JPH04128344A - Heat resisting stainless steel foil used for catalyst support for combustion exhaust gas cleaning and having thermal fatigue resistance - Google Patents
Heat resisting stainless steel foil used for catalyst support for combustion exhaust gas cleaning and having thermal fatigue resistanceInfo
- Publication number
- JPH04128344A JPH04128344A JP2248924A JP24892490A JPH04128344A JP H04128344 A JPH04128344 A JP H04128344A JP 2248924 A JP2248924 A JP 2248924A JP 24892490 A JP24892490 A JP 24892490A JP H04128344 A JPH04128344 A JP H04128344A
- Authority
- JP
- Japan
- Prior art keywords
- less
- foil
- stainless steel
- exhaust gas
- yield strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011888 foil Substances 0.000 title claims abstract description 60
- 239000003054 catalyst Substances 0.000 title claims abstract description 29
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 22
- 239000010935 stainless steel Substances 0.000 title claims abstract description 16
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 11
- 238000004140 cleaning Methods 0.000 title abstract 2
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 238000000746 purification Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 abstract description 37
- 238000007254 oxidation reaction Methods 0.000 abstract description 37
- 229910052715 tantalum Inorganic materials 0.000 abstract description 9
- 229910052758 niobium Inorganic materials 0.000 abstract description 7
- 238000005098 hot rolling Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 5
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 241000264877 Hippospongia communis Species 0.000 description 33
- 230000000694 effects Effects 0.000 description 32
- 239000007789 gas Substances 0.000 description 21
- 238000005728 strengthening Methods 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000002159 abnormal effect Effects 0.000 description 12
- 239000006104 solid solution Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000005219 brazing Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 229910017112 Fe—C Inorganic materials 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 101100492787 Caenorhabditis elegans mai-1 gene Proteins 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 208000025599 Heat Stress disease Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は燃焼排気ガス浄化装置用の触媒担体に使用され
る耐熱ステンレス箔に関わる。さらに詳しくは、耐酸化
性、製造性に優れるのみならず、高温での強さに優れる
ため、触媒のハニカム体に使用した場合その構造上の耐
久性を向上させる効果の大きい耐熱ステンレス箔に関わ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant stainless steel foil used as a catalyst carrier for a combustion exhaust gas purification device. More specifically, it relates to heat-resistant stainless steel foil, which not only has excellent oxidation resistance and manufacturability, but also has excellent strength at high temperatures, so when used in the honeycomb body of the catalyst, it has a great effect on improving the structural durability of the honeycomb body. .
自動車等の燃焼排気ガス浄化装置には、従来セラミック
ス製のハニカムが使用されてきたが、これを耐熱ステン
レスに代替することにより、ハニカム壁の肉厚を減する
ことが可能で、通気抵抗や熱容量の減少によりエンジン
性能の向上や高価な触媒貴金属の節約が実現できること
から、例えば、特開昭50−92286号、同51−4
8473号、および同57−71898号の各公報に開
示されているごとく、このハニカム体をFe −Cr
−Al系耐熱金属箔で構成する技術が提案されている。Ceramic honeycombs have traditionally been used in combustion exhaust gas purification devices for automobiles, etc., but by replacing them with heat-resistant stainless steel, it is possible to reduce the thickness of the honeycomb walls, reducing ventilation resistance and heat capacity. Since engine performance can be improved and expensive catalyst precious metals can be saved by reducing the amount of
As disclosed in the publications No. 8473 and No. 57-71898, this honeycomb body is made of Fe-Cr.
- A technique has been proposed in which the foil is made of an Al-based heat-resistant metal foil.
この場合、該合金に要求される特性として、耐酸化性お
よび皮膜の密着性が注目され、それゆえその素材として
は一般に耐酸化性、皮膜の密着性に優れているために旧
来より電熱線や暖房器具の高温部材として広く使用され
てきたFe −Cr −Aj2系合金をベースに、その
耐酸化性あるいは触媒の直接担持体である活性アルミナ
(T −A I2.03)コート層との密着性を改善し
た箔が用いられている。上記各公報に開示された技術は
いずれも素材の耐酸化性を改善する手段としてYを利用
している。In this case, oxidation resistance and film adhesion are attracting attention as properties required of the alloy. Based on the Fe-Cr-Aj2 alloy, which has been widely used as a high-temperature component in heating appliances, we have improved its oxidation resistance and its adhesion to the activated alumina (T-A I2.03) coating layer, which is a direct support for the catalyst. Foil with improved properties is used. All of the techniques disclosed in the above-mentioned publications utilize Y as a means to improve the oxidation resistance of the material.
一方、特開昭58−177437号公報にはFe −C
r−/l系合金の主として酸化皮膜の剥離を防止するた
めに0.002〜0.05重量%のLa 、 Ce 、
Pr 、 Ndからなる群の希土類元素を含む、総量
0.06重重量までの希土類元素を添加した合金、およ
び該合金の安定化のためにZrを、また高温のクリープ
強さの確保のためにNbをそれぞれC,N量との特定関
係範囲内で添加した合金が提案されている。これらの公
報では希土類元素の合計が0.06重量%を越えるよう
な合金では、それ以下の場合に比べて耐酸化性がほとん
ど改善されないばかりか、通常の熱間加工温度では加工
することが不可能であると述べている。On the other hand, in JP-A-58-177437, Fe-C
0.002 to 0.05% by weight of La, Ce, mainly to prevent peeling of the oxide film of the r-/l alloy.
An alloy containing a rare earth element of the group consisting of Pr, Nd, to which a total amount of up to 0.06 wt. An alloy has been proposed in which Nb is added within specific relationship ranges with the amounts of C and N, respectively. These publications state that alloys in which the total amount of rare earth elements exceeds 0.06% by weight not only show little improvement in oxidation resistance compared to alloys containing less than 0.06% by weight, but also cannot be processed at normal hot working temperatures. states that it is possible.
特開昭63−45351号公報には、同じ<Fe −C
rAl系をベースとする合金においてYの添加は高価な
ものになるとして、Ceを排除したLnまたはLaのみ
を0.05〜0.2重量%の範囲で添加する事が提案さ
れている。これは、Lnの添加による熱間加工性の低下
原因がCeの存在にあり、さらにCeには耐酸化性をも
低下させる作用があるためとしており、したがってCe
だけを排除したLnを添加すれば熱間加工が可能となり
耐酸化性も向上するという知見に基づくと述べている。In JP-A-63-45351, the same <Fe-C
Since adding Y to rAl-based alloys would be expensive, it has been proposed to add only Ln or La excluding Ce in a range of 0.05 to 0.2% by weight. This is because the presence of Ce is the cause of the decrease in hot workability due to the addition of Ln, and furthermore, Ce has the effect of decreasing oxidation resistance.
It states that this is based on the knowledge that adding Ln excluding only Ln makes hot working possible and improves oxidation resistance.
しかしながら、Lnは化学的に活性に冨む元素であり、
かつ相互の化学的性質が類似しているために個々の元素
の分離は簡単ではなく、Lnの一般的な混合物であるミ
ツシュメタルに対しては非常に高価なものとなる。また
、同様にCeのみを分離除去することも価格の上昇を避
は得ない。さらに、これと同一出願人による特開昭63
−42356号公報には、耐酸化性と酸化スケールの耐
剥離性に優れたFe −Cr−Al系合金としてCe、
La、PrおよびNdを総和で0.01%以上0.30
%以下を含む合金が開示されているが、この合金につい
ての熱間加工性の検討は全く行われていない。However, Ln is a chemically active element,
Moreover, since their chemical properties are similar, it is not easy to separate the individual elements, and it is very expensive for Mitsume metal, which is a general mixture of Ln. Similarly, separating and removing only Ce also inevitably increases the price. Furthermore, JP-A-63 by the same applicant
Publication No. 42356 discloses Ce,
La, Pr and Nd total 0.01% or more 0.30
% or less has been disclosed, but no studies have been conducted on the hot workability of this alloy.
