JPH04127804U - Vibration damping device for rotor blades - Google Patents

Vibration damping device for rotor blades

Info

Publication number
JPH04127804U
JPH04127804U JP3255091U JP3255091U JPH04127804U JP H04127804 U JPH04127804 U JP H04127804U JP 3255091 U JP3255091 U JP 3255091U JP 3255091 U JP3255091 U JP 3255091U JP H04127804 U JPH04127804 U JP H04127804U
Authority
JP
Japan
Prior art keywords
rotor blade
tip
vibration
damping device
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3255091U
Other languages
Japanese (ja)
Inventor
康智 金子
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP3255091U priority Critical patent/JPH04127804U/en
Publication of JPH04127804U publication Critical patent/JPH04127804U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】 【目的】 動翼の振動を消滅させることを目的とする。 【構成】 センサが動翼先端近傍のディフューザ壁に取
付けられディフューザ壁圧の変動を計測して信号を出力
しこの信号に基づいてコントローラが動翼先端に向けて
流体を注入するように構成する。
(57) [Summary] [Purpose] The purpose is to eliminate the vibration of moving blades. [Structure] A sensor is attached to the diffuser wall near the tip of the rotor blade, measures fluctuations in diffuser wall pressure and outputs a signal, and based on this signal, the controller injects fluid toward the tip of the rotor blade.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、蒸気タービン、ガスタービン、コンプレッサなどの動翼に適用され る動翼の制振装置に関する。 This invention is applied to moving blades of steam turbines, gas turbines, compressors, etc. This invention relates to a vibration damping device for rotor blades.

【0002】0002

【従来の技術】[Conventional technology]

図4は従来の蒸気タービンにおける動翼の構造説明図、図5はその作用説明図 である。図4において、蒸気タービンにおける最終段の動翼1付近の流れは、定 格負荷時にはきれいな流線形をしているが、蒸気量が定格流量の1/4以下の部 分負荷時には非常に複雑な流れとなり、動翼1の根元や先端付近では逆流を生じ ることがある。 Figure 4 is an explanatory diagram of the structure of rotor blades in a conventional steam turbine, and Figure 5 is an explanatory diagram of its operation. It is. In Fig. 4, the flow near the rotor blade 1 in the final stage of the steam turbine is constant. It has a beautiful streamlined shape at rated load, but when the steam volume is less than 1/4 of the rated flow rate. When loaded, the flow becomes very complicated, and reverse flow occurs near the root and tip of rotor blade 1. Sometimes.

【0003】0003

【考案が解決しようとする課題】[Problem that the idea aims to solve]

上記のように、従来の蒸気タービンにおける最終段の動翼1付近の流れは部分 負荷時には非常に複雑な流れとなり、動翼1の先端に逆流や強い半径流を生じる と図5に示すように動翼1への絶対流入速度Cが小さくなって相対流入角度βが 大きくなり、流れが剥離し易くなる。なお、2は静翼、Uは周速、Wは相対流入 速度である。流れが剥離すると動翼1は所謂失速状態となり、剥離渦が発生する ために大きな振動が発生する。特に、動翼1の全周がリング状のワイヤ7により 連結されている構造では、部分負荷時に失速状態となると動翼1とディスクとの 連成振動モード、即ちディスクの周方向に数本の節直径を持つ円板モードの大振 動が発生することがある。 As mentioned above, in a conventional steam turbine, the flow near rotor blade 1 in the final stage is partially When loaded, the flow becomes very complex, producing reverse flow and strong radial flow at the tip of rotor blade 1. As shown in Fig. 5, the absolute inflow velocity C to the moving blade 1 becomes smaller and the relative inflow angle β becomes It becomes larger and the flow becomes easier to separate. In addition, 2 is the stationary blade, U is the circumferential speed, and W is the relative inflow. It's speed. When the flow separates, the rotor blade 1 enters a so-called stall state, and a separation vortex is generated. This causes large vibrations. In particular, the entire circumference of the rotor blade 1 is made of ring-shaped wire 7. In a connected structure, if a stall condition occurs under partial load, the rotor blade 1 and the disk will be separated. Coupled vibration mode, that is, large vibration of disk mode with several nodal diameters in the circumferential direction of the disk. Movement may occur.

