JPH04127477A - Nonvolatile memory - Google Patents

Nonvolatile memory

Info

Publication number
JPH04127477A
JPH04127477A JP2249410A JP24941090A JPH04127477A JP H04127477 A JPH04127477 A JP H04127477A JP 2249410 A JP2249410 A JP 2249410A JP 24941090 A JP24941090 A JP 24941090A JP H04127477 A JPH04127477 A JP H04127477A
Authority
JP
Japan
Prior art keywords
oxide film
gate
control gate
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2249410A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takakura
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2249410A priority Critical patent/JPH04127477A/en
Publication of JPH04127477A publication Critical patent/JPH04127477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce the area of a cell while utilizing merits of a simple process and an excellent retaining properties by digging a trench groove and forming a control gate. CONSTITUTION:After a P-type diffused layer 2 is formed on an N-type semiconductor substrate 1 by a photolithography process and an ion implanting process, an LOCOS 4c is formed on an isolating part between elements. Then, with an oxide film 4e formed on a single crystal silicon as a mask material a trench groove 6 is formed on a part to become a control gate later by an RIE. Thereafter, after the film 4e of the mask material is removed, As<+> ions are doped by ion implanting to form N-type diffused layers 3b, 3c, and then oxide films 4a, 4d are formed by oxidizing. The oxide film is removed by a photolithography process and fluoric acid etching, and a thin oxide film 4b is then formed. A P-doped polycrystalline silicon is deposited by a low pressure CVD process, flattened by a 2-layer resist process, and then etched back by an RIE.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気的に書き込み、消去可能な不揮発性メモ
リ(以下、EEFROMという)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrically writable and erasable nonvolatile memory (hereinafter referred to as EEFROM).

[従来の技術] 近年、殆どあらゆる製品にマイクロコンピュータが内蔵
されるようになってきている。メモリはマイクロコンピ
ュータには不可欠なものであり、従来よりSRAMやD
RAMが使用されているが、これらのメモリは電源を切
ってしまうとメモリ内容も消えてしまうという短所を有
する。
[Prior Art] In recent years, microcomputers have come to be built into almost every product. Memory is indispensable for microcomputers, and traditionally SRAM and D
Although RAM is used, these memories have the disadvantage that the memory contents are erased when the power is turned off.

この短所を補ったものがEEPROMであり、電源を切
ってもメモリ内容が消えないという長所を有する。EE
PROMは構造的に大きく分けてMNOS型とFLOT
OX型に分かれる。MNOS型は、酸化膜と窒化膜界面
のトラップに電子を蓄える素子であり、FLOTOX型
は、酸化膜によりどこからも浮遊させた多結晶シリコン
層に電子を蓄える素子である。
EEPROM compensates for this drawback and has the advantage that the memory contents do not disappear even when the power is turned off. EE
PROM can be roughly divided into MNOS type and FLOT type in terms of structure.
Divided into OX type. The MNOS type is an element that stores electrons in traps at the interface between an oxide film and a nitride film, and the FLOTOX type is an element that stores electrons in a polycrystalline silicon layer suspended from anywhere by an oxide film.

FLOTOX型は記憶保持時間が長く、MOSプロセス
とも整合が良いことからよく使われている。FLOTO
X型も大きく多結晶シリコン層1層のものと2Nのもの
に分かれる。この内、1層構造のものは2層構造のもの
と比べてプロセスが簡単で、制御ゲート側に単結晶シリ
コン酸化膜を使っているので、保持特性が良い等の長所
を有する。
The FLOTOX type is often used because it has a long memory retention time and is compatible with MOS processes. FLOTO
The X type is also broadly divided into those with a single polycrystalline silicon layer and those with a 2N layer. Among these, the one-layer structure has advantages such as a simpler process and better retention characteristics because it uses a single-crystal silicon oxide film on the control gate side than the two-layer structure.

第2図は、従来から用いられている1層多結晶シlJコ
ンFLOTOX型EEPROMの構造を示すものである
。図中、1はN型基板、2はP型拡散層で、P型拡散層
(導電層)2の中にN型のMOS(以下、NMOSとい
う)が形成され、ソース3a、  ドレイン3b、ゲー
ト5aを有する。このNMOSのドレイン3bは、10
0人程度の酸化M4 b、NMOSのゲート酸化膜4a
と同時に成長させた500人程度の酸化膜4d及びNM
OSのゲート部5を通して制御ゲート3Cへつながって
いる。このゲート部5がEEFROMの浮遊ゲートにな
る。
FIG. 2 shows the structure of a conventionally used one-layer polycrystalline silicon FLOTOX type EEPROM. In the figure, 1 is an N-type substrate, 2 is a P-type diffusion layer, and an N-type MOS (hereinafter referred to as NMOS) is formed in the P-type diffusion layer (conductive layer) 2, and includes a source 3a, a drain 3b, and a gate. It has 5a. The drain 3b of this NMOS is 10
0 oxidation M4b, NMOS gate oxide film 4a
About 500 oxide films 4d and NM were grown at the same time.
It is connected to the control gate 3C through the gate section 5 of the OS. This gate portion 5 becomes the floating gate of the EEFROM.