また、これらの従来技術は主として酸化皮膜の密着性や
耐酸化性については検討されているが、触媒のハニカム
体を構成する箔として実用上重要な要求特性である、ハ
ニカム体の構造上の耐久性に及ぼす箔素材の影響につい
ては十分検討されていない。In addition, these conventional techniques mainly examine the adhesion and oxidation resistance of the oxide film, but the structural durability of the honeycomb body, which is a practically important property required for the foil that constitutes the honeycomb body of the catalyst, has been studied. The influence of foil materials on performance has not been sufficiently investigated.
(発明が解決しようとする課題〕
ところが、例えば、自動車の触媒担体では、通常の使用
環境にあっては箔の耐酸化性が不足しているため触媒担
体が寿命に達することは希であり、むしろ走行状態に連
動した加熱・冷却の繰り返しによる熱疲労によって破損
し寿命に達することがほとんどである。すなわち、加熱
の際にはハニカム体は高温・高速の排ガス流によって内
側から急速に加熱される一方走行風によって外側から強
制冷却されるため、ハニカム内半径方向には急激な温度
勾配が生じ大きな熱歪みが発生する。この熱歪みはハニ
カム体の半径方向に均一に分布するのではなく最外周か
ら数層内側に集中する。これは、ハニカム体半径方向の
温度勾配が外層側と内層側で大きく異なっていることと
、箔材料の耐力の温度に対する変化率が温度域によって
大きく異なっていることに由来しており、すなわちハニ
カムを構成するフェライト系ステンレス箔の耐力が著し
く低下し始める温度域とハニカム体の半径方向に最も急
激で温度勾配が発生する温度域と最外周から数層の部分
で合致するためである。また、定速走行の際にも、外周
から走行風による冷却があるため、熱歪み発生の程度は
緩和されるが依然として最外周から数層の部分に熱歪み
が集中する状態が続く。さらに、減速あるいは空走のと
きには比較的低温のガスが流れるためハニカム体は外側
と同時に中側からも冷却され、最外周から数層内側の部
分が最も高温の状態が生じるためやはり二の部分に熱歪
みが集中する。(Problem to be Solved by the Invention) However, for example, in the case of catalyst carriers for automobiles, the oxidation resistance of the foil is insufficient in the normal usage environment, so it is rare for the catalyst carrier to reach the end of its service life. Rather, in most cases, the honeycomb body reaches the end of its service life due to thermal fatigue due to repeated heating and cooling linked to driving conditions.In other words, during heating, the honeycomb body is rapidly heated from the inside by the high-temperature and high-speed exhaust gas flow. On the other hand, since the traveling wind is forced to cool the honeycomb from the outside, a sharp temperature gradient occurs in the radial direction inside the honeycomb, causing large thermal strain.This thermal strain is not evenly distributed in the radial direction of the honeycomb body, but is This is because the temperature gradient in the radial direction of the honeycomb body differs greatly between the outer layer and the inner layer, and the rate of change in the proof stress of the foil material with respect to temperature differs greatly depending on the temperature range. In other words, the temperature range where the yield strength of the ferritic stainless steel foil that makes up the honeycomb begins to drop significantly, the temperature range where the steepest temperature gradient occurs in the radial direction of the honeycomb body, and the area several layers from the outermost periphery. Also, even when running at a constant speed, there is cooling from the running wind from the outer periphery, so the degree of thermal distortion is alleviated, but the thermal distortion is still concentrated in a few layers from the outermost periphery. Furthermore, when decelerating or running idle, relatively low-temperature gas flows, so the honeycomb body is cooled from the inside as well as the outside, and the area several layers inside from the outermost periphery is at its highest temperature. Thermal distortion is concentrated in the second part.
すなわち、触媒担体のハニカム体はこうした加熱・冷却
の繰り返しによって、その内側に発生する熱歪みの蓄積
が原因でセルの潰れや担体の極度な変形等の構造上の寿
命に達する場合がほとんどである。こうした場合には箔
の高温での耐力が重要であり、とりわけ上述したように
ハニカム体の中の急峻な温度勾配発生部分と合致する温
度領域、すなわち本発明者らの測定によると600〜8
50°Cの温度域の箔素材の耐力が高く、かつ600°
C以上での温度による耐力の低下の度合が可能な限り小
さいことが、ハニカム体の構造上の寿命を向上させるの
に有効であることが明らかになった。In other words, due to repeated heating and cooling, the honeycomb body of the catalyst carrier almost always reaches the end of its structural life, resulting in cell collapse and extreme deformation of the carrier due to the accumulation of thermal strain that occurs inside the honeycomb body. . In such cases, the yield strength of the foil at high temperatures is important, and in particular, as mentioned above, the temperature range coincides with the part where a steep temperature gradient occurs in the honeycomb body, that is, according to the measurements by the present inventors, the yield strength of the foil at high temperatures is 600~800.
The foil material has high yield strength in the temperature range of 50°C, and
It has become clear that minimizing the degree of decrease in yield strength due to temperatures above C is effective in improving the structural life of the honeycomb body.
さらに、例えば、自動車のように広く一般に供するにあ
たっては、まず第一に安価でかつ安定供給可能であるこ
とが望まれ、したがって素材としては成分コストが低い
ことはもとより、従来のステンレス鋼の大量生産工程に
て比較的容5に製造でき、製造コストを低く抑えること
が重要である。Furthermore, for example, in order to provide products to the general public such as automobiles, it is first desired that the materials be inexpensive and stably supplied. It is important that the manufacturing process can be manufactured to a relatively small size and that the manufacturing cost can be kept low.
また、体積に対して表面積が著しく大きい箔の正体で高
温の排ガスに曝されるため、当然耐酸化性にも優れてい
なければならない。Furthermore, since the foil itself has a significantly large surface area relative to its volume and is exposed to high-temperature exhaust gas, it must naturally have excellent oxidation resistance.
本発明者らは、このような現状の課題を踏まえ、上述し
た特性をすべて具備するような触媒担体の構成箔を開発
すべく種々検討し、本発明に至ったのである。In view of these current problems, the present inventors conducted various studies to develop a constituent foil for a catalyst carrier that has all of the above-mentioned characteristics, and arrived at the present invention.
すなわち、まず箔の耐酸化性を向上させるためには、0
.01%を越えるYの添加が有効で、Ln(Ce 、
La 、 Pr 、およびNd)の場合に比べ飛躍的に
その耐酸化性が向上することを見いだした。That is, in order to improve the oxidation resistance of the foil, 0
.. It is effective to add more than 0.01% Y, and Ln(Ce,
It has been found that the oxidation resistance is dramatically improved compared to that of La, Pr, and Nd.
さらに、上述したように加熱・冷却に伴う触媒担体の構
造上の耐久性向上にはそのハニカム体を構成する箔の6
00〜850℃での耐力の向上が必要であり、この目的
から種々検討の結果、Nbおよび/またはTaの添加あ
るいはMoおよび/またはWの添加が有効であり、これ
らのうち特にTaの添加が有効であることに加えて、さ
らにTaおよび/またはNbの添加と同時にMoおよび
/またはWを添加すると特に800℃以上の高温側の耐
力がさらに向上することを見いだした。Furthermore, as mentioned above, in order to improve the structural durability of the catalyst carrier due to heating and cooling, it is necessary to
It is necessary to improve the yield strength at temperatures of 00 to 850°C, and as a result of various studies for this purpose, the addition of Nb and/or Ta or the addition of Mo and/or W is effective, and among these, the addition of Ta is particularly effective. In addition to being effective, it has been found that adding Mo and/or W at the same time as Ta and/or Nb further improves the yield strength, particularly at high temperatures of 800° C. or higher.
