JPH04128517A - Fuel control device for gas turbine - Google Patents
Fuel control device for gas turbineInfo
- Publication number
- JPH04128517A JPH04128517A JP24758390A JP24758390A JPH04128517A JP H04128517 A JPH04128517 A JP H04128517A JP 24758390 A JP24758390 A JP 24758390A JP 24758390 A JP24758390 A JP 24758390A JP H04128517 A JPH04128517 A JP H04128517A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- control
- gas turbine
- fuel flow
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 71
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 abstract description 31
- 238000009792 diffusion process Methods 0.000 abstract description 14
- 230000001133 acceleration Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はガスタービンの制御方法に係り、特に大気汚染
物質である窒素酸化物(以下NOxと記載する)等の発
生を抑制し得るガスタービン燃料制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine control method, and particularly to a gas turbine that can suppress the generation of nitrogen oxides (hereinafter referred to as NOx), which are air pollutants. This invention relates to a fuel control device.
NOxの低減を目的とした燃料制御装置の基本構成につ
いては特開昭61−258929号に記述されているが
、燃料切替を確実にかつ円滑に行わせるための系統周波
数の影響の除去については触れられていなかった。The basic configuration of a fuel control device aimed at reducing NOx is described in Japanese Patent Application Laid-Open No. 61-258929, but it does not mention the removal of the influence of system frequency to ensure reliable and smooth fuel switching. It wasn't.
第1図にガスタービン発電所の主要機器構成を示す、空
気圧縮機1.燃焼器2.タービン32発電機4で構成さ
れたガスタービン発電所において発電された電力はしゃ
断器5を経て系統へ供給される。この電力の制御は燃料
調整弁6によって行われる。次に燃焼器へ供給さ九る燃
料と空気の比率(燃空比)とNOx発生量の関係を第2
図に示す。拡散燃焼では燃料が噴出されると、その周囲
の空気が多くても安定燃焼に必要な空気が使われ残りの
空気は希釈に使用される。拡散燃焼は低燃空比でも安定
に燃焼できるが、NOXの発生は多い、予混合燃焼では
予め燃料と空気を混合しておくため、燃料と空気の混合
度が良くなり、燃空比を希薄にでき、低NOx化が可能
となる。実際の燃焼器では、低燃空比域で燃焼安定性の
高い拡散燃焼を用い、高燃空比域でN Oxを低減可能
な予混合を追加し、低燃空比例から高燃空比域までNO
x量を一定値以下に抑える。この様な制御方式を燃空比
をパラメータに示すと第3図となる。Figure 1 shows the main equipment configuration of a gas turbine power plant. Air compressor 1. Combustor 2. Electric power generated in a gas turbine power plant composed of a turbine 32 and a generator 4 is supplied to the grid via a breaker 5. This power control is performed by a fuel adjustment valve 6. Next, the relationship between the ratio of fuel and air supplied to the combustor (fuel-air ratio) and the amount of NOx generated is determined as follows.
As shown in the figure. In diffusive combustion, when fuel is injected, even if there is a lot of air around it, the air necessary for stable combustion is used, and the remaining air is used for dilution. Diffusion combustion allows stable combustion even at low fuel-air ratios, but generates a lot of NOx. In premix combustion, the fuel and air are mixed in advance, so the degree of mixing of fuel and air is improved, and the fuel-air ratio is leaner. This makes it possible to reduce NOx. In an actual combustor, diffusion combustion with high combustion stability is used in the low fuel-air ratio region, and premixing that can reduce NOx is added in the high fuel-air ratio region, and the ratio is changed from the low fuel-air ratio region to the high fuel-air ratio region. Until NO
Keep the x amount below a certain value. FIG. 3 shows such a control method using the fuel/air ratio as a parameter.