かかるEEPROMは、NMOS トランジスタをオン
・オフすることにより、ドレイン3bに電圧を与え、こ
れと制御ゲート3Cに印加した電圧とで薄い酸化111
4bを通して電荷のやりとりを行い、NMOS)ランジ
スタのしきい値を変化させ[発明が解決しようとする課
題] ところで、上記1層多結晶シリコンFLOTOX型EE
PROMは、上述のように、プロセスが簡単で、保持特
性が良いという長所を有するが、反面、2層多結晶シリ
コンタイプに比してセル面積が大きく、高集積化には向
かないという短所があった。
In such an EEPROM, a voltage is applied to the drain 3b by turning on and off the NMOS transistor, and this and the voltage applied to the control gate 3C form a thin oxide layer 111.
By the way, the above-mentioned one-layer polycrystalline silicon FLOTOX type EE
As mentioned above, PROM has the advantages of simple processing and good retention characteristics, but on the other hand, it has the disadvantage that it has a larger cell area than the two-layer polycrystalline silicon type, making it unsuitable for high integration. there were.

本発明は、上記事由に鑑みなされたもので、その目的と
するところは、従来の長所を生かし、しかもセル面積の
小型化が図れる不揮発性メモリを提供することにある。
The present invention has been made in view of the above reasons, and its purpose is to provide a nonvolatile memory that takes advantage of the advantages of the prior art and can also reduce the cell area.

[!l!flを解決するための手段] 本発明は上記課題を解決するため、単結晶基板上に、ト
ンネル電流注入用の薄い酸化膜と、浮遊ゲートを絶縁す
る比較的厚い酸化膜とを有し、前記薄い酸化膜下に形成
されたドレインと、比較的厚い酸化膜下に形成されたソ
ースと、前記浮遊ゲートの一部からなるゲートとで構成
されるMOSトランジスタと、前記ソース及びドレイン
と絶縁分離された制御ゲートとを有する1層導電ゲート
層型の電気的書き込み/消去可能な不揮発性メモリにお
いて、前記制御ゲートをトレンチ溝構造としたことを特
徴とする。
[! l! Means for Solving fl] In order to solve the above problems, the present invention has a thin oxide film for tunnel current injection and a relatively thick oxide film for insulating the floating gate on a single crystal substrate, and A MOS transistor includes a drain formed under a thin oxide film, a source formed under a relatively thick oxide film, and a gate formed from a part of the floating gate, and the MOS transistor is insulated and separated from the source and drain. A one-layer conductive gate layer type electrically writable/erasable nonvolatile memory having a control gate having a trench structure.

[実施例] 以下、本発明を実施例に基づき説明する。第1図は本発
明に係る不揮発性メモリの製法の一例を示す工程図であ
る。
[Examples] The present invention will be described below based on Examples. FIG. 1 is a process diagram showing an example of a method for manufacturing a nonvolatile memory according to the present invention.

まず、N型半導体基板(n−3ub) 1上にフォトリ
ソグラフィ工程、イオン注入工程を経てP型拡散層(P
−11all) 2を形成した後、素子間分離部にLO
GO34Cを形成する。その後、単結晶シリコン上に形
成された酸化膜4eをマスク材として、将来制御ゲート
となる部分に、RI E (Reactive l。
First, an N-type semiconductor substrate (n-3ub) 1 is coated with a P-type diffusion layer (P
-11all) After forming 2, LO is placed in the element isolation part.
Form GO34C. Thereafter, using the oxide film 4e formed on the single crystal silicon as a mask material, RIE (Reactive I) is applied to the portion that will become the control gate in the future.

n Etching)により深さ14.幅1−のトレン
チ溝6を形成する(第1図(a)参照)。
depth 14. A trench groove 6 having a width of 1- is formed (see FIG. 1(a)).