さらに、この種のフェライト系ステンレス鋼の製造上の
問題点である熱延板の靭性を調査した結果、Taあるい
はNbを添加することで靭性を著しく改善することが可
能で、通常のステンレス鋼の製造工程で十分大量生産可
能なレベルにまでその性質を引き上げ得ることが明らか
となった。Furthermore, as a result of investigating the toughness of hot-rolled sheets, which is a problem in the production of this type of ferritic stainless steel, it was found that the toughness can be significantly improved by adding Ta or Nb. It has become clear that the manufacturing process can improve its properties to a level that allows for mass production.
なお、こうした種々の検討に際し、Ti、ZrおよびV
についてもその影響を調査したが、Tiは高温の耐力を
ほとんど増加させず、過剰の添加はかえって熱延板の靭
性を低下させることが明らかとなり、Zrは比較的微量
な範囲の添加で一旦は高温の耐力を僅かに増加させるも
のの、箔の耐酸化性を著しく低下させかつ熱延板の靭性
をも損なうことが判明した。さらに、■には高温の耐力
向上効果も熱延板の靭性向上効果も認められないことが
明らかになった。In addition, during these various studies, Ti, Zr and V
We also investigated the effects of Ti, and found that Ti hardly increases the yield strength at high temperatures, and that excessive addition actually reduces the toughness of hot-rolled sheets. Although it slightly increased the high temperature yield strength, it was found that it significantly reduced the oxidation resistance of the foil and also impaired the toughness of the hot rolled sheet. Furthermore, it became clear that in case (2), neither the high-temperature yield strength improvement effect nor the hot-rolled sheet toughness improvement effect was observed.
すなわち、本発明は以上のような検討結果をもとに、高
温の排ガス中にあっても箔の耐酸化性や皮膜の密着性に
優れることは当然として、これをさらに改善するととも
に、触媒担体の構造上の耐久性向上にも効果を持ち、併
せて熱間加工性や熱延板の靭性等の製造性に優れた安価
に供給可能な耐熱ステンレス箔を提供することを目的に
達成されたものである。In other words, based on the above study results, the present invention not only improves the oxidation resistance of the foil and the adhesion of the film even in high-temperature exhaust gases, but also improves this. This was achieved with the aim of providing a heat-resistant stainless steel foil that is effective in improving the structural durability of steel sheets, has excellent manufacturability in terms of hot workability and toughness of hot-rolled sheets, and can be supplied at a low cost. It is something.
しかして、その具体的な手段は以下のようなものである
。However, the specific means are as follows.
重量%で
Y:0.01%超0.5%以下
Al:4.5%以上6.5%以下
Cr:13%以上25%以下
C: 0.025%以下
N : 0.02%以下
C+N:0.03%以下
に加えて
Mai1%以上4%以下又はW:1%以上4%以下の少
なくとも一種をMo +W: 4%以下の範囲内で含み
、かつ残部Feおよび不可避的不純物からなることを特
徴とする燃焼排気ガス浄化触媒担体用耐熱ステンレス箔
であり
あるいは、重量%で
Y : 0.01%超0.5%以下
Aj2:4.4%以上6.5%以下
Cr:13%以上25%以下
C: 0.025%以下
N:0.02%以下
C十N:0.03%以下
に加えて、
Ta : (181−C%/12+ 181 ・N%
/14) xl、5以上3%以下、又は
Nb : (93・C%/12+93・N%/14)
×0.8以上3%以下
の少なくとも一種をTa+Nb:3%以下の範囲で含み
、かつ残部Feおよび不可避的不純物からなることを特
徴とする燃焼排気ガス浄化触媒担体用耐熱ステンレス箔
。In weight% Y: more than 0.01% and less than 0.5% Al: 4.5% and more and less than 6.5% Cr: 13% and more and less than 25% C: less than 0.025% N: less than 0.02% C+N : In addition to 0.03% or less, it contains at least one of Mai 1% to 4% or W: 1% to 4% within the range of Mo + W: 4% or less, and the balance consists of Fe and inevitable impurities. It is a heat-resistant stainless steel foil for combustion exhaust gas purification catalyst carrier, which is characterized by weight percentage: Y: more than 0.01% but not more than 0.5% Aj2: 4.4% or more and 6.5% or less Cr: 13% or more 25% or less C: 0.025% or less N: 0.02% or less C + N: 0.03% or less, Ta: (181-C%/12+181・N%
/14) xl, 5 or more and 3% or less, or Nb: (93・C%/12+93・N%/14)
A heat-resistant stainless steel foil for a combustion exhaust gas purification catalyst carrier, characterized in that it contains at least one of ×0.8 or more and 3% or less in the range of Ta+Nb: 3% or less, and the balance consists of Fe and inevitable impurities.
であって、さらに必要に応じて、重量%でMO=4%以
下又はW:4%以下の少なくとも一種を添加することに
よって、特に高温側での耐力をさらに向上できるのであ
る。Furthermore, if necessary, by adding at least one of MO=4% or less or W: 4% or less in weight percent, the yield strength, especially on the high temperature side, can be further improved.
次に本発明における成分の限定理由並びにその作用につ
いて詳しく説明する。なお、本明細書中の化学組成はす
べて重量%である。Next, the reasons for limiting the components in the present invention and their effects will be explained in detail. In addition, all chemical compositions in this specification are weight %.
(1)Y:
Yは箔の異常酸化発生に対する抵抗を向上させる効果が
あり、箔の異常酸化発生までの寿命は、Yが0.01%
を超えるとそれ以下の場合に比べて著しく向上するが、
0.5%を趙えると再度低下し始める。したがって、そ
の範囲は0.01%超0.5%以下に限定される。(1) Y: Y has the effect of improving the foil's resistance to abnormal oxidation, and the life of the foil until abnormal oxidation occurs is 0.01%.
Exceeding this will significantly improve the performance compared to less than that, but
When it falls below 0.5%, it starts to decrease again. Therefore, the range is limited to more than 0.01% and less than 0.5%.
(2)、6/! :
Alは本発明にあっては耐酸化性を確保する基本元素で
あって、4.5%未満では箔の場合、排ガス中での酸化
皮膜の保護性が悪く、たやすく異常酸化を発生するため
、触媒の担体としてその使用に耐えない。一方、6.5
%を超えて含まれると、熱延板の靭性が極度に低下し製
造性が損なわれることに加え、箔の熱膨張係数が大きく
なり、触媒担体として使用した場合には加熱・冷却の繰
り返しによる熱疲労が大きくなる。したがって、本発明
にあってはAlは4.5%以上6.5%以下がその範囲
になる。(2), 6/! : Al is a basic element that ensures oxidation resistance in the present invention, and if it is less than 4.5%, the protection of the oxide film in the exhaust gas is poor in the case of foil, and abnormal oxidation easily occurs. Therefore, it cannot be used as a catalyst carrier. On the other hand, 6.5
If the content exceeds %, the toughness of the hot-rolled sheet will be extremely reduced and manufacturability will be impaired, and the coefficient of thermal expansion of the foil will increase, and when used as a catalyst carrier, the foil will suffer from repeated heating and cooling. Heat fatigue increases. Therefore, in the present invention, the range of Al is 4.5% or more and 6.5% or less.
(3)Cr:
Crはステンレス鋼の耐食性を確保する基本元素である
。本発明にあっては、耐酸化性の主体はA f 203
皮膜にあるが、Crが不足するとその密着性や保護性が
低下する。一方、Crが過剰になると熱延板の靭性が低
下するため、その範囲は13%以上25%以下となる。(3) Cr: Cr is a basic element that ensures the corrosion resistance of stainless steel. In the present invention, the main component of oxidation resistance is A f 203
Although it is present in the film, if Cr is insufficient, its adhesion and protective properties will decrease. On the other hand, when Cr becomes excessive, the toughness of the hot rolled sheet decreases, so the range is 13% or more and 25% or less.