ここでFlは拡散燃焼2行う燃料であり、 F2は予混
合燃焼を行なう燃料である。NOx発生量は拡散燃焼の
燃空比が増えると増加するが、燃料の一部を予混合燃焼
とすることにより、高燃空比域でのNOx値を下げるこ
とができる。Here, Fl is a fuel that performs diffusion combustion 2, and F2 is a fuel that performs premix combustion. The amount of NOx generated increases as the fuel-air ratio of diffusion combustion increases, but by premixing a portion of the fuel, the NOx value in a high fuel-air ratio region can be lowered.
以上の様に従来拡散燃焼のみであったものが低NOx燃
焼器では拡散燃焼に予混合燃焼が追加となり、これらに
対応した2つの燃料系統が必要になる。As described above, in the low NOx combustor, premix combustion is added to the diffusion combustion, whereas conventionally only diffusion combustion is used, and two fuel systems corresponding to these are required.
すなわち、負荷制御を目的とし、たトータルの燃料指令
値(以下、Foと略す)をNOx制御の目的で、拡散燃
焼を行う燃料系統への指令(以上Fユと略す)と予混合
燃焼を行うもう1つの燃料系統への指令(以下F2と略
す)に分割することが必要になる。この分割にあたって
は負荷変動を起こさないこと、拡散燃焼から予混合燃焼
への切替点を正確に決定しNOXの発生量を制限値以内
に管理することが重要となる。In other words, for the purpose of load control, the total fuel command value (hereinafter abbreviated as Fo) is used to perform premix combustion with a command to the fuel system that performs diffusion combustion (hereinafter abbreviated as F) for the purpose of NOx control. It is necessary to divide the command into another fuel system command (hereinafter abbreviated as F2). In this division, it is important not to cause load fluctuations, to accurately determine the switching point from diffusion combustion to premix combustion, and to manage the amount of NOx generated within a limit value.
一般にガスタービンの空気流量の正確な計測は困難で、
第3図に示した燃空比をパラメータにし7た燃料指令値
の分割は実現性に乏しい。このため拡散燃焼用燃料系統
及び′f−混合燃焼用燃料系統各各に燃料調整弁及び燃
料黒整弁の前側に燃料圧力調整弁を設置し、発電機の負
荷制御信号とし、て従来用いられていた燃料指令信号を
ガスタービン空気量に関わるパラメータにより修正し、
ニオtをベスに拡散燃焼用燃料系統への燃料指令値を決
め、先の燃料指令信号とこの燃料指令値の差を予混合燃
焼用燃料系統への燃料指令とする。Generally, it is difficult to accurately measure the air flow rate of a gas turbine.
Dividing the fuel command value by using the fuel-air ratio as a parameter as shown in FIG. 3 is not very practical. For this reason, a fuel pressure regulating valve is installed in front of the fuel regulating valve and the fuel black regulating valve in each of the diffusive combustion fuel system and the 'f-mixed combustion fuel system, and is conventionally used as a load control signal for the generator. The fuel command signal that had been previously used was modified using parameters related to the gas turbine air amount.
The fuel command value for the diffusion combustion fuel system is determined based on the niobium t, and the difference between the previous fuel command signal and this fuel command value is used as the fuel command for the premix combustion fuel system.
第8図にガスタービン空気量番J関わるパラメータとし
て大気温度を使用した場合の燃料指令の分割を示すゎガ
スタービン空気流量はガスタービン速度と大気温度によ
って決まるがF+ とF2の切替はガスタービン発電機
併入以降に行われる。し・たがって、切替時のガスター
ビン空気流量は大気温度のみによって影響を受け、大気
温度が下がれば空気流量が増加し、逆に人気温度が上が
れば空気流量が減少する。■はこの関係を示したもので
人気温度15℃を基準とし、この時の空気流量を規格化
して“1”と表現している。尚、基準温度は何℃でも良
い。■はトータル燃料指令値(ガバナ制御信号)の修正
を行うものである。Figure 8 shows the division of fuel command when atmospheric temperature is used as a parameter related to gas turbine air flow number J. The gas turbine air flow rate is determined by the gas turbine speed and atmospheric temperature, but switching between F+ and F2 is necessary for gas turbine power generation. This will be carried out after the aircraft has been annexed. Therefore, the gas turbine air flow rate at the time of switching is affected only by the atmospheric temperature; if the atmospheric temperature decreases, the air flow rate increases, and conversely, if the popular temperature increases, the air flow rate decreases. ■ indicates this relationship, and the popular temperature of 15°C is used as the standard, and the air flow rate at this time is standardized and expressed as "1". Note that the reference temperature may be any degree Celsius. (2) is for modifying the total fuel command value (governor control signal).