次に、マスク材にした酸化114eを除去した後、イオ
ン注入によりAs”をドープしてN型拡散層3b、3c
°を形成し、その後、酸化により酸化膜4a、4dを形
成する。将来、トンネル酸化膜となるべきところの酸化
膜をフォトリソグラフィ工程、フン酸エンチングにより
除去し、その後に薄い(約100人)酸化114bを形
成する(第1図(b)参照)。
Next, after removing the oxide 114e used as a mask material, As'' is doped by ion implantation to form N-type diffusion layers 3b and 3c.
After that, oxide films 4a and 4d are formed by oxidation. The oxide film that will become the tunnel oxide film in the future is removed by a photolithography process and hydronic acid etching, and then a thin (approximately 100 layers) oxide 114b is formed (see FIG. 1(b)).

減圧CVD (LPGVD) 工程によりPI’−プ多
結晶シリコンを1.54堆積させ、2層レジスト工程に
より平坦化を図った後、RIBによりエッチバックを行
う、フォトリソグラフィ工程とRIBにより、将来、N
MOSトランジスタのゲート且つメモリの浮遊ゲートに
なる部分5を残して多結晶シリコンを除去する。その後
、多結晶シリコン5をマスク材としてAs”をイオン注
入、拡散してNMOSトランジスタのソース3aとドレ
イン3bを形成し、本発明に係る不揮発性メモリを実現
する(第1図(C)参照)。
PI'-type polycrystalline silicon is deposited by a low pressure CVD (LPGVD) process, planarized by a two-layer resist process, and then etched back by RIB.
The polycrystalline silicon is removed leaving a portion 5 that will become the gate of the MOS transistor and the floating gate of the memory. Thereafter, using the polycrystalline silicon 5 as a mask material, As'' is ion-implanted and diffused to form the source 3a and drain 3b of the NMOS transistor, thereby realizing the nonvolatile memory according to the present invention (see FIG. 1(C)). .

次に、上記実施例に係る書き込み電圧について説明する
。書き込み電圧を■、NMOSトランジスタの1147
0部に設けた薄い酸化膜の両端に印加される電圧をvo
とすると、書き込み電圧■は次式のようになる。
Next, the write voltage according to the above embodiment will be explained. The write voltage is 1147 for the NMOS transistor.
The voltage applied across the thin oxide film provided at part 0 is vo
Then, the write voltage ■ becomes as shown in the following equation.

v−(1+CFG/CCG)V。v-(1+CFG/CCG)V.

但し、CCGは制御ゲート部の容量、CFGはNMOS
ドレイン部の容量である。
However, CCG is the capacitance of the control gate section, and CFG is the NMOS
This is the capacitance of the drain section.

電子を注入させるためには、■。は約1’5MV/ c
m程度必要で、この値はほぼ固定している。従って書き
込み電圧Vを下げたい場合、CFG/CCGの値を小さ
くしなければならない。この内CFGはNMO3)ラン
ジスタの形でほぼ決まってしまい、結局CCGを大きく
する必要があり、これは制御ゲートの面積増大を招くこ
とになるが、本実施例のようにトレンチ溝を掘って制御
ゲートを形成することにより、制御ゲートの平面上での
面積を大きくすることなく、制御ゲート部の容量CCG
を大きくすることができる。従って、セル面積を増大す
ることなく書き込み電圧Vを下げることができるのであ
る。
In order to inject electrons, ■. is approximately 1'5MV/c
About m is required, and this value is almost fixed. Therefore, if it is desired to lower the write voltage V, the value of CFG/CCG must be reduced. Of these, the CFG is almost fixed in the form of an NMO3) transistor, and it is necessary to increase the size of the CCG, which results in an increase in the area of the control gate. However, as in this example, it is possible to control it by digging a trench. By forming the gate, the capacitance CCG of the control gate portion can be reduced without increasing the plane area of the control gate.
can be made larger. Therefore, the write voltage V can be lowered without increasing the cell area.

[発明の効果] 本発明は上記のように、トレンチ溝を掘って制御ゲート
を形成したことにより、プロセスが簡単で、保持特性が
良いという長所を生かしつつ、しかもセル面積の小型化
が図れる不揮発性メモリを提供することができた。
[Effects of the Invention] As described above, the present invention forms a control gate by digging a trench, thereby making use of the advantages of simple process and good retention characteristics, while also reducing the cell area. It was able to provide sexual memory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明に係る不揮発性メモリの
製法の一例を示す工程図、第2図は従来例を示す断面図
である。 l・・・N型半導体基板、2・・・P型拡散層、3a・
・ソース、3b・・・ドレイン、3c・・・制御ゲート
、4a、4d・・・比較的厚い酸化膜、4b・・・薄い
酸化膜(トンネル酸化膜)、4c・・・素子間分離酸化
膜、5・・・浮遊ゲート、5a・・・ゲート。
FIGS. 1A to 1C are process diagrams showing an example of a method for manufacturing a nonvolatile memory according to the present invention, and FIG. 2 is a sectional view showing a conventional example. l...N-type semiconductor substrate, 2...P-type diffusion layer, 3a...
- Source, 3b...drain, 3c...control gate, 4a, 4d...relatively thick oxide film, 4b...thin oxide film (tunnel oxide film), 4c...element isolation oxide film , 5... floating gate, 5a... gate.

Claims (1)

【特許請求の範囲】[Claims] (1)単結晶基板上に、トンネル電流注入用の薄い酸化
膜と、浮遊ゲートを絶縁する比較的厚い酸化膜とを有し
、前記薄い酸化膜下に形成されたドレインと、比較的厚
い酸化膜下に形成されたソースと、前記浮遊ゲートの一
部からなるゲートとで構成されるMOSトランジスタと
、前記ソース及びドレインと絶縁分離された制御ゲート
とを有する1層導電ゲート層型の電気的書き込み/消去
可能な不揮発性メモリにおいて、前記制御ゲートをトレ
ンチ溝構造としたことを特徴とする不揮発性メモリ。
(1) A thin oxide film for tunnel current injection and a relatively thick oxide film insulating the floating gate are formed on a single crystal substrate, and a drain formed under the thin oxide film and a relatively thick oxide film are formed on the single crystal substrate. A single-layer conductive gate layer type electrical MOS transistor comprising a source formed under a film, a gate consisting of a part of the floating gate, and a control gate insulated from the source and drain. A writable/erasable nonvolatile memory, characterized in that the control gate has a trench structure.
JP2249410A 1990-09-18 1990-09-18 Nonvolatile memory Pending JPH04127477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249410A JPH04127477A (en) 1990-09-18 1990-09-18 Nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249410A JPH04127477A (en) 1990-09-18 1990-09-18 Nonvolatile memory

Publications (1)

Publication Number Publication Date
JPH04127477A true JPH04127477A (en) 1992-04-28

Family

ID=17192562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249410A Pending JPH04127477A (en) 1990-09-18 1990-09-18 Nonvolatile memory

Country Status (1)

Country Link
JP (1) JPH04127477A (en)

Similar Documents

Publication Publication Date Title
US5021848A (en) Electrically-erasable and electrically-programmable memory storage devices with self aligned tunnel dielectric area and the method of fabricating thereof
US4822750A (en) MOS floating gate memory cell containing tunneling diffusion region in contact with drain and extending under edges of field oxide
US4701776A (en) MOS floating gate memory cell and process for fabricating same
US6351017B1 (en) High voltage transistor with modified field implant mask
US6583066B2 (en) Methods for fabricating a semiconductor chip having CMOS devices and fieldless array
US6064105A (en) Data retention of EEPROM cell with shallow trench isolation using thicker liner oxide
US6586806B1 (en) Method and structure for a single-sided non-self-aligned transistor
US5973358A (en) SOI device having a channel with variable thickness
US20120108051A1 (en) Different gate oxides thicknesses for different transistors in an integrated circuit
US6168995B1 (en) Method of fabricating a split gate memory cell
JPH08167705A (en) Nonvolatile semiconductor memory and manufacture thereof
EP0160003B1 (en) Mos floating gate memory cell and process for fabricating same
US5140551A (en) Non-volatile dynamic random access memory array and the method of fabricating thereof
US6313500B1 (en) Split gate memory cell
US5904524A (en) Method of making scalable tunnel oxide window with no isolation edges
US6071777A (en) Method for a self-aligned select gate for a split-gate flash memory structure
US6489200B1 (en) Capacitor fabrication process for analog flash memory devices
JP2002141425A (en) Side wall process for improving flash memory cell performance
US6534364B1 (en) Tunnel diode layout for an EEPROM cell for protecting the tunnel diode region
JP2003273257A (en) Non-volatile programmable and electrically erasable memory with single layer of grid material
US7304344B1 (en) Integrated circuit having independently formed array and peripheral isolation dielectrics
JP2002368145A (en) Production method for multi-voltage flash memory integrated circuit structure
JPS60167376A (en) Semiconductor device
JPH04127477A (en) Nonvolatile memory
US4683640A (en) Method of making a floating gate memory cell