(4)Ta:
Taは本発明にあっては箔の高温での耐力を向上させ、
触媒担体の構造上の耐久性を改善するために重要な添加
元素である。Taの作用は鋼中のCおよびNと結合して
炭窒化物を形成し、これがいわゆる析出強化作用を及ぼ
すことに加えて、さらに余剰の分が素地に固溶し固溶強
化作用を及ぼすために高温の耐力が改善されるのである
。この際析出強化作用はその効果は大きいものの、例え
ば、750℃を超えるような温度域での長時間使用中に
次第に析出物が凝集粗大化することにより金属組織の変
化が生じ、その効果が低下する場合がある。一方、固溶
強化作用は析出強化作用はどは効果が大きくはないが、
長時間使用中においても金属組織の変化に起因する上述
した作用効果の低下がほとんどない。したがって、Ta
はその析出強化作用が上記のような現象により失われた
としても、なおかつ固溶強化作用を持続させるべく、C
,Nの量に対して幾分過剰に添加する必要がある。この
ような観点から本発明者らが検討したところでは、(1
81・C%/12+ 181・N%/14) ×1.
5以上の添加が必要である。(4) Ta: In the present invention, Ta improves the yield strength of the foil at high temperatures,
It is an important additive element for improving the structural durability of the catalyst carrier. The action of Ta is to combine with C and N in the steel to form carbonitrides, which exert a so-called precipitation strengthening effect, and in addition, the excess dissolves in the base material and exerts a solid solution strengthening effect. This results in improved high-temperature yield strength. In this case, although the precipitation strengthening effect is very effective, for example, during long-term use in a temperature range exceeding 750°C, the precipitates gradually aggregate and coarsen, causing changes in the metal structure and reducing its effectiveness. There are cases where On the other hand, solid solution strengthening is not as effective as precipitation strengthening, but
Even during long-term use, there is almost no decline in the above-mentioned effects due to changes in the metal structure. Therefore, Ta
Even if the precipitation strengthening effect is lost due to the phenomenon described above, in order to maintain the solid solution strengthening effect, C
, N needs to be added in somewhat excess amount relative to the amount of N. From this perspective, the inventors investigated (1
81・C%/12+ 181・N%/14) ×1.
It is necessary to add 5 or more.
ところが、Ta量が極度に過剰になるとLaves相が
析出し、鋳造後の鋼塊が割れやすくなるほか、高温の耐
力も低下し始める。本発明のC,Hの量の範囲ではその
量は3%である。このような事情によりTaの添加範囲
は下記のようになる。However, when the amount of Ta becomes extremely excessive, the Laves phase precipitates, making the steel ingot after casting easy to crack, and the yield strength at high temperatures begins to decrease. In the range of the amount of C and H according to the present invention, the amount is 3%. Due to these circumstances, the range of addition of Ta is as follows.
Ta : (181・C%/12+ 181 ・N%
/14) X 1.5以上3%以下
さらに、TaはC,Nを固定するため熱延板の靭性を向
上させる効果があるが、上記添加範囲であればこの効果
は十分もたらされるのである。Ta: (181・C%/12+ 181・N%
/14) X 1.5 or more and 3% or less Furthermore, since Ta fixes C and N, it has the effect of improving the toughness of the hot-rolled sheet, and this effect is sufficiently brought about within the above addition range.
(5)Nb:
Nbは本発明にあっては、Taと同様、箔の高温での耐
力を向上させ、触媒担体の構造上の耐久性を改善するた
めの重要な添加元素である。Nbの作用はTaと同様の
理由により析出強化作用と固溶強化作用の両者により高
温の耐力を改善する。(5) Nb: In the present invention, like Ta, Nb is an important additive element for improving the yield strength of the foil at high temperatures and improving the structural durability of the catalyst carrier. Nb improves high-temperature yield strength through both precipitation strengthening and solid solution strengthening for the same reason as Ta.
この場合にも、Taの場合と同様にC,Nとの量的関係
においてその添加範囲が限定され、少なくとも、
(93・C%/12+93・N%/14)×0.8以上
の添加が必要である。In this case, as in the case of Ta, the addition range is limited due to the quantitative relationship with C and N, and at least the addition of (93・C%/12+93・N%/14)×0.8 or more is limited. is necessary.
一方、NbはTaと同様、極度に過剰に添加されるとL
aves相を形成しTaの場合と同様の弊害を引き起こ
す。したがって、上限値はこの点から制限され、本発明
者らの検討によれば3%以下である。このような事情に
よりNbの添加範囲は以下のようになる。On the other hand, like Ta, if Nb is added in extremely excess, L
Aves phase is formed, causing the same problems as in the case of Ta. Therefore, the upper limit value is limited from this point of view, and according to studies by the present inventors, is 3% or less. Due to these circumstances, the range of addition of Nb is as follows.
Nb : (93・C%/12+93・N%/14
)×0.8以上3%以下
さらに、Nbは熱延板の靭性を大幅に改善する効果があ
るが、上記添加範囲であればこの効果も十分もたらされ
るのである。なお、Ta +Nbの場合は、その上限を
同様の理由で3%とする。Nb: (93・C%/12+93・N%/14
) x 0.8 or more and 3% or less Furthermore, Nb has the effect of significantly improving the toughness of the hot-rolled sheet, and this effect is sufficiently brought about if it is added within the above range. In the case of Ta + Nb, the upper limit is set to 3% for the same reason.
(6)Mo、W:
MoおよびWは本発明にあっては、特に高温の耐力を向
上させ、触媒担体の構造上の耐久性を改善するための重
要な添加元素である。MoおよびWの作用は鋼中の素地
に固溶し固溶強化作用により高温の耐力を改善すること
にある。その際M。(6) Mo, W: Mo and W are important additive elements in the present invention, particularly for improving the high-temperature proof stress and improving the structural durability of the catalyst carrier. The action of Mo and W is to form a solid solution in the base material of the steel and improve high-temperature yield strength through solid solution strengthening action. At that time M.
およびWはかなりの量まで有害な析出相を形成せずに固
溶し、大きな強化作用が得られる。また、高温長時間の
加熱に対しても金属組織変化がほとんど生じないため、
強化作用の経時変化がほとんど起こらない。A considerable amount of W is dissolved in solid solution without forming harmful precipitated phases, and a large strengthening effect can be obtained. In addition, there is almost no change in the metallographic structure even when heated at high temperatures and for long periods of time.
There is almost no change in the reinforcing effect over time.
一方、上述したように、本発明にあっては、高温の耐力
はTaおよび/またはNbの適量添加によって向上でき
るのであるが、Ta、Nbの強化作用のうち析出強化に
よる効果は高温での使用中に次第に減少する場合があり
、また過剰の添加は逆に高温耐力を低下させる。しかし
ながら、M。On the other hand, as mentioned above, in the present invention, the high-temperature yield strength can be improved by adding an appropriate amount of Ta and/or Nb, but among the strengthening effects of Ta and Nb, the effect of precipitation strengthening is limited by use at high temperatures. In some cases, the content may gradually decrease, and excessive addition may conversely reduce the high-temperature proof strength. However, M.
および/またはWは、Taおよび/またはNbの存在下
にあってもその効果がなんら影響されないのに加えて、
かなりの量まで有害な析出相を形成することなく素地に
固溶し大きな固溶強化効果が得られる。すなわち、Ta
および/またはNb添加により高温強度を改善した合金
に、さらにM。and/or W is not affected in any way by the presence of Ta and/or Nb;
It dissolves in solid solution in the base material without forming a harmful precipitate phase to a considerable extent, and a large solid solution strengthening effect can be obtained. That is, Ta
And/or M is added to the alloy whose high temperature strength has been improved by adding Nb.