■の演算結果は、
273℃+x℃
となり、大気温度が15℃より上がればFo’ はF
oより小さくなり、逆に下がればFo’ はF。The calculation result of ■ is 273℃ + x℃, and if the atmospheric temperature rises above 15℃, Fo' becomes F
If it becomes smaller than o, or vice versa, Fo' becomes F.
より大きくなる。Become bigger.
■ではFo’ をベースにFlとF2への燃料指令を
配分する。ここでA、Bは大気温度15℃における切替
点である。大気温度が15℃よりあがれば切替点はYA
、YBの点に移動、すなわち。In (2), the fuel command is distributed to Fl and F2 based on Fo'. Here, A and B are switching points at an atmospheric temperature of 15°C. If the atmospheric temperature rises above 15℃, the switching point is YA.
, move to point YB, ie.
Yは1より小さいから大気温度15℃の時の切替点より
小さな値となり、逆に大気温度が下が数ば大きな値とな
る。これは、燃空比により、FlとF2の切替を行うこ
とで等価である。Since Y is smaller than 1, it will be a smaller value than the switching point when the atmospheric temperature is 15° C., and conversely, if the atmospheric temperature is several times lower, it will be a larger value. This is equivalent to switching between Fl and F2 depending on the fuel/air ratio.
以上から、計測誤差が±10%もあるガスタービン空気
流量をFlとF2の切替に使用しなくても良く、切替時
のNOxの発生量を精度良く管理できる。From the above, it is not necessary to use the gas turbine air flow rate, which has a measurement error of ±10%, for switching between Fl and F2, and the amount of NOx generated at the time of switching can be managed with high accuracy.
この場合、トータルの燃料流量指令値Foは、−F位の
制御系である負荷制御装置、又は運転員操作によって与
えられた設定値をもとにガバナ制御動作によって決定さ
れるため、系統周波数の影響を受ける。この結果として
、切替点の特定が困難になり正確なNOx制御が期待で
きなくなるとともに、切替点の近くでFoが増減変動し
、F2の点火・消火をくりかえす可能性がでてくる。In this case, the total fuel flow command value Fo is determined by the load control device, which is the control system at -F, or by the governor control operation based on the set value given by the operator's operation. to be influenced. As a result, it becomes difficult to identify the switching point, making it impossible to expect accurate NOx control, and there is a possibility that Fo will increase or decrease near the switching point, causing F2 to repeatedly ignite and extinguish.
本発明の目的は上述の不具合を防止するために燃料切替
帯において系統周波数の影響を除去する手段を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a means for eliminating the influence of system frequency in a fuel switching zone in order to prevent the above-mentioned problems.
上記の目的は、系統周波数の影響を受けないFo演算回
路をi3設し5ガバナ制御回路を待機状態とすることに
より達成される。The above object is achieved by providing the Fo calculation circuit i3 which is not affected by the system frequency and placing the 5 governor control circuit in a standby state.
以下、本発明の一実施例を図面にもとづき説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
まず第4図に本発明の燃料系統を示す。First, FIG. 4 shows the fuel system of the present invention.
拡散燃焼域に噴出される燃料をFlに示し、予混合燃焼
域に噴出される燃料をF2に示す。Flは燃料供給口か
ら圧力調整弁(PCVI)103゜圧力検出器105.
流量調整弁(FCVI)104を経てノズルから噴出す
る。The fuel injected into the diffusion combustion area is shown as Fl, and the fuel injected into the premix combustion area is shown as F2. Fl is connected from the fuel supply port to the pressure regulating valve (PCVI) 103° and the pressure detector 105.
