be explained.

まず、演算手段26とインピーダンス測定手段27、電
磁波の送受信が可能な受信アンテナ23を用いて、上記
と同様の方法で、比誘U率既知の地中のインピーダンス
を測定し、インピーダンス/比誘電率変換テーブルを作
成し、これをメモリなどに格納しておく。次に、比誘電
率未知の埋設物探査現場において、地表面21に受信ア
ンテナ23を設置し、上記と同じように、演算手段26
の制御下で、インピーダンス測定手段27により電磁波
を受信アンテナ23を通じて地中に放射する。また、そ
の反射波を受信アンテナ23で受信し、この受信データ
を用いて、比誘電率未知の埋設物探査現場の地中の比誘
電率を、上記インピーダンス/比誘電率変換テーブルを
用いて算出する、さらに、演算手段26の制御によって
、送信器24から送信アンテナ22に電磁波を印加して
、送信アンテナ22より地中に向けてこの電磁波を放射
する。いま、地中埋設物28が存在すると、受信アンテ
ナ23は地中埋設物28のエコーである反射波を受信し
、受信器25でその受信波を信号処理して演算手段26
に送る。演算手段26は上記算出した埋設物探査現場の
比誘電率、およびこれによる電磁波の伝播速度を用いて
、次式で求められる地中埋設物28の位置の計算式 %式%(4) r:埋設物の深さ t:埋設物からのエコー受信時間 夕補正し、地中埋設物28の正確な位置を求めることが
できる。
First, using the calculating means 26, the impedance measuring means 27, and the receiving antenna 23 capable of transmitting and receiving electromagnetic waves, measure the underground impedance of which the relative permittivity U coefficient is known in the same manner as above, and calculate the impedance/relative permittivity. Create a conversion table and store it in memory. Next, at a buried object exploration site with an unknown dielectric constant, the receiving antenna 23 is installed on the ground surface 21, and the calculation means 26 is installed in the same manner as above.
Under the control of the impedance measuring means 27, electromagnetic waves are radiated underground through the receiving antenna 23. In addition, the reflected wave is received by the receiving antenna 23, and using this received data, the relative permittivity of the underground at the exploration site for buried objects with unknown relative permittivity is calculated using the above impedance/relative permittivity conversion table. Furthermore, under the control of the calculation means 26, an electromagnetic wave is applied from the transmitter 24 to the transmitting antenna 22, and the electromagnetic wave is radiated from the transmitting antenna 22 toward the ground. Now, if there is an underground object 28, the receiving antenna 23 receives a reflected wave that is an echo of the underground object 28, and the receiver 25 processes the received wave as a signal and sends it to the calculation means 26.
send to The calculating means 26 uses the relative dielectric constant of the buried object exploration site calculated above and the propagation velocity of electromagnetic waves resulting from this to calculate the position of the underground object 28 determined by the following formula % Formula % (4) r: Depth t of buried object: The echo reception time from the buried object is corrected, and the accurate position of the underground object 28 can be determined.

なお、上記実施例ではインピーダンス測定手段27を受
信器25とは個別に設けたが、受信器25内に同等の機
能を組み込んでもよく、上記実施例と同様の効果を奏す
る。
In the above embodiment, the impedance measuring means 27 is provided separately from the receiver 25, but the same function may be incorporated in the receiver 25, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、地表面より電磁波を地
中に向けて放射し、その地中からの反射波を受信するア
ンテナと、該アンテナおよび」二記地中のインピーダン
スを測定するインピーダンス測定手段とを備え、L記ア
ンテナおよび比誘電率が既知の地中のインピーダンスに
もとづいて予め作成したインピーダンス/比誘電率変換
テーブルを参照して、演算手段において上記測定したイ
ンピーダンスに対応する比誘電率を演算によって求める
ようにしたので、従来のように土の試料を採取する必要
がなくなり、さらにアスファルトやコンクリートで舗装
された場合でも、舗装面の外側から容易に地中の比誘電
率が測定でき、さらに試料としての土の性質の経時的変
化を考慮せずに、地中の比誘電率を高精度かつ迅速に算
出することができるものが得られる効果がある。
As described above, according to the present invention, there is provided an antenna that radiates electromagnetic waves from the ground surface toward the ground and receives reflected waves from the ground, and an impedance that measures the impedance of the antenna and the ground. measuring means, and with reference to an impedance/relative permittivity conversion table prepared in advance based on the L antenna and the underground impedance with known relative permittivity, the calculation means calculates the relative permittivity corresponding to the impedance measured above. Since the ratio is calculated by calculation, there is no need to collect soil samples as in the past, and even when paved with asphalt or concrete, the relative permittivity of the ground can be easily measured from outside the paved surface. Furthermore, the relative dielectric constant of the ground can be calculated quickly and with high accuracy without considering changes in the properties of the soil as a sample over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による地中の比誘電率測定
装置シボすブロック図、第2図はこの発明にかかる地中
の比誘電率測定装置の応用例を示すブロック図、第3図
は従来の地中の比誘電率測定装置を示す回路図、第4図
は第3図に示す回路各部の電圧のベクトル関係を示す説
明図である。 11は地表面、】−2はアンテナ、13はインピーダン
ス測定手段、14は演算手段、 なお、 図中、 同一符号は同一、 または相当部分 を示す。 第 図 第 図
FIG. 1 is a block diagram of an underground dielectric constant measuring device according to an embodiment of the present invention, FIG. 2 is a block diagram showing an application example of the underground dielectric constant measuring device according to the present invention, and FIG. The figure is a circuit diagram showing a conventional underground dielectric constant measuring device, and FIG. 4 is an explanatory diagram showing the vector relationship of voltages at various parts of the circuit shown in FIG. 3. 11 is the ground surface, ]-2 is the antenna, 13 is the impedance measurement means, and 14 is the calculation means. In the figures, the same reference numerals indicate the same or equivalent parts. Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 地表面より電磁波を地中に向けて放射し、その地中から
の反射波を受信するアンテナと、該アンテナおよび上記
地中のインピーダンスを測定するインピーダンス測定手
段と、上記アンテナおよび比誘電率が既知の地中のイン
ピーダンスにもとづいて予め作成したインピーダンス/
比誘電率変換テーブルを参照して、上記測定したインピ
ーダンスに対応する比誘電率を演算によって求める演算
手段とを備えた地中の比誘電率測定装置。
An antenna that radiates electromagnetic waves from the ground surface toward the ground and receives reflected waves from the ground, an impedance measuring means for measuring the impedance of the antenna and the ground, and a known dielectric constant of the antenna and the ground. The impedance created in advance based on the underground impedance of
An underground relative permittivity measuring device, comprising: calculation means for calculating a relative permittivity corresponding to the measured impedance with reference to a relative permittivity conversion table.
JP2249388A 1990-09-19 1990-09-19 Underground specific inductive capacity measuring device Pending JPH04128683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249388A JPH04128683A (en) 1990-09-19 1990-09-19 Underground specific inductive capacity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249388A JPH04128683A (en) 1990-09-19 1990-09-19 Underground specific inductive capacity measuring device

Publications (1)

Publication Number Publication Date
JPH04128683A true JPH04128683A (en) 1992-04-30

Family

ID=17192259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249388A Pending JPH04128683A (en) 1990-09-19 1990-09-19 Underground specific inductive capacity measuring device

Country Status (1)

Country Link
JP (1) JPH04128683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076434A1 (en) * 2018-10-08 2020-04-16 Microsoft Technology Licensing, Llc Soil measurement system using wireless signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator
JPS6027881A (en) * 1983-07-25 1985-02-12 テマテイケスカヤ・エクスペデイトシア・プロイズボドストベノゴ・オビエデイネニア゛ウクルグレゲオロギア゛ Method of detecting present geodynamical motion
JPS60157065A (en) * 1984-01-27 1985-08-17 Koden Electronics Co Ltd Soil monitoring device for shield drilling machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator
JPS6027881A (en) * 1983-07-25 1985-02-12 テマテイケスカヤ・エクスペデイトシア・プロイズボドストベノゴ・オビエデイネニア゛ウクルグレゲオロギア゛ Method of detecting present geodynamical motion
JPS60157065A (en) * 1984-01-27 1985-08-17 Koden Electronics Co Ltd Soil monitoring device for shield drilling machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076434A1 (en) * 2018-10-08 2020-04-16 Microsoft Technology Licensing, Llc Soil measurement system using wireless signals
US10761206B2 (en) 2018-10-08 2020-09-01 Microsoft Technology Licensing, Llc Soil measurement system using wireless signals

Similar Documents

Publication Publication Date Title
US5617031A (en) Buried pipe locator utilizing a change in ground capacitance
Won et al. GEM-2: A new multifrequency electromagnetic sensor
US7205769B2 (en) Method and apparatus for processing a signal received by an electromagnetic prober
US3123767A (en) Uator
US4258321A (en) Radio geophysical surveying method and apparatus
US6559645B2 (en) Detector apparatus and method
EP0799428A1 (en) An impulse radar with swept range gate
EP0147829B1 (en) Multi-frequency radar for underground investigation
US2657380A (en) Underground prospecting system
Cao et al. Evaluation of pavement system based on ground-penetrating radar full-waveform simulation
JPH04128683A (en) Underground specific inductive capacity measuring device
US3796950A (en) Measurement apparatus
JPH0361915B2 (en)
US3125717A (en) Conductivity
Dokoupil et al. The attenuation of electromagnetic waves in rocks
US2421785A (en) Electric altimeter
Coetzee A technique to determine the electromagnetic properties of soil using moisture content
Špikić et al. Towards high frequency electromagnetic induction sensing of soil apparent electrical conductivity
Wright et al. The very early time electromagnetic (VETEM) system: First field test results
RU2723987C1 (en) Method of detection and identification of explosive and narcotic substances and device for its implementation
Huang et al. A time domain approach for measuring the dielectric properties and thickness of walls of a building
JPS63307376A (en) Survey radar for underground buried body
RU1554594C (en) Device for measuring object reflectivity in free space
JPH01282490A (en) Underground searching apparatus equipped with underground dielectric constant measuring function
RU2202812C1 (en) Facility to search for underground pipe-lines