および/またはWを添加することにより高温における耐
力をさらに一段向上させることが可能となるのである。By adding and/or W, the yield strength at high temperatures can be further improved.
こうした観点から、Moおよび/またはWの添加量が決
定され、本発明者の検討結果によれば、(1)Nbおよ
び/またはTaを添加しない時には、十分な固溶強化作
用を得るためにはMoの添加量は1%以上必要であり、
またWの場合も1%が下限値となり、(2)Nbおよび
/またはTaを添加した時には、十分な固溶強化作用を
得るためのMoおよび/またはW添加の下限値は存在し
ない。From this point of view, the amount of Mo and/or W to be added was determined, and according to the results of the study by the present inventors, (1) When Nb and/or Ta are not added, in order to obtain a sufficient solid solution strengthening effect, The amount of Mo added is required to be 1% or more,
Also, in the case of W, the lower limit is 1%, and (2) when Nb and/or Ta are added, there is no lower limit for the addition of Mo and/or W to obtain a sufficient solid solution strengthening effect.
一方、Mo、Wともにそのほとんどが固溶するため添加
量の増加とともに金属素地が強化されるのであるが、過
剰に添加した場合には靭性が低下する。したがって、M
oおよびWの添加量はこの点から制約され、上限値は両
者ともに4%である。On the other hand, since most of both Mo and W form a solid solution, the metal base is strengthened as the amount added increases, but when added in excess, the toughness decreases. Therefore, M
The amounts of O and W added are restricted from this point, and the upper limit values for both are 4%.
また、MoとWを同時に複合添加しても同様の効果が得
られるが、この際の上限値はMo+Wで4%以下が望ま
しい。Further, similar effects can be obtained by adding Mo and W in combination at the same time, but the upper limit in this case is preferably 4% or less for Mo+W.
(7)C,N:
C,Nはともに本発明にあっては、熱延板の靭性を著し
く低下させる。この悪影響をTaまたはNbの作用によ
って抑えることができるが、Cが0.025%超える場
合、またはNが0.02%超える場合、もしくはC+N
の合計量が0.03%超える場合には靭性を回復させる
ことが困難になる。したがって、この点からは、
C: 0.025%以下、
N : 0.02%以下、でかつ
C十N:0.03%以下、
がその範囲となる。(7) C, N: In the present invention, both C and N significantly reduce the toughness of the hot rolled sheet. This adverse effect can be suppressed by the action of Ta or Nb, but if C exceeds 0.025%, or N exceeds 0.02%, or C+N
If the total amount exceeds 0.03%, it becomes difficult to restore toughness. Therefore, from this point of view, the range is C: 0.025% or less, N: 0.02% or less, and C+N: 0.03% or less.
また、C,Nは炭窒化物として析出し、これが析出強化
作用により高温の耐力を向上するという望ましい作用効
果をも併せるものであるが、上述したようにこれは析出
物が粗大化するとその効果が低下する。C,Nが多量に
含まれる場合には、たとえTaおよび/またはNbが上
記下限値以上添加されていても、この析出物の粗大化が
促進され強化効果の減少速度が大きくなる。すなわち、
C,Nが多量に含まれる場合には、炭窒化物の平均粒子
サイズが大きくなるのであって、析出強化に有効な均一
微細な析出形態とはなり難いのである。この点からC,
Nの含有量は制限され、本発明にあっては、C: 0.
025%以下、N : 0.02%以下でかつ、C+N
:0.03%以下程度である。In addition, C and N precipitate as carbonitrides, which have the desirable effect of improving high-temperature yield strength through precipitation strengthening, but as mentioned above, this effect decreases as the precipitates become coarser. decreases. When large amounts of C and N are contained, even if Ta and/or Nb are added above the above lower limit, coarsening of the precipitates is promoted and the rate of decrease in the strengthening effect increases. That is,
When large amounts of C and N are contained, the average particle size of carbonitrides becomes large, and it is difficult to obtain a uniform and fine precipitation form that is effective for precipitation strengthening. From this point, C,
The content of N is limited, and in the present invention, C: 0.
0.025% or less, N: 0.02% or less, and C+N
: About 0.03% or less.
以上の事情により、結局C,Nの範囲は、C: 0.0
25%以下、
N : 0.02%以下、でかつ
C+N:0.03%以下、となる。Due to the above circumstances, the range of C and N is C: 0.0
25% or less, N: 0.02% or less, and C+N: 0.03% or less.
(8)その他の不純物:
Mn :
Mnは本発明にあっては、特に極初期の酸化皮膜中に濃
化し、以後のAltCh皮膜の形成に害を及ぼし皮膜に
構造的欠陥を残存させる一因となるので0.3%以下に
制限することが望ましい。(8) Other impurities: Mn: In the present invention, Mn is particularly concentrated in the very early stage of the oxide film, harming the subsequent formation of the AltCh film, and causing structural defects to remain in the film. Therefore, it is desirable to limit the content to 0.3% or less.
Si :
Stは耐酸化性を向上させる一方、熱延板の靭性を太き
(低下させる元素である。本発明のような高A!フェラ
イト系ステンレス鋼は本来耐酸化性に優れているため、
靭性の点からSiは少量に抑えることが望ましく、その
上限値は0.5%である。Si: St is an element that increases (decreases) the toughness of hot-rolled sheets while improving oxidation resistance.High A! ferritic stainless steels like those of the present invention inherently have excellent oxidation resistance.
From the viewpoint of toughness, it is desirable to suppress Si to a small amount, and its upper limit is 0.5%.
P:
Pにはフェライト系ステンレス鋼の靭性を低下させる作
用があるため、本来的な性質として靭性に劣るFe −
Cr −An系ステンレスにあってはこの点から添加量
は制限され、本発明にあってはその量は0.1%である
。また、このような範囲のPの添加は、耐酸化性に対し
悪影響を及ぼさない。P: Since P has the effect of reducing the toughness of ferritic stainless steel, Fe − which inherently has poor toughness
For Cr-An stainless steel, the amount added is limited from this point of view, and in the present invention, the amount is 0.1%. Further, addition of P in such a range does not have an adverse effect on oxidation resistance.
S :
Sは耐酸化性を低下させるため、本発明にあっては0.
003%以下に抑えることが望ましい。S: S reduces oxidation resistance, so in the present invention, 0.
It is desirable to suppress it to 0.003% or less.
このような構成をもつ本発明Fe −Cr −Al系合
金は、通常のフェライト系ステンレス鋼の量産工程と同
様の溶解、熱間圧延、冷間圧延の工程に、必要に応じて
適宜焼鈍工程を組み合わせることによって504程度の
箔にまで製造可能である。The Fe-Cr-Al alloy of the present invention having such a structure can be produced by melting, hot rolling, and cold rolling processes similar to the mass production process of ordinary ferritic stainless steels, as well as an appropriate annealing process as necessary. By combining them, it is possible to manufacture up to about 504 foils.
また、こうして製造された箔、およびこの箔を用いて構
成された排ガス浄化触媒担体および該触媒装置は、高温
の燃焼排ガス雰囲気中でも異常酸化の発生する抵抗が著
しく大きいのみならず、箔の高温での耐力が高いためハ
ニカム体としての熱疲労に対する抵抗が大きく、加熱・
冷却を繰り返す使用条件にあってもその構造上の耐久性
に優れているのである。In addition, the foil produced in this way, the exhaust gas purification catalyst carrier and the catalyst device constructed using this foil not only have a significantly high resistance to abnormal oxidation even in a high-temperature combustion exhaust gas atmosphere, but also have a high resistance to abnormal oxidation even in a high-temperature combustion exhaust gas atmosphere. Because of its high yield strength, it has a high resistance to thermal fatigue as a honeycomb body, and is resistant to heating and
It has excellent structural durability even under usage conditions that require repeated cooling.