It is ejected from a nozzle via a flow rate control valve (FCVI) 104.
F2の燃料系統もFlと同じである。The fuel system of F2 is also the same as Fl.
第5図に燃料流量指令Foを演算する制御系を示す。起
動制御、加速制御、@度制御の説明については公知例(
特公昭46−18203号)に記述されているので省略
する。又、調速制御の内容についても幾多の公知例があ
り、かつ今回の発明に直接関係し5ないので説明を省略
する。FIG. 5 shows a control system for calculating the fuel flow rate command Fo. For explanations of startup control, acceleration control, and @degree control, see the known examples (
Since it is described in Japanese Patent Publication No. 46-18203), it will be omitted here. Furthermore, there are many known examples of the content of speed regulating control, and since it is not directly related to the present invention, a description thereof will be omitted.
さて、ガスタービン起動から併入までは起動制御、併入
から燃料切替点(拡散燃焼から予混合燃焼)までは系統
周波数の影響をうけないFo演算回路がRFoを支配す
る。Now, from gas turbine startup to merging, the startup control is controlled, and from merging to the fuel switching point (from diffusion combustion to premix combustion), the Fo calculation circuit, which is not affected by the system frequency, controls RFo.
アナログメモリ202は負荷制御装置又は運転員からの
上げ、下げ指令を受けて燃料流量の設定を行う、設定I
212はガバナ制御回路及びF。The analog memory 202 is a setting I which sets the fuel flow rate in response to an increase or decrease command from a load control device or an operator.
212 is a governor control circuit and F;
演算回路の両方に接続されるが併入直後、切替器206
はx2側を選択し、ガバナ制御回路に抑制バイアスが加
算されており、ガバナ制御回路はFo演算回路に対し待
機状態となっている。It is connected to both of the arithmetic circuits, but immediately after the combination, the switch 206
selects the x2 side, a suppression bias is added to the governor control circuit, and the governor control circuit is in a standby state for the Fo calculation circuit.
Fo演算回路は次のように動作する。The Fo calculation circuit operates as follows.
設定値212から信号発生器215からの100%速度
相当信号を減算し、これに調定率のゲイン2〕4を乗算
する。この結果と無負荷定格速度相当信号219を加算
し、この結果を切替器216に接続する。切替1!21
6はFo演算回路がF。The 100% speed equivalent signal from the signal generator 215 is subtracted from the set value 212, and this is multiplied by the adjustment rate gain 2]4. This result is added to the no-load rated speed equivalent signal 219, and this result is connected to the switch 216. Switch 1!21
In 6, the Fo calculation circuit is F.
を支配している間はX】を選択し、そうでない時はx2
を選択する。この状態ではxlが選択され、アナログメ
モリ217を経由して低値選択回路(LVG)21.0
に接続される。この状態では、起動制御、加速制御、温
度制御、ガバナ制御いずれも待機(すなわち、アナログ
メモリ217の出力が一番近い値となり、これがFoを
支配する)となっており、結果としてFoは系統周波数
に無関係に制御される。Select [X] while controlling, otherwise select x2
Select. In this state, xl is selected, and the signal is sent to the low value selection circuit (LVG) 21.0 via the analog memory 217.
connected to. In this state, startup control, acceleration control, temperature control, and governor control are all on standby (that is, the output of analog memory 217 is the closest value, and this controls Fo), and as a result, Fo is the system frequency. controlled regardless of the
切替器206,216の切替条件の選択により、Fo演
算回路をどの領域でガバナ制御系より優先させるか任意
に決定できる。By selecting the switching conditions of the switchers 206 and 216, it is possible to arbitrarily determine in which region the Fo calculation circuit is given priority over the governor control system.
第6図に燃料l1節弁のブロック図を示す。FIG. 6 shows a block diagram of the fuel l1 control valve.
検呂器12]によって検出された大気温度は関数発生器
122に接続され、この出カ↓二よりF。The atmospheric temperature detected by the temperature sensor 12 is connected to a function generator 122, and the output is F from this output.