【0004】0004

【課題を解決するための手段】[Means to solve the problem]

本考案に係る動翼の制振装置は上記課題の解決を目的にしており、動翼先端近 傍のディフューザ壁に取付けられディフューザ壁圧の変動を計測して信号を出力 するセンサと、該センサが出力する信号に基づいて上記動翼先端に向けて流体を 注入するコントローラとを備えた構成を特徴とする。 The rotor blade vibration damping device according to the present invention aims to solve the above problems, and Attached to the diffuser wall next to it, it measures changes in diffuser wall pressure and outputs a signal. and a sensor that directs fluid toward the tip of the rotor blade based on the signal output by the sensor. and a controller for injection.

【0005】[0005]

【作用】[Effect]

即ち、本考案に係る動翼の制振装置においては、センサが動翼先端近傍のディ フューザ壁に取付けられディフューザ壁圧の変動を計測して信号を出力しこの信 号に基づいてコントローラが動翼先端に向けて流体を注入するようになっており 、センサにより計測されたディフューザ壁圧の変動レベルと動翼における振動の 振幅とは比例関係にあり、動翼が危険な振幅で振動しているか否かをコントロー ラがディフューザ壁圧の変動レベルから判定し、動翼が危険な振幅で振動してい る場合には動翼先端に向けて流体を注入するので、動翼先端部の流れが動翼にス ムーズに沿うようになる。 That is, in the rotor blade vibration damping device according to the present invention, the sensor detects vibrations near the tip of the rotor blade. It is attached to the diffuser wall and measures fluctuations in diffuser wall pressure and outputs a signal. Based on this issue, the controller injects fluid toward the tip of the rotor blade. , the fluctuation level of the diffuser wall pressure measured by the sensor and the vibration of the rotor blade. There is a proportional relationship with the amplitude, and it controls whether the rotor blade is vibrating at a dangerous amplitude. The controller determines from the level of fluctuations in the diffuser wall pressure that the rotor blades are vibrating at dangerous amplitudes. When the fluid is injected toward the tip of the rotor blade, the flow at the tip of the rotor blade is applied to the rotor blade. Become in line with the mood.

【0006】[0006]

【実施例】【Example】

図1は本考案の一実施例に係る動翼の制振装置の構造説明図、図2および図3 は作用説明図である。図において、本実施例に係る動翼の制振装置は蒸気タービ ンの動翼の制振に使用されており、図1に示すように最終段の動翼1先端近傍の 出口側ディフューザ8に壁圧の変動を計測するセンサ3が取付けられ、また図示 しない回転計によりロータの回転数が計測されるようになっている。コントロー ラ9は蒸気5注入用のバルブ4の操作信号を出力する。壁圧の信号と回転数の信 号とはコントローラ9に送られ、コントローラ9により動翼1に円板モードの振 動が発生しているか、動翼1における振動の振幅が危険なレベルか否かが後述す る図2の関係に基づいて判定される。コントローラ9により円板モードの危険な レベルの振動が発生していると判定された場合にはコントローラ9からバルブ4 に操作信号が送られ、動翼1先端近傍の入口側流路の周方向数か所に設けられて いる配管5から動翼1先端に向けて蒸気5が注入されるようになっている。動翼 1の全周はリング状のワイヤ7により連結されている。 FIG. 1 is a structural explanatory diagram of a rotor blade vibration damping device according to an embodiment of the present invention, FIGS. 2 and 3 is an action explanatory diagram. In the figure, the rotor blade vibration damping device according to this embodiment is installed on a steam turbine. It is used for damping the vibration of rotor blades in the final stage near the tip of rotor blade 1 in the final stage, as shown in Figure 1. A sensor 3 for measuring wall pressure fluctuations is attached to the outlet diffuser 8, and The number of rotations of the rotor is measured by a tachometer. control The controller 9 outputs an operation signal for the valve 4 for injecting the steam 5. Wall pressure signal and rotation speed signal The signal is sent to the controller 9, which causes the rotor blade 1 to vibrate in a disk mode. Whether vibration is occurring and whether the amplitude of vibration in rotor blade 1 is at a dangerous level will be discussed later. The determination is made based on the relationship shown in FIG. Controller 9 controls the dangerous mode of disc mode. If it is determined that the level of vibration is occurring, the controller 9 sends the valve 4 An operation signal is sent to the rotor blade 1, which is installed at several locations in the circumferential direction of the inlet side flow path near the tip of rotor blade 1. Steam 5 is injected toward the tip of the rotor blade 1 from a pipe 5 located therein. moving blade The entire circumference of 1 is connected by a ring-shaped wire 7.