〔実施例〕
次に、実施例により本発明の効果をさらに詳しく説明す
る。[Example] Next, the effects of the present invention will be explained in more detail with reference to Examples.
実施例1
第1表に本発明の実施例および比較例の合金の化学成分
を示す。これらの綱はいずれも真空高周波誘導炉によっ
て25kg溶解し、インゴット鋳造した後、1200℃
にて1時間保定後直ちに熱間圧延を開始し厚さ4■にま
で圧延した後、自然放冷した。Example 1 Table 1 shows the chemical compositions of the alloys of Examples and Comparative Examples of the present invention. 25 kg of these steels were melted in a vacuum high-frequency induction furnace, cast into ingots, and heated to 1200°C.
Immediately after holding for 1 hour, hot rolling was started and the product was rolled to a thickness of 4 cm, and then allowed to cool naturally.
この際、BIOには圧延中割れの発生が認められ、B6
およびB8には仕上がり後の板う観察したところ、比較
的軽微ではあるが、耳割れおよび表面割れが認められた
。他の鋼は実施例、比較例ともに熱間圧延にて特に問題
は発生していない、これらの結果を第2表の熱間圧延性
の欄に熱延板に割れの発生したものはX印で、問題のな
かったものはO印でまとめて示す。At this time, cracking was observed in BIO during rolling, and B6
When the finished board of B8 was observed, edge cracks and surface cracks were observed, although they were relatively minor. For the other steels, no particular problem occurred during hot rolling in both the Examples and Comparative Examples. These results are shown in the hot rolling property column of Table 2. Those in which cracks occurred in the hot rolled sheets are marked with an X. Items with no problems are indicated with an O mark.
次に、これらの熱延板の靭性を調べた。靭性の評価は、
JIS規格に準拠したサブサイズ(厚み:2.5閣)の
Vノツチシャルピー試験片を圧延方向と平行に採取し衝
撃試験を行い、−試験温度における衝撃吸収エネルギー
の3点の平均値が3kgm/ d (vTz : ”C
)を超える温度で評価した。第2表の熱延板靭性の欄に
これらの熱延板調査結果を示す。ここで、vT、が10
0℃未満であるものを○印で、vTzが100°C以上
であるものを×印で示す。Next, the toughness of these hot rolled sheets was investigated. The evaluation of toughness is
A V-notch Charpy specimen of sub-size (thickness: 2.5 mm) in accordance with the JIS standard was taken parallel to the rolling direction and subjected to an impact test. d (vTz: ”C
). The hot rolled sheet investigation results are shown in the column of hot rolled sheet toughness in Table 2. Here, vT is 10
Those whose vTz is less than 0°C are marked with a circle, and those whose vTz is 100°C or higher are marked with an x.
なお、O印のものは通常のステンレス鋼板の工場生産工
程での大量生産が可能であるものであり、一方、X印の
ものは事実上、製造が困難かあるいは製造可能であって
も著しい製造コストアップを引き起こすものである。実
施例の合金はいずれも製造性良好である。Note that items marked with an O can be mass-produced using normal stainless steel sheet factory production processes, while items marked with an X are practically difficult to manufacture, or even if they can be manufactured, there is a significant manufacturing process. This causes an increase in costs. All the alloys of the examples have good manufacturability.
さらに、これら熱延板を1200℃で15分間焼鈍した
後、厚さ3閣、輻30閣、長さ100閣の引っ張り試験
片を加工し、600℃、700℃および800°Cの温
度域で引張試験を行った。その結果を第2表の引張試験
の欄に示す、高温強度化の達成判定基準は、以下のよう
にした。すなわち、600℃での耐力が20kgf/m
”以上でかつ700℃での耐力が11kgf/■2以上
でかつ800℃での耐力が4.5kgf/腸2のものを
O印で、それ以外のものを×印で示した。なお、耐力は
各3実験値の平均値とした。Furthermore, after annealing these hot-rolled sheets at 1200°C for 15 minutes, tensile test specimens with a thickness of 3 mm, a width of 30 mm, and a length of 100 mm were processed and tested in the temperature range of 600°C, 700°C, and 800°C. A tensile test was conducted. The results are shown in the tensile test column of Table 2, and the criteria for determining the achievement of high temperature strength were as follows. In other words, the yield strength at 600℃ is 20kgf/m
Items with a yield strength of 11 kgf/■2 or higher at 700°C and a yield strength of 4.5 kgf/2 at 800°C are marked O, and other items are marked with an X. was taken as the average value of each three experimental values.
実施例の合金はいずれも良好な高温耐力を示す。All of the alloys in the Examples exhibit good high-temperature yield strength.
実施例のうちA5〜8と比較例のうちB5−10につい
て、高温長時間使用中における強度の経時低下の有無、
すなわち高温組織安定性を調査するために、上記と同様
にして作製した板状の引張試験を850℃にて1000
時間保持した後引張試験を施した。得られた結果を第3
表にまとめた。高温耐力の達成基準は上記と同様である
。Moおよび/またはW添加により高温強度化したA5
〜8の合金は高温組織安定性に優れていることが分かる
。For A5 to 8 of the Examples and B5-10 of the Comparative Examples, presence or absence of a decrease in strength over time during long-term use at high temperatures;
That is, in order to investigate high-temperature structural stability, a plate-shaped plate prepared in the same manner as above was subjected to a tensile test at 850°C for 1000°C.
After holding for a period of time, a tensile test was performed. The results obtained in the third
It is summarized in the table. The achievement criteria for high temperature proof strength are the same as above. A5 strengthened at high temperature by adding Mo and/or W
It can be seen that alloys No. 8 to 8 have excellent high-temperature structural stability.
実施例と比較例B1〜5.B7およびB9は靭性が良好
であり、熱間圧延後、脱スケール、冷間圧延(一部の合
金は温間圧延した。)、焼鈍を繰り返し板厚50−程度
の箔にした。比較例B6゜B8およびBIOは靭性が悪
いため、上記工程中では温間にて注意深く圧延した。Examples and Comparative Examples B1-5. B7 and B9 had good toughness, and after hot rolling, descaling, cold rolling (some alloys were warm rolled), and annealing were repeated to obtain foils with a thickness of approximately 50 mm. Comparative Example B6° Since B8 and BIO had poor toughness, they were carefully rolled in a warm manner during the above steps.
これらの箔材から、50m、幅20−1長さ25■の試
験片を採取して、1150℃大気中雰囲気で酸化試験を
行った。この際、該温度で25時間加熱後放冷する試験
を各箔材に異常酸化が発生するまで行った。これらの結
果を第2表の異常酸化寿命の欄に示す。異常酸化寿命が
200時間以上の箔材を○印で、200hr未滴の箔材
をX印で示す。本実施例の各鋼箔はいずれも200時間
以上の長寿命を示す。Test pieces measuring 50 m long and 20 mm wide and 25 cm long were taken from these foil materials and subjected to an oxidation test at 1150 DEG C. in the atmosphere. At this time, a test was conducted in which each foil material was heated for 25 hours and then allowed to cool until abnormal oxidation occurred in each foil material. These results are shown in the column of abnormal oxidation life in Table 2. A foil material with an abnormal oxidation life of 200 hours or more is marked with an ○, and a foil material with no droplets for 200 hours is marked with an X. Each of the steel foils of this example has a long life of 200 hours or more.