を乗算器124で修正する。関数発生器125は修正さ
れた燃料要求値Fo′ をベースにFlの燃料比率を
決定する。ここまでの考え方を第8図で補足する。is corrected by the multiplier 124. The function generator 125 determines the fuel ratio of Fl based on the modified fuel demand value Fo'. The thinking up to this point is supplemented with Figure 8.
乗算器126は前記のFlの燃料比率とFoがらF】の
燃料指令を演算する。加減算器131で演算されたF1
燃料指令とFlの燃量S肺尖開度132の偏差により電
気油圧変換器133を動作させ、これにより燃料iIl
!節弁1肺尖を114節してFlすなわち拡散燃焼系統
への燃料流量を制御する。A multiplier 126 calculates a fuel command of F] from the fuel ratio of Fl and Fo. F1 calculated by adder/subtracter 131
The electro-hydraulic converter 133 is operated according to the deviation between the fuel command and the fuel amount S lung apex opening 132 of Fl, thereby controlling the fuel iIl
! The valve 1 controls 114 nodes of the lung leaflet to control Fl, that is, the fuel flow rate to the diffusion combustion system.
トータルの燃料流量指令Fo とFlの燃料指令との差
を加減算器127で演算し、これによりF2すなわち予
混合燃焼系統への燃量流量を制御する。The difference between the total fuel flow command Fo and the fuel command Fl is calculated by an adder/subtractor 127, thereby controlling F2, that is, the fuel flow rate to the premix combustion system.
次に第7図に燃料圧力調節弁の制御ブロック図を示す。Next, FIG. 7 shows a control block diagram of the fuel pressure regulating valve.
圧力調整弁(pevl)103は起動時のFCV 1の
開度を大にして制御性を良くするために、ガスタービン
回転数に比例したFCVl後圧制御を行なう。Nはガス
タービン回転数であり、演算器141により比例演算を
行ない、バイアスを加えたものを圧力設定値とする。こ
の設定値はFCV l後の実圧力105とつきあわされ
、演算器144により比例積分演算を行ない、サーボ弁
ドライバ145によりPCVIを制御する。The pressure regulating valve (pevl) 103 controls the FCVl afterpressure in proportion to the gas turbine rotation speed in order to increase the opening degree of the FCV1 at startup and improve controllability. N is the gas turbine rotation speed, a proportional calculation is performed by the calculator 141, and the pressure set value is determined by adding a bias. This set value is compared with the actual pressure 105 after FCV l, a proportional integral calculation is performed by the calculator 144, and the servo valve driver 145 controls PCVI.
圧力調整弁(FCV2)はガスタービンが定格回転数と
なってからFCV2を制御するため定値制御で良い。圧
力設定値は設定器1.51により設定され、FCV2の
実後圧カ109とつきあわし、演算器〕53により比例
積分演算を行ない、サーボ弁ドライバ154によってP
CV2を制御する。Since the pressure regulating valve (FCV2) controls the FCV2 after the gas turbine reaches its rated rotational speed, constant value control may be used. The pressure setting value is set by the setting device 1.51, matches the actual pressure 109 of the FCV 2, performs proportional integral calculation by the calculator] 53, and sets the pressure by the servo valve driver 154.
Control CV2.
本発明によれば拡散燃焼から予混合燃焼への切替帯にお
いて、燃料流量指令Foを系統周波数とは無関係に制御
できるので、正確なNOx制御が期待できると同時にF
2の点火・消火をくりかえすような危険を除外できる。According to the present invention, in the switching zone from diffusion combustion to premix combustion, the fuel flow rate command Fo can be controlled independently of the system frequency, so accurate NOx control can be expected and at the same time
The danger of repeated ignition and extinguishing in step 2 can be eliminated.
第1図はガスタービン発電所の主要機器構成図、第2図
は燃空比とN Ox発生量を示す説明図、第3図は制御
の概要を示す説明図、第4図は燃料系統図、第5図は本
発明の一実施例を示す制御ブロック図、第6図、第7図
は動作説明のための制御ブロック図、第8図は動作説明
図である。
第
図
第 2
図
!た↑叱
第
図
弔
図
第5図
第7図
CV2
第8図Figure 1 is a diagram of the main equipment configuration of a gas turbine power plant, Figure 2 is an explanatory diagram showing the fuel-air ratio and amount of NOx generated, Figure 3 is an explanatory diagram showing an overview of control, and Figure 4 is a fuel system diagram. , FIG. 5 is a control block diagram showing one embodiment of the present invention, FIGS. 6 and 7 are control block diagrams for explaining the operation, and FIG. 8 is a diagram for explaining the operation. Figure 2! Figure 5 Figure 7 CV2 Figure 8
Claims (1)
御系統の各々に燃料圧力調整弁及び燃料流量調整弁を設
置し、第1段の燃料流量調節弁の制御信号はトータル燃
料流量指令値から演算し、第2段の燃料流量調節弁の制
御信号はトータル燃料流量指令値と第1段の燃料流量調
節弁の制御信号の差として演算するガスタービン燃料制
御装置において、燃料切替帯のトータル燃料流量指令値
を系統周波数とは無関係に制御する手段を有することを
特徴とするガスタービン燃料制御装置。1. For the purpose of reducing NOx in exhaust gas, a fuel pressure regulating valve and a fuel flow regulating valve are installed in each of the two fuel control systems, and the control signal for the first stage fuel flow regulating valve is based on the total fuel flow command value. In a gas turbine fuel control system, the control signal for the second stage fuel flow control valve is calculated as the difference between the total fuel flow command value and the control signal for the first stage fuel flow control valve. A gas turbine fuel control device comprising means for controlling a fuel flow rate command value regardless of system frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24758390A JPH04128517A (en) | 1990-09-19 | 1990-09-19 | Fuel control device for gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24758390A JPH04128517A (en) | 1990-09-19 | 1990-09-19 | Fuel control device for gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04128517A true JPH04128517A (en) | 1992-04-30 |
Family
ID=17165666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24758390A Pending JPH04128517A (en) | 1990-09-19 | 1990-09-19 | Fuel control device for gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04128517A (en) |
-
1990
- 1990-09-19 JP JP24758390A patent/JPH04128517A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6092362A (en) | Gas-turbine combustor with load-responsive premix burners | |
EP2447509B1 (en) | Combuster control method and combustor controller | |
US6763664B2 (en) | Fuel ratio control method and device in a gas turbine combustor | |
WO2004038199A1 (en) | Method and system for controlling gas turbine engine | |
JP3499026B2 (en) | Gas turbine fuel supply device | |
JPS6146655B2 (en) | ||
JP2633272B2 (en) | Apparatus and method for controlling gas turbine engine | |
JP2633271B2 (en) | Apparatus and method for controlling gas turbine engine | |
JP3078822B2 (en) | Acceleration control device for gas turbine engine | |
JP3771677B2 (en) | Pilot ratio automatic adjustment device | |
JPH04128517A (en) | Fuel control device for gas turbine | |
JPH06241062A (en) | Gas turbine power generating facility and its operating method | |
JP2006029162A (en) | Control device and control method of gas turbine | |
JP3716586B2 (en) | Gas turbine combustor | |
JP2781407B2 (en) | Control device | |
KR102273982B1 (en) | Gas turbine control device and gas turbine and gas turbine control method | |
JPH05149544A (en) | Controller for gas turbine | |
JPH0579819B2 (en) | ||
JP2004108315A (en) | Gas turbine system and operation method for the same | |
JPH06323166A (en) | Gas turbine combustor | |
JPS6361725A (en) | Gas turbine control method | |
JP3703615B2 (en) | Gas turbine equipment | |
JPS61258929A (en) | Fuel controller for gas turbine | |
JPH10185185A (en) | Gas turbine fuel control method | |
JPH0610426B2 (en) | Gas turbine control device |