【0007】 部分負荷時に最終段の動翼1に円板モードの振動が発生すると、図2(a), (b)に示すようにセンサ3により壁圧が変動する2種類の周波数ω1 ,ω2 が 計測される。ここで、ω1 ,ω2 =|ωB ±nΩ|で、ωB は発生した円板モー ドの振動数、nは円板モードの節直径数、Ωはロータの回転数である。振動数ω B と節直径数nとの関係は既知であり、回転数Ωと壁圧が変動する周波数ω1 , ω2 とが計測されれば、動翼1に円板モードの振動が発生しているかどうかが判 定される。また、計測される壁圧の変動レベルと動翼1の振幅とは図2(c)に 示すように比例関係にあるから、動翼1が危険な振幅で振動しているかどうかも 壁圧の変動レベルから判定される。危険な円板モードの振動が発生している場合 には動翼1先端近傍の入口側流路に設けられている配管6から動翼1先端に向け て蒸気5が注入される。動翼1の振幅は先端部で最大で流体から最もエネルギを 受け易いので、動翼1先端近傍の失速をなくせば動翼1に発生している円板モー ドの振動を消滅させることができる。即ち、動翼1に危険な円板モードの振動が 発生している場合に配管6から動翼1先端に向けて蒸気5が注入されると、図3 (b)に示すように動翼1先端部で絶対流入速度Cが増えるので、相対流入角度 βが小さくなって図3(a)に示す定格負荷時と同様に動翼1先端部の流れが動 翼1にスムーズに沿うようになり、円板モードの振動が消滅する。なお、2は静 翼、Uは周速、Wは相対流入速度である。また、本装置は蒸気タービンの他、ガ スタービン、コンプレッサなどにも適用が可能で、これらの場合には蒸気5に代 えて取扱う気体を動翼先端に向けて注入する。[0007] When disk mode vibration occurs in the final stage rotor blade 1 during partial load, Fig. 2(a), As shown in (b), there are two types of frequencies ω at which the wall pressure varies depending on the sensor 3.12but be measured. Here, ω12=|ωB±nΩ|and ωBis the generated disk motion. n is the nodal diameter number of the disk mode, and Ω is the rotation speed of the rotor. frequency ω B The relationship between and the nodal diameter number n is known, and the rotation speed Ω and the frequency at which the wall pressure fluctuates ω1, ω2If this is measured, it can be determined whether disc mode vibration is occurring in the rotor blade 1. determined. In addition, the measured wall pressure fluctuation level and the amplitude of the rotor blade 1 are shown in Figure 2(c). Since there is a proportional relationship as shown, it is also possible to determine whether rotor blade 1 is vibrating at a dangerous amplitude. Determined from the level of wall pressure fluctuation. If dangerous disk mode vibration is occurring From the pipe 6 installed in the inlet side flow path near the tip of the rotor blade 1 to the tip of the rotor blade 1. Steam 5 is injected. The amplitude of rotor blade 1 is maximum at the tip, where it absorbs the most energy from the fluid. Therefore, if the stall near the tip of rotor blade 1 is eliminated, the disc motor generated in rotor blade 1 can be eliminated. It is possible to eliminate the vibration of the de. In other words, dangerous disc mode vibrations occur in the rotor blade 1. If steam 5 is injected from piping 6 toward the tip of rotor blade 1 when steam is generated, As shown in (b), the absolute inflow velocity C increases at the tip of rotor blade 1, so the relative inflow angle As β becomes smaller, the flow at the tip of rotor blade 1 becomes dynamic, similar to that at the rated load shown in Fig. 3(a). It now follows the blade 1 smoothly, and the disk mode vibration disappears. In addition, 2 is static In the blade, U is the circumferential speed and W is the relative inflow velocity. In addition to steam turbines, this device also It can also be applied to turbines, compressors, etc., and in these cases, it can be used instead of steam 5. Then, the gas to be handled is injected toward the tip of the rotor blade.

【0008】[0008]

【考案の効果】[Effect of the idea]

本考案に係る動翼の制振装置は前記のように構成されており、動翼が危険な振 幅で振動している場合にはコントローラが動翼先端に向けて流体を注入するので 、動翼先端部の流れが動翼にスムーズに沿うようになり動翼の振動が消滅する。 The rotor blade vibration damping device according to the present invention is configured as described above, and the rotor blade is subjected to dangerous vibrations. If the blade is vibrating in width, the controller injects fluid toward the tip of the rotor blade. , the flow at the tip of the rotor blade smoothly follows the rotor blade, and the vibration of the rotor blade disappears.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本考案の一実施例に係る蒸気タービンに
おける動翼の制振装置の模式図である。
FIG. 1 is a schematic diagram of a vibration damping device for rotor blades in a steam turbine according to an embodiment of the present invention.

【図2】図2はその作用説明図である。FIG. 2 is an explanatory diagram of its operation.

【図3】図3もその作用説明図である。FIG. 3 is also an explanatory diagram of its operation.

【図4】図4(a)は従来の動翼の正面図、同図(b)
は斜視図である。
[Fig. 4] Fig. 4(a) is a front view of a conventional rotor blade, and Fig. 4(b) is a front view of a conventional rotor blade.
is a perspective view.

【図5】図5はその作用説明図である。FIG. 5 is an explanatory diagram of its operation.

【符号の説明】[Explanation of symbols]

1 動翼 2 静翼 3 壁圧の変動を計測するセンサ 4 バルブ 5 蒸気 6 蒸気の配管 7 ワイヤ 8 ディフューザ 9 コントローラ 1 Moving blade 2 static wings 3 Sensor that measures wall pressure fluctuations 4 valve 5 Steam 6 Steam piping 7 wire 8 Diffuser 9 Controller

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 動翼先端近傍のディフューザ壁に取付け
られディフューザ壁圧の変動を計測して信号を出力する
センサと、該センサが出力する信号に基づいて上記動翼
先端に向けて流体を注入するコントローラとを備えたこ
とを特徴とする動翼の制振装置。
1. A sensor attached to the diffuser wall near the tip of the rotor blade that measures fluctuations in diffuser wall pressure and outputs a signal, and injects fluid toward the tip of the rotor blade based on the signal output by the sensor. What is claimed is: 1. A vibration damping device for rotor blades, comprising a controller for controlling
JP3255091U 1991-05-10 1991-05-10 Vibration damping device for rotor blades Withdrawn JPH04127804U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255091U JPH04127804U (en) 1991-05-10 1991-05-10 Vibration damping device for rotor blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255091U JPH04127804U (en) 1991-05-10 1991-05-10 Vibration damping device for rotor blades

Publications (1)

Publication Number Publication Date
JPH04127804U true JPH04127804U (en) 1992-11-20

Family

ID=31915469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255091U Withdrawn JPH04127804U (en) 1991-05-10 1991-05-10 Vibration damping device for rotor blades

Country Status (1)

Country Link
JP (1) JPH04127804U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221522A (en) * 2012-04-18 2013-10-28 General Electric Co <Ge> System of reducing vibration of turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221522A (en) * 2012-04-18 2013-10-28 General Electric Co <Ge> System of reducing vibration of turbine

Similar Documents

Publication Publication Date Title
Fink et al. Surge dynamics in a free-spool centrifugal compressor system
Tsukamoto et al. Transient characteristics of a centrifugal pump during stopping period
Hashimoto et al. Experimental study on rotating cavitation of rocket propellant pump inducers
Day Axial compressor performance during surge
US4279569A (en) Cross-flow turbine machine
KR950033112A (en) Turbomachinery with variable angle fluid guide
US4243357A (en) Turbomachine
US20130022449A1 (en) Radial-Flow Turbomachines Having Performance-Enhancing Features
Amann et al. Casing modification for increasing the surge margin of a centrifugal compressor in an automotive turbine engine
US5851103A (en) Turbomachinery with variable angle fluid guiding devices
Dean Jr et al. The time domain of centrifugal compressor and pump stability and surge
JPH04127804U (en) Vibration damping device for rotor blades
Van Esch et al. Unstable operation of a mixed-flow pump and the influence of tip clearance
US4227855A (en) Turbomachine
US6382912B1 (en) Centrifugal compressor with vaneless diffuser
Bently et al. Vibrational diagnostics of rotating stall in centrifugal compressors
Ribi et al. Impeller rotating stall as a trigger for the transition from mild to deep surge in a subsonic centrifugal compressor
JPH116500A (en) Swirl flow generating device for centrifugal compressor
Watanabe et al. Transient process of rotating stall in radial vaneless diffusers
Boyer et al. Stall inception in single stage, high-speed compressors with straight and swept leading edges
US4533293A (en) Method of improving the part-load behavior of a turbo machine, and a compressor or pump adapted for use of such method
Jin et al. Excitation of blade vibration due to surge of centrifugal compressors
Tsukamoto et al. Effect of Impeller Outlet Flow Affected by Casing Treatment on Rotating Stall in Vane-Less Diffuser in Centrifugal Turbomachinery
Harada Study of a surge-free centrifugal compressor with automatically variable inlet and diffuser vanes
JP3095208B2 (en) Fluid machinery with variable guide vanes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19950810