以下余白
第
表
第
表(続き)
以下余白
第
表(続き)
以下余白
第
表
実施例2
第1表中、本発明例としてA3.A6およびA23、ま
た比較例としてBlおよびB5の合計5種類の厚さ50
psaの箔を巾97mの調帯とし、これに周期3.5腫
、振幅3.2閣の正弦波状の付加加工したもの(波板)
を、この加工なしの箔(平板)帯と重ね合わせて巻き込
み、見かけの直径42m+程度、長さ97wm程度のハ
ニカム状円筒体を作製し、波板/平板接合部に適宜市販
のNi基ロウ材粉末を付着せしめたものを、3 Xl0
−’Torr程度の真空中にて加熱し、ロウ付処理した
。The following is a margin table (continued) The following is a margin table (continued) The following is a margin table Example 2 In Table 1, A3. A total of 5 types of thickness 50, A6 and A23, and Bl and B5 as comparative examples.
A piece of PSA foil with a width of 97m and a sinusoidal waveform with a period of 3.5cm and an amplitude of 3.2cm (corrugated plate).
was overlapped with this unprocessed foil (flat plate) band and rolled up to create a honeycomb-shaped cylinder with an apparent diameter of about 42 m + and a length of about 97 wm, and a commercially available Ni-based brazing material was added to the corrugated plate/flat plate joint as appropriate. 3 Xl0
It was heated in a vacuum of about -' Torr and subjected to brazing treatment.
こうして得られたロウ付後のハニカム構造体を炉芯管の
内径45am+の横型炉状加熱炉に設置し、炉芯管の一
方の端からエンジン排ガスを流入量10!/sin導入
しつつ1100°Cに加熱し、25時間ごとに取り出す
と同時にハニカム体のセル変形、箔切れ等の不具合発生
状況の有無を目視にて行う操作を8回(200時間に相
当する)繰り返した。The thus obtained honeycomb structure after brazing was installed in a horizontal furnace-like heating furnace with a core tube having an inner diameter of 45 am+, and engine exhaust gas was introduced from one end of the furnace core tube at an amount of 10 mm. /sin was introduced and heated to 1100°C, and at the same time, the honeycomb body was removed every 25 hours and visually inspected for defects such as cell deformation, foil breakage, etc. 8 times (equivalent to 200 hours) repeated.
この際エンジン排ガスは排気量2000ccの4気筒の
ガソリンエンジンを回転数150Orpm負荷5kg・
mの運転条件下で空燃比13にて発生させ、150℃に
保温した導管より加熱炉内に導入した。得られた結果を
第4表に示す、試験後、異常酸化が発生しなかったハニ
カム体をO印で示し、以上酸化が発生したものについて
はX印で示す、また、試験後ハニカム構造体上の不具合
のないものについては○印で、不具合のあったものにつ
いては×印で示す。実施例のハニカム体には、異常酸化
およびハニカム体の不具合は生じていない。したがって
、実施例のハニカム体はいずれも異常酸化発生に対する
抵抗力に優れるのみならず、構造耐久性にも優れている
ことが分かる。At this time, the engine exhaust gas is a 4-cylinder gasoline engine with a displacement of 2000 cc at a rotation speed of 150 rpm and a load of 5 kg.
It was generated at an air-fuel ratio of 13 under operating conditions of 100 m and introduced into the heating furnace through a conduit kept at 150°C. The obtained results are shown in Table 4. Honeycomb structures in which abnormal oxidation did not occur after the test are indicated by O marks, and those in which oxidation occurred are indicated by X marks. Items with no defects are marked with an ○, and items with defects are marked with an x. Abnormal oxidation and defects in the honeycomb body did not occur in the honeycomb bodies of Examples. Therefore, it can be seen that all the honeycomb bodies of Examples not only have excellent resistance to occurrence of abnormal oxidation but also have excellent structural durability.
第4表
実施例3
第5表に示す成分の箔を100kg真空高周波炉にて溶
解、鋳造後、1200℃に加熱し熱間にて30%の圧延
後空冷し、さらに1150″Cにで熱間圧延して厚さ2
.5閣の熱延板を得た。Table 4 Example 3 100 kg of foil with the ingredients shown in Table 5 was melted and cast in a vacuum high-frequency furnace, heated to 1200°C, hot rolled to 30%, air cooled, and further heated to 1150″C. Rolled to a thickness of 2
.. We obtained hot-rolled sheets of 5 pieces.
さらに、これをショツトブラスト、酸洗、冷間圧延、焼
鈍、脱脂、酸洗、箔圧延、脱脂、スリット、箔圧延、真
空焼鈍の手順にて厚さ50μ、巾97閣の箔コイルを作
製した。Furthermore, a foil coil with a thickness of 50 μm and a width of 97 mm was produced using the steps of shot blasting, pickling, cold rolling, annealing, degreasing, pickling, foil rolling, degreasing, slitting, foil rolling, and vacuum annealing. .
この箔を前記したのとほぼ同様の手法により、直径10
0m、長さ97■の円筒状ハニカムとし、さらにこれを
内径100閣、長さ97■、板厚1.5閣のフェライト
系ステンレス円筒状外筒内に装着後、箔同士および箔と
外筒間をロウ付接合してハニカム触媒担体とした0次に
、前記エンジンの排気ガス経路に装着し、エンジンベン
チ試験に供した。This foil was prepared using a method similar to that described above, with a diameter of 10 mm.
A cylindrical honeycomb with a length of 0 m and a length of 97 cm was made, and this was installed inside a ferritic stainless steel cylindrical outer cylinder with an inner diameter of 100 cm, a length of 97 cm, and a plate thickness of 1.5 cm. A honeycomb catalyst carrier was formed by joining the catalyst carrier with brazing, and then it was installed in the exhaust gas path of the engine and subjected to an engine bench test.
エンジン試験は、実施例2のエンジンにて、触媒担体入
り側のガス温度を900℃とし9分間エンジンを運転し
た後、エンジンを停止し強制的に冷却することにより、
触媒担体温度が100℃以下になるまで冷却する加熱・
冷却のサイクルを1000回繰り返した。得られた結果
を第6表に示す、試験後、ハニカム体のガス入り側端面
にセルの潰れ、箔切れ、ガス流方向への端面のズレ等の
不具合の発生しなかったものについてはO印で示し、不
具合の発生したものについてはX印で示す、実施例のハ
ニカム体においても、わずかなセル変形は生じたが、そ
の他の激しい損傷は生じなかったのに対し、比較例にお
いては、セルの潰れ、箔切れおよびガス流方向への端面
の一部の飛び出し等大きな損傷を受けていた。したがっ
て、実施例の箔材のハニカム体はいずれも耐構造耐久性
に優れていることが分かる。In the engine test, the engine of Example 2 was operated with the gas temperature on the side entering the catalyst carrier at 900°C for 9 minutes, and then the engine was stopped and forced to cool down.
Heating/cooling until the catalyst carrier temperature is below 100℃
The cooling cycle was repeated 1000 times. The obtained results are shown in Table 6. After the test, honeycomb bodies with no defects such as cell collapse, foil breakage, or misalignment of the end face in the gas flow direction are marked O. Although slight cell deformation occurred in the honeycomb body of the example, which is shown with an X mark for those in which defects occurred, no other severe damage occurred, whereas in the comparative example, the cell deformation occurred. There was significant damage such as crushing, broken foil, and part of the end face protruding in the direction of gas flow. Therefore, it can be seen that all of the honeycomb bodies made of foil materials of Examples have excellent structural durability.
以下余白
第
表
〔発明の効果〕
実施例からも明らかなごとく、本発明によるFe −C
r−Al系合金は、熱間での加工性および熱延板靭性が
良好で箔等の製造性に優れているため製造コストをより
低く抑えることが可能であり、かつ耐酸化性に優れてい
ることはもとより異常酸化発生に抵抗力に優れるととも
に、高温域における耐力が高いことから耐熱疲労性に優
れ、さらに合金箔のロウ付げによるハニカム構造体とし
ても排ガス中での耐酸化性および形状変化等に対する構
造耐久性に優れている。Below is a blank table [Effects of the invention] As is clear from the examples, Fe-C according to the present invention
r-Al alloys have good hot workability and hot-rolled plate toughness, and are excellent in manufacturing foils, etc., so manufacturing costs can be kept lower, and they also have excellent oxidation resistance. It has excellent resistance to abnormal oxidation, as well as excellent thermal fatigue resistance due to its high yield strength in high temperature ranges.It also has excellent oxidation resistance in exhaust gas and shape as a honeycomb structure made by brazing alloy foil. Excellent structural durability against changes, etc.
したがって、本願発明のFe −Cr −,64!系合
金は排気ガス浄化用の箔として好適であり、とりわけ自
動車の排気ガス浄化装置の触媒支持体として好適である
。Therefore, Fe-Cr-,64! of the present invention! The alloy is suitable as a foil for exhaust gas purification, and is particularly suitable as a catalyst support for an automobile exhaust gas purification device.
Claims (1)
1.5以上3%以下 又は Nb:(93・C%/12+93・N%/14)×0.
8以上3%以下 の少なくとも一種をTa+Nb:3%以下の範囲で含み
、かつ残部Feおよび不可避的不純物からなることを特
徴とする燃焼排気ガス浄化触媒担体用耐熱ステンレス箔
。 2、重量%で Y:0.01%超0.5%以下 Al:4.5%以上6.5%以下 Cr:13%以上25%以下 C:0.025%以下 N:0.02%以下 C+N:0.03%以下 に加えて、 Mo:1%以上4%以下又はW:1%以上4%以下の少
なくとも一種をMo+W:4%以下の範囲内で含み、か
つ残部Feおよび不可避的不純物からなることを特徴と
する燃焼排気ガス浄化触媒担体用耐熱ステンレス箔。 3、さらに重量%で Mo:4%以下又はW:4%以下の少なくとも一種をM
o+W:4%以下の範囲内で含む請求項1記載の燃焼排
気ガス浄化触媒担体用耐熱ステンレス箔。[Claims] 1. Y: more than 0.01% but not more than 0.5% Al: 4.5% to 6.5% Cr: 13% to 25% C: 0.025% or less N: 0.02% or less C+N: 0.03% or less, plus Ta: (181・C%/12+181・N%/14)×
1.5 or more and 3% or less or Nb: (93・C%/12+93・N%/14)×0.
1. A heat-resistant stainless steel foil for use as a combustion exhaust gas purification catalyst carrier, characterized in that it contains at least one of Ta+Nb in an amount of 8 to 3% in a range of 3% or less, and the balance consists of Fe and unavoidable impurities. 2. In weight% Y: more than 0.01% and less than 0.5% Al: 4.5% and more and less than 6.5% Cr: 13% and more and less than 25% C: less than 0.025% N: 0.02% In addition to the following C + N: 0.03% or less, at least one of Mo: 1% to 4% or W: 1% to 4% is included within the range of Mo + W: 4% or less, and the balance is Fe and unavoidable A heat-resistant stainless steel foil for combustion exhaust gas purification catalyst carrier, which is characterized by being composed of impurities. 3. Furthermore, at least one type of M with a weight percentage of Mo: 4% or less or W: 4% or less
The heat-resistant stainless steel foil for a combustion exhaust gas purification catalyst carrier according to claim 1, which contains o+W within a range of 4% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248924A JP2914736B2 (en) | 1990-09-20 | 1990-09-20 | Heat resistant stainless steel foil for combustion exhaust gas purification catalyst carrier with heat fatigue resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248924A JP2914736B2 (en) | 1990-09-20 | 1990-09-20 | Heat resistant stainless steel foil for combustion exhaust gas purification catalyst carrier with heat fatigue resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04128344A true JPH04128344A (en) | 1992-04-28 |
JP2914736B2 JP2914736B2 (en) | 1999-07-05 |
Family
ID=17185446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2248924A Expired - Fee Related JP2914736B2 (en) | 1990-09-20 | 1990-09-20 | Heat resistant stainless steel foil for combustion exhaust gas purification catalyst carrier with heat fatigue resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2914736B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2031080A1 (en) * | 2007-08-30 | 2009-03-04 | ALSTOM Technology Ltd | High temperature alloy |
CN112647012A (en) * | 2020-11-04 | 2021-04-13 | 江苏大学 | Fe-Cr-Al-Nb-Ti-RE alloy material for catalyst carrier of exhaust gas purifier and preparation method thereof |
-
1990
- 1990-09-20 JP JP2248924A patent/JP2914736B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2031080A1 (en) * | 2007-08-30 | 2009-03-04 | ALSTOM Technology Ltd | High temperature alloy |
US8435443B2 (en) | 2007-08-30 | 2013-05-07 | Alstom Technology Ltd. | High-temperature alloy |
CN112647012A (en) * | 2020-11-04 | 2021-04-13 | 江苏大学 | Fe-Cr-Al-Nb-Ti-RE alloy material for catalyst carrier of exhaust gas purifier and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2914736B2 (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011024568A1 (en) | Ferritic stainless steel having excellent heat resistance | |
JP5561447B1 (en) | Stainless steel plate and stainless steel foil | |
JP5540637B2 (en) | Ferritic stainless steel with excellent heat resistance | |
WO2011122503A1 (en) | Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil | |
JP2005504176A (en) | Ferritic stainless steel for high temperature use and method for producing the foil | |
EP3527683B1 (en) | Stainless steel sheet and stainless steel foil | |
JP4185425B2 (en) | Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time | |
US5045404A (en) | Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers | |
JP5874873B1 (en) | Ferritic stainless steel foil and manufacturing method thereof | |
JP3427502B2 (en) | Ferrite stainless steel for automotive exhaust system components | |
US5792285A (en) | Hot-rolled ferritic steel for motor vehicle exhaust members | |
JP3335647B2 (en) | Fe-Cr-Al alloy excellent in durability and catalyst carrier using the same | |
JPH08260107A (en) | Ferritic stainless steel excellent in oxidation resistance and high temperature strength | |
JPH04128344A (en) | Heat resisting stainless steel foil used for catalyst support for combustion exhaust gas cleaning and having thermal fatigue resistance | |
JP3200160B2 (en) | Fe-Cr-Al alloy excellent in oxidation resistance and high-temperature embrittlement resistance, catalyst carrier using the same, and method for producing alloy foil | |
JP2896077B2 (en) | Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion | |
JP3283286B2 (en) | Fe-Cr-Al alloy foil for highly heat-resistant metal carrier for automobile exhaust gas purification catalyst | |
JP3283285B2 (en) | Automotive exhaust gas purification catalyst High heat-resistant Fe-Cr-Al alloy foil for metal carrier | |
JPH03170642A (en) | Heat-resistant ferritic stainless steel foil excellent in acid resistance in combustion exhaust gas | |
JP5796398B2 (en) | Ferritic stainless steel with excellent thermal and high temperature fatigue properties | |
JP2885497B2 (en) | High-temperature, high-strength, high-heat-resistant Fe-Cr-Al engaging gold with excellent manufacturability | |
JP3710302B2 (en) | Ferritic stainless steel with excellent high-temperature oxidation resistance and scale adhesion | |
JPH04141558A (en) | Heat resistant stainless steel foil for catalyst carrier of automobile | |
JPH04116140A (en) | Heat resistant stainless foil for catalytic carrier for purifying combustion waste gas | |
JPH04128343A (en) | Stainless steel foil for metal support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |