JPH04127151A - Pattern inspecting device - Google Patents

Pattern inspecting device

Info

Publication number
JPH04127151A
JPH04127151A JP2198607A JP19860790A JPH04127151A JP H04127151 A JPH04127151 A JP H04127151A JP 2198607 A JP2198607 A JP 2198607A JP 19860790 A JP19860790 A JP 19860790A JP H04127151 A JPH04127151 A JP H04127151A
Authority
JP
Japan
Prior art keywords
light
optical
inspected
pattern
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2198607A
Other languages
Japanese (ja)
Other versions
JPH0646300B2 (en
Inventor
Toru Tojo
徹 東條
Kazuyoshi Sugihara
和佳 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19860790A priority Critical patent/JPH0646300B2/en
Publication of JPH04127151A publication Critical patent/JPH04127151A/en
Publication of JPH0646300B2 publication Critical patent/JPH0646300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To accurately align the surface of a sample to be inspected on the focus position of a detection optical system with high frequency responsiveness by providing a counter spring and deviating an area irradiated with 1st light used for a pattern inspection from the area irradiated with 2nd light used for detecting the positional deviation. CONSTITUTION:A device is provided with the counter spring 30 which is connected between the lens barrel 24 and a fixing part 29 and for balancing the weight of the lens barrel 24. And also, the optical system for detection constituted of beam benders 43a,43b and a lens 44a, etc., and the optical system for detection constituted of beam benders 43c, 43d and a lens 44b, etc., are arranged so that they may be slightly deviated form each other at the opposite position symmetrical to the central axis of the lens barrel 24. Then, a load which is put on a driving member 31 can be reduced, the measurement difference in detecting the positional deviation which is caused by optical interference by each other and diffused external light can be reduced by deviating the area irradiated with the position detecting light from the area irradiated with the pattern inspecting light. Thus, the surface of the sample to be inspected can be accurately and automatically aligned on the focus position of the detection optical system with the high frequency responsiveness.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、パターン欠陥の検出、パターン寸法の測定或
いはパターンの観察等に供されるパターン検査装置に係
わり、詳しくは自動焦点合わせ機能を備えたパターン検
査装置の改良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a pattern inspection device used for detecting pattern defects, measuring pattern dimensions, observing patterns, etc. This invention relates to an improvement in a pattern inspection device equipped with a focusing function.

(従来の技術) ICの製造において、マスターマスク或いはレチクルに
パターンの断線等の欠陥か存在すると、所望する半導体
素子を得ることができず、歩留り低下の原因となる。こ
のため、従来マスターマスクやレチクル等のパターン欠
陥を自動的に検査するマスク欠陥自動検査装置が用いら
れている。この装置では、スポット状の光をマスク面に
照射すると共に、マスクを載置したテーブルをX−Y方
向に移動させてマスク全面の欠陥検査を行う。検出可能
欠陥の大きさを小さくすると、検出光学系の倍率を大き
くする必要があり、その結果光学系の焦点深度が浅くな
る。光学系の焦点深度が浅くなると、マスクの反り等に
より被検査面が焦点深度内から外れ、欠陥の検出ができ
なくなる場合がある。そこで、上記のような装置には、
被検査面を自動的に検出光学系の焦点深度内に入れる自
動焦点合わせ機構が付加されている。
(Prior Art) In the manufacture of ICs, if a master mask or reticle has a defect such as a pattern break, it is impossible to obtain a desired semiconductor element, resulting in a decrease in yield. For this reason, automatic mask defect inspection apparatuses have conventionally been used to automatically inspect pattern defects in master masks, reticles, and the like. In this apparatus, a spot-shaped light is irradiated onto the mask surface, and a table on which the mask is placed is moved in the X-Y direction to inspect the entire surface of the mask for defects. Reducing the size of the detectable defect requires increasing the magnification of the detection optical system, resulting in a shallower depth of focus of the optical system. If the depth of focus of the optical system becomes shallow, the surface to be inspected may deviate from the depth of focus due to mask warping or the like, making it impossible to detect defects. Therefore, for the above-mentioned devices,
An automatic focusing mechanism is added that automatically brings the surface to be inspected into the depth of focus of the detection optics.

第7図は自動焦点合わせ機構を備えた従来のパターン欠
陥検査装置を示す概略構成図である。図中1はレチクル
で、このレチクル1は固定部2上をX方向(紙面左右方
向)およびY方向(紙面表裏方向)に移動可能なX−Y
テーブル3上に載置されている。レチクル1の上方には
、対物レンズ4および光検出素子5等を備えた光学鏡筒
6が配置される。この光学鏡筒6は、弾性部材7を介し
て固定端に固定されている。さらに、光学鏡筒6は、モ
ータ8.ウオーム9.ウオームホイール10およびねじ
11等からなる駆動機構により上下動されるものとなっ
ている。また、光学鏡筒6の下部には空気の導入孔12
および導出孔(ノズル)13等からなる空気マイクロメ
ータが設けられている。この空気マイクロメータは、ノ
ズル13からレチクル1上に空気を送り込みその背圧か
ら距離を換算するものである。
FIG. 7 is a schematic configuration diagram showing a conventional pattern defect inspection apparatus equipped with an automatic focusing mechanism. In the figure, 1 is a reticle, and this reticle 1 is movable in the X direction (horizontal direction on the page) and Y direction (front and back direction on the page) on the fixed part 2.
It is placed on table 3. An optical lens barrel 6 including an objective lens 4, a photodetector element 5, etc. is arranged above the reticle 1. This optical lens barrel 6 is fixed to a fixed end via an elastic member 7. Further, the optical lens barrel 6 is connected to a motor 8. Warm 9. It is moved up and down by a drive mechanism consisting of a worm wheel 10, screws 11, and the like. In addition, an air introduction hole 12 is provided at the bottom of the optical barrel 6.
An air micrometer consisting of an outlet hole (nozzle) 13, etc. is provided. This air micrometer sends air onto the reticle 1 from the nozzle 13 and converts the distance from the back pressure.

また、図中14は光源であり、この光源14からの光は
集光レンズ15により集束されレチクル1の上面(被検
査面)に照射される。そして、レチクル1を透過した光
を前記対物レンズ4により光検出素子5の受光面に結像
することによって、レチクル1のパターンが検査される
。しかして、レチクル1の反り等の低周波の上下動かあ
る場合、この変位を前記空気マイクロメータにて検出し
、前記駆動機構により光学鏡@6を上下動することによ
って、レチクル1の反り等に追従して自動焦点合わせが
行われる。したがって、レチクル1に反り等の低周波の
上下動があっても、パターン欠陥検査を精度良く行うこ
とができる。
14 is a light source, and light from this light source 14 is focused by a condenser lens 15 and irradiated onto the upper surface (surface to be inspected) of the reticle 1. Then, the pattern of the reticle 1 is inspected by focusing the light transmitted through the reticle 1 on the light receiving surface of the photodetecting element 5 using the objective lens 4. Therefore, when there is a low frequency vertical movement such as a warp of the reticle 1, this displacement is detected by the air micrometer and the optical mirror @6 is moved up and down by the drive mechanism to prevent the warp or the like of the reticle 1. Automatic focusing follows. Therefore, even if the reticle 1 has low-frequency vertical movement such as warpage, pattern defect inspection can be performed with high accuracy.

ところで、このような追従装置では、LSIのようにパ
ターンの線幅が極めて細くなり、許容欠陥の大きさがさ
らに小さくなると、検出光学系の焦点深度はさらに浅く
なる。その結果、マスクの反りだけでなくマスクを載置
して移動するX−Yテーブルの走行精度および走行時の
振動による上下動の変化についても追従して自動焦点合
わせする必要がある。これらの変位の周波数はマスクの
反りによる周波数に比して遥かに高いものであり、前述
した自動焦点合わせ機構で追従させることは不可能であ
る。このため、従来装置ではLSIのような線幅の細い
パターンの欠陥を高精度に検査することは困難であった
By the way, in such a tracking device, as in an LSI, the line width of the pattern becomes extremely narrow and the allowable defect size becomes even smaller, so that the depth of focus of the detection optical system becomes even shallower. As a result, it is necessary to perform automatic focusing by following not only the warpage of the mask but also the running accuracy of the X-Y table on which the mask is placed and the movement, and changes in vertical movement due to vibrations during running. The frequency of these displacements is much higher than the frequency due to warpage of the mask, and it is impossible to track them with the above-mentioned automatic focusing mechanism. For this reason, it has been difficult for conventional devices to accurately inspect defects in patterns with narrow line widths, such as in LSIs.

そこで本発明者等は、試料の被検査面と検出光学系との
位置ずれを光学的に検出する位置ずれ検出機構を備えた
パターン検査装置を先に提案した(特願昭57−460
50号)。この装置の位置ずれ検出機構は、光ビーム発
生源1拉置ずれ検出用光検出素子および光ビーム発生源
からの光ビームを試料の被検査面にスポット状に集束し
、被検査面に所定入射角で照射すると共に、その反射光
を上記光検出素子の受光面に結像する光学系からなるも
のである。そして、この光学的な位置ずれ検出機構を用
いることにより、被検査面の位置ずれを高精度に、かつ
応答性良く補正することが可能となる。
Therefore, the present inventors first proposed a pattern inspection device equipped with a positional deviation detection mechanism that optically detects the positional deviation between the inspected surface of the sample and the detection optical system (Japanese Patent Application No. 57-460
No. 50). The positional deviation detection mechanism of this device focuses the light beam from the light beam generation source 1 and the optical detection element for detecting the positional deviation on the surface to be inspected of the sample, and makes the light beam incident on the surface to be inspected at a predetermined level. It consists of an optical system that emits light at a corner and forms an image of the reflected light on the light receiving surface of the photodetecting element. By using this optical positional deviation detection mechanism, it becomes possible to correct the positional deviation of the surface to be inspected with high precision and good responsiveness.

しかしながら、この種の装置にあっては次のような問題
を招いた。すなわち、前記光学的な位置すれ検出機構に
おいて、位置ずれ検出に供される光量外の光、特に−様
な分布強度を持たない外乱光の影響により正確な位置ず
れ検出が困難になることがある。上述した例ではパター
ン検査に供される光が位置ずれ検出に供される光と同じ
位置に照射されており、パターン検査に供される強烈な
光がパターンの有無、パターンエツジの部分で乱反射し
位置ずれ検出機構に入ってくることがあり、これによっ
て位置ずれ検出の測定誤差が発生するのである。この問
題を避けるため、パターン検査に供される光と位置ずれ
検出に供される光との波長を異ならせ、それに応じてセ
ンサを選択しパターン検査および位置ずれ検出の干渉を
防止する手法があるが、完全と言うには程遠いものであ
った。
However, this type of device has caused the following problems. That is, in the optical positional deviation detection mechanism, accurate positional deviation detection may become difficult due to the influence of light other than the amount of light used for positional deviation detection, especially disturbance light that does not have a negative distribution intensity. . In the above example, the light used for pattern inspection is irradiated at the same position as the light used for positional deviation detection, and the intense light used for pattern inspection is diffusely reflected by the presence or absence of a pattern and by the pattern edges. This may enter the positional deviation detection mechanism, resulting in a measurement error in positional deviation detection. In order to avoid this problem, there is a method in which the wavelengths of the light used for pattern inspection and the light used for positional deviation detection are different, and the sensors are selected accordingly to prevent interference between pattern inspection and positional deviation detection. However, it was far from perfect.

なお、上記問題はパターンの欠陥検出に限るものではな
く、パターンの寸法測定或いは観察等を行う各種のパタ
ーン検査装置についても同様に言えることである。
Note that the above-mentioned problem is not limited to detecting defects in patterns, but also applies to various pattern inspection apparatuses that measure or observe the dimensions of patterns.

(発明が解決しようとする課8) 以上のように従来のパターン検査装置においては、試料
の被検出面を検出光学系の焦点位置に高い周波数応答性
で自動的に合わせることが困難で、微細、なパターンの
欠陥等を高精度に検査することかできなかった。
(Issue 8 to be solved by the invention) As described above, in conventional pattern inspection devices, it is difficult to automatically align the detection surface of the sample with the focal position of the detection optical system with high frequency response, and , it was not possible to inspect defects in patterns with high precision.

本発明の上記問題点を考慮してなされたもので、試料の
被検出面を検出光学系の焦点位置に高い周波数応答性で
精度良く自動的に合わせることができ、微細なパターン
の欠陥等を高精度に検査することができるパターン検査
装置を提供することを目的としている。
This invention was developed in consideration of the above-mentioned problems of the present invention, and it is possible to automatically align the detection surface of the sample with the focal position of the detection optical system with high precision and high frequency response, and to eliminate defects such as minute patterns. It is an object of the present invention to provide a pattern inspection device that can perform inspection with high accuracy.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明にあっては、試料の被
検査面に第1の光を照射しその透過光或いは反射光の持
つ情報により被検査面のパターンを検査するパターン検
査装置において、前記第1の光の光軸方向に沿って設け
られパターン検査用検出手段を取着した光学鏡筒と、端
か固定部に固定されその自由端で前記光学鏡筒を前記第
1の光の光軸方向に移動可能に支持する弾性部材と、前
記光学鏡筒と前記固定部との間に接続され前記光学鏡筒
の重量をバランスするためのカウンタスプリングと、前
記光学鏡筒と前記固定部との間に接続され前記光学鏡筒
を前記第1の光の光軸方向に移動駆動するための駆動手
段と、前記検査面に所定の入射角でかつ、前記第1の光
の照射領域とはずらして第2の光を照射し、その反射光
を検出して前記被検査面の所望位置と実際位置とのずれ
を検出する位置ずれ検出機構と、この位置ずれ検出機構
の検出情報に基づいて前記駆動手段による前記光学鏡筒
の移動量を制御する制御手段と、を具備してなることを
特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention irradiates the surface of the sample to be inspected with first light and collects information contained in the transmitted light or reflected light. In a pattern inspection apparatus for inspecting a pattern on a surface to be inspected, an optical lens barrel provided along the optical axis direction of the first light and having a detection means for pattern inspection attached thereto; an elastic member that supports the optical lens barrel movably in the optical axis direction of the first light at a free end; and an elastic member that is connected between the optical lens barrel and the fixed part and balances the weight of the optical lens barrel. a counter spring connected to the optical lens barrel and the fixed part for driving the optical lens barrel to move in the optical axis direction of the first light; Positional deviation in which a second light is irradiated at an incident angle and at a position different from the irradiation area of the first light, and the reflected light is detected to detect a deviation between a desired position and an actual position of the surface to be inspected. It is characterized by comprising a detection mechanism and a control means for controlling the amount of movement of the optical lens barrel by the drive means based on the detection information of the positional deviation detection mechanism.

(作  用) 上記のように構成されたものは、第1の特徴としてカウ
ンタスプリングを設けたことであり、また第2の特徴は
、パターン検査に供される第1の光と位置ずれ検出に供
される第2の光との照射領域をずらしたことにある。
(Function) The first feature of the structure described above is that a counter spring is provided, and the second feature is that the first light used for pattern inspection and the detection of positional deviation are used. The reason is that the irradiation area with the second light provided is shifted.

このように本発明の第1の特徴たるカウンタスプリング
を設けたことによれば、駆動部材に加わる負荷を軽減す
ることができ、これにより駆動部材による光学鏡筒の移
動を高速で行うことができる。
By providing the counterspring, which is the first feature of the present invention, it is possible to reduce the load applied to the drive member, thereby allowing the drive member to move the optical lens barrel at high speed. .

また、第2の特徴たる位置検出用の光とパターン検査用
の光の照射領域をずらすことによれば、お互いの光の干
渉や外乱等による位置ずれ検出の測定誤差を低減できる
In addition, by shifting the irradiation areas of the position detection light and the pattern inspection light, which is the second feature, it is possible to reduce measurement errors in position shift detection due to mutual interference of light, disturbance, etc.

以上の画構成を採用することにより本発明の目的たる試
料の被検査面を検出光学系の焦点位置に高い周波数応答
性で精度良く自動的に合せることが可能となる。
By employing the above image configuration, it becomes possible to automatically align the surface to be inspected of the sample, which is the object of the present invention, with the focal position of the detection optical system with high precision and high frequency response.

(実施例) 第1図は本発明の一実施例に係わるパターン欠陥検査装
置を示す概略構成図である。図中21はレチクル(試料
)であり、このレチクル21はその被検査面を下にして
図示しないX−Yテーブル上に載置されている。レチク
ル2ユの上方には光源22が配置されており、この光源
22からの光は集光レンズ23を介して集束されレチク
ル21に照射される。レチクル21を透過した光は光学
鏡筒24の上部に設けられた対物レンズ25a、25b
、25cにより、光学鏡筒24の下部に設けられたパタ
ーン検査用光検出素子26の受光面に結像される。そし
て、この光検出素子26により得られたパターン情報と
設計パターン情報とを比較することにより、パターン欠
陥の有無が検査されるものとなっている。
(Embodiment) FIG. 1 is a schematic configuration diagram showing a pattern defect inspection apparatus according to an embodiment of the present invention. In the figure, 21 is a reticle (sample), and this reticle 21 is placed on an XY table (not shown) with its surface to be inspected facing down. A light source 22 is arranged above the reticle 2 , and light from the light source 22 is focused through a condenser lens 23 and irradiated onto the reticle 21 . The light transmitted through the reticle 21 is transmitted through objective lenses 25a and 25b provided at the top of the optical barrel 24.
, 25c, an image is formed on the light receiving surface of the pattern inspection photodetector element 26 provided at the lower part of the optical barrel 24. By comparing the pattern information obtained by this photodetecting element 26 with the designed pattern information, the presence or absence of pattern defects is inspected.

前記光学鏡筒24は平行バネを構成するよう配列された
弾性部材27.28を介して固定部29に固定されてい
る。弾性部材27.28は、第2図(a) (b)にそ
れぞれ平面図および矢視A−A断面を示す如く、円板体
の所望部分を軸対称に穿設して設けられており、これに
より光学鏡筒24は光軸方向(上下方向)にのみ移動可
能となっている。
The optical lens barrel 24 is fixed to a fixing part 29 via elastic members 27 and 28 arranged to form parallel springs. The elastic members 27 and 28 are provided by perforating desired portions of the disc body axially symmetrically, as shown in the plan view and the cross section taken along arrow A-A in FIGS. 2(a) and 2(b), respectively. This allows the optical barrel 24 to move only in the optical axis direction (vertical direction).

また、光学鏡筒24と固定部29との間には、本発明の
第1の特徴たるカウンタスプリング30および駆動部材
31がそれぞれ接続されている。カウンタスプリング3
0は光学鏡筒24を支えこの鏡筒24の重量をバランス
するものである。駆動部材31は圧電効果を有する素子
、例えばチタン酸ジルコン酸鉛系の磁器で製作されたピ
エゾ素子等からなるので、駆動回路32により電圧を印
加されて伸縮し、これにより光学鏡筒24が上下動せら
れるものとなっている。なお、第1図中33゜34.3
5.36は弾性部材27.28をそれぞれ光学鏡筒24
および固定部29に固定するための固定部材であり、固
定部材33乃至36はそれぞれ図示しないボルトによっ
て光学鏡筒24或いは固定部29に固定されている。
Further, a counterspring 30 and a drive member 31, which are the first feature of the present invention, are connected between the optical barrel 24 and the fixed part 29, respectively. counter spring 3
0 supports the optical lens barrel 24 and balances the weight of this lens barrel 24. The drive member 31 is made of an element having a piezoelectric effect, such as a piezo element made of lead zirconate titanate porcelain, so it expands and contracts when a voltage is applied by the drive circuit 32, thereby causing the optical barrel 24 to move up and down. It is something that can be moved. In addition, 33°34.3 in Figure 1
5.36 connects the elastic members 27 and 28 to the optical lens barrel 24, respectively.
and a fixing member for fixing to the fixing part 29, and the fixing members 33 to 36 are each fixed to the optical lens barrel 24 or the fixing part 29 by bolts (not shown).

また、前記光学鏡筒24の左側部には、発光用電源41
により発光駆動される発光素子(光ビーム発生源)42
が取り付けられている。この発光素子42からの光は、
ビームベンダ43a、43bおよびレンズ44aを介し
、集束されたビームとなり前記レチクル21の被検査面
に照射される。
Further, a light emitting power source 41 is provided on the left side of the optical barrel 24.
A light emitting element (light beam generation source) 42 driven to emit light by
is installed. The light from this light emitting element 42 is
The beam becomes a focused beam and is irradiated onto the surface of the reticle 21 to be inspected via the beam benders 43a, 43b and the lens 44a.

レチクル21の被検査面からの反射光はビームベンダ4
3c、43dおよびレンズ44bを介し、光学鏡筒24
の右側部に取り付けられた受光素子(位置ずれ検出用光
検出素子)45の受光面に結像される。ここで、発光素
子42からの光は第3図に示す如く試料21の被検査面
において、前記光源22からの光の照射領域51と僅か
にずれた位置52に照射されるものとなっている。この
ように照射領域をずらすことが本発明の第2の特徴であ
る。つまり、ビームベンダ43a、43bおよびレンズ
44a等からなる検出用光学系とビームベンダ43c、
43dおよびレンズ44b等からなる検出用光学系とが
鏡筒24の中心軸を対称とする対向位置より僅かにずら
して配置されている。そして、発光素子42からの光の
照射位置52は光源22からの光の照射領域51から上
記各検出用光学系の対向方向と直交する方向にずれるも
のとなっている。受光素子45は、例えば2分割のホト
ダイオードからなるもので、試料21の被検査面が所望
位置、つまり対物レンズ25a。
The reflected light from the inspection surface of the reticle 21 is transmitted to the beam bender 4.
3c, 43d and the lens 44b, the optical barrel 24
The image is formed on the light-receiving surface of a light-receiving element (photo-detecting element for positional deviation detection) 45 attached to the right side of the image. Here, the light from the light emitting element 42 is irradiated onto a position 52 on the surface to be inspected of the sample 21, which is slightly shifted from the irradiation area 51 of the light from the light source 22, as shown in FIG. . Shifting the irradiation area in this way is the second feature of the present invention. That is, a detection optical system consisting of beam benders 43a, 43b, lens 44a, etc., beam bender 43c,
43d and a detection optical system including a lens 44b and the like are arranged slightly shifted from opposing positions symmetrical about the central axis of the lens barrel 24. The irradiation position 52 of the light from the light emitting element 42 is shifted from the irradiation area 51 of the light from the light source 22 in a direction perpendicular to the facing direction of each detection optical system. The light receiving element 45 is composed of, for example, a two-part photodiode, and the surface to be inspected of the sample 21 is located at a desired position, that is, the objective lens 25a.

乃至25cおよび光検出素子26等からなる光学系の焦
点位置にあるとき、その中央部に反射光のスポットが結
像されるよう位置決めされている。
It is positioned so that a spot of reflected light is imaged at the center when it is at the focal point of the optical system consisting of 25c to 25c, the photodetector 26, and the like.

受光素子45の2つの出力はそれぞれ減算回路46およ
び加算回路47を介して割算回路48に供給される。こ
の割算回路48の出力は、発光素子42の光度変化や光
路中の光学素子の透過率、或いは反、射率の−様な変化
等が生じても、これらの変化に関係なく、試料21の被
検査面の上下動に対応したものとなる。そして、割算回
路48の出力、つまり位置ずれ情報が前記駆動回路32
に供給され、これにより光学鏡筒24の移動量が制御さ
れるものとなっている。なお、位置ずれ検出位置とパタ
ーン検査位置とが異なるために生じる上下方向の位置ず
れは、試料21のそりが数[mm]の範囲内では0.5
[μm]以下となり無視できる値である。
The two outputs of the light receiving element 45 are supplied to a division circuit 48 via a subtraction circuit 46 and an addition circuit 47, respectively. The output of this divider circuit 48 is determined by the sample 21 regardless of changes in the luminous intensity of the light emitting element 42 or changes in the transmittance or emissivity of optical elements in the optical path. This corresponds to the vertical movement of the surface to be inspected. Then, the output of the division circuit 48, that is, the positional deviation information is transmitted to the drive circuit 32.
The amount of movement of the optical lens barrel 24 is thereby controlled. Note that the vertical positional deviation that occurs due to the difference between the positional deviation detection position and the pattern inspection position is 0.5 when the warpage of the sample 21 is within several [mm].
This value is less than [μm] and can be ignored.

ここで、試料21の被検査面が前記光学系の焦点位置に
ある場合、前述したように受光素子45の中央部にスポ
ットが結像されるため減算回路46の出力は零となる。
Here, when the surface to be inspected of the sample 21 is at the focal point of the optical system, a spot is imaged at the center of the light receiving element 45 as described above, so the output of the subtraction circuit 46 becomes zero.

このため、割算回路48の出力も零となり光学鏡筒24
は移動されない。
Therefore, the output of the divider circuit 48 also becomes zero, and the optical lens barrel 24
is not moved.

一方、試料21の被検査面が前記光学系の焦点位置より
ずれた場合、例えば焦点位置より下方向に変位した場合
、受光素子45に結像されるスポ・ソトは中央部より下
方向にずれる。このため、減算回路46の出力が正或い
は負となり割算回路48を介して駆動回路32に与えら
れる。そして、駆動回路32により前記駆動部材31を
伸長させる方向の電圧が印加される。これにより、光源
鏡筒24が上方向に移動し、その結果前記被検査面の位
置ずれが補正されることになる。また、試料21の被検
査面が前記光学系の焦点位置より下方向にずれた場合は
、上記と逆の動作となりその位置ずれが自動的に補正さ
れることになる。
On the other hand, if the surface to be inspected of the sample 21 deviates from the focal position of the optical system, for example, if it is displaced downward from the focal position, the spot imaged on the light receiving element 45 will shift downward from the central part. . Therefore, the output of the subtraction circuit 46 becomes positive or negative and is applied to the drive circuit 32 via the division circuit 48. Then, a voltage is applied by the drive circuit 32 in a direction that causes the drive member 31 to extend. As a result, the light source barrel 24 moves upward, and as a result, the positional deviation of the surface to be inspected is corrected. Furthermore, if the surface to be inspected of the sample 21 deviates downward from the focal point position of the optical system, the operation will be reversed to that described above, and the positional deviation will be automatically corrected.

このように本発明の第1の特徴たるカウンタスプリング
を設けたことによれば、駆動部材に加わる負荷を軽減す
ることができ、これにより駆動部材による光学鏡筒の移
動を高速で行うことがてきる。
By providing the counterspring, which is the first feature of the present invention, it is possible to reduce the load applied to the drive member, thereby allowing the drive member to move the optical lens barrel at high speed. Ru.

また、第2の特徴たる位置検出用の光とバタン検査用の
光の照射領域をずらすことによれば、お互いの光の干渉
や外乱等による位置ずれ検出の測定誤差を低減できる。
Furthermore, by shifting the irradiation areas of the light for position detection and the light for button inspection, which is the second feature, it is possible to reduce measurement errors in detecting positional deviation due to mutual interference of light, disturbance, etc.

以上の画構成を採用することにより本発明の目的たる試
料の被検査面を検出光学系の焦点位置に高い周波数応答
性で精度良く自動的に合せることが可能となる。
By employing the above image configuration, it becomes possible to automatically align the surface to be inspected of the sample, which is the object of the present invention, with the focal position of the detection optical system with high precision and high frequency response.

このように本装置では、レチクル21の被検査面を常に
検出光学系の焦点位置に合わせた状態で、レチクル21
のパターン欠陥を検査することができる。そしてこの場
合、レチクル21の被検査面の位置ずれを光学的に検出
すると共に、光学鏡筒24を上下動する駆動部材31と
してピエゾ素子(最小変位50人、応答周波数5kHz
以上)を用い、光学鏡筒24を弾性部材27.28の弾
性変形により移動させているので、高い分解能と高い応
答周波数を得ることができる。実際には最小分解能0.
1 [μm] 、応答周波数300 [Hzコの高性能
を得ることができた。しかも、発光素子42からの光の
照射位置52を光源22からの光の照射領域51と僅か
にずらすようにしているので、パターン検査に供される
光の影響で位置ずれ検出の測定誤差が生じる等の不都合
を確実になくすことができる。また、光学鏡筒24を平
行バネを形成するよう配列された弾性部材27.28で
支持しているので、横方向の剛性が高く、光学鏡筒24
を上下動した場合にあっても光学鏡筒24が傾く等の不
都合はない。さらに、カウンタスプリング30によって
光学鏡筒24の重量を支えているので、駆動部材31に
加わる負荷を小さくすることができる。また、発光素子
42.受光素子45、レンズ44a、44bおよびビー
ムベンダ43a、〜、43d等からなる位置ずれ検出機
構を光学鏡筒24に直接取り付けているので、レチクル
21の被検査面に照射されるスポット光の入射角を小さ
くすることができ、これにより位置ずれ検出精度の向上
をはかり得る等の効果を奏する。
In this way, in this apparatus, the reticle 21 is moved with the surface to be inspected of the reticle 21 always aligned with the focal position of the detection optical system.
can be inspected for pattern defects. In this case, a piezo element (minimum displacement of 50 people, response frequency of 5 kHz
Since the optical lens barrel 24 is moved by the elastic deformation of the elastic members 27 and 28, high resolution and high response frequency can be obtained. In reality, the minimum resolution is 0.
1 [μm] and a response frequency of 300 [Hz]. Moreover, since the irradiation position 52 of the light from the light emitting element 42 is slightly shifted from the irradiation area 51 of the light from the light source 22, measurement errors in positional deviation detection occur due to the influence of the light used for pattern inspection. It is possible to reliably eliminate such inconveniences. In addition, since the optical barrel 24 is supported by elastic members 27 and 28 arranged to form parallel springs, the lateral rigidity is high, and the optical barrel 24
Even when the optical lens barrel 24 is moved up and down, there is no problem such as tilting of the optical lens barrel 24. Furthermore, since the weight of the optical lens barrel 24 is supported by the counterspring 30, the load applied to the drive member 31 can be reduced. Further, the light emitting element 42. Since the positional deviation detection mechanism consisting of the light receiving element 45, lenses 44a, 44b, beam benders 43a, . can be made smaller, which has the effect of improving positional deviation detection accuracy.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記位置ずれ検出に供される光の照射位置
を、第4図および第5図に示す如く前記検出用光学系の
対向方向に沿ってずらすようにしてもよい。さらに、位
置ずれ検出に供される光の照射位置は1箇所に限るもの
ではなく、第6図に示す如く上記照射位置を前記パター
ン検査に供される光の照射領域を挟んで2箇所に設定し
、それぞれの照射位置からの反射光の平均をとって位置
ずれ、検出を行うようにしてもよい。この場合、パター
ン検査位置と位置ずれ検出位置との違いによる上下方向
の位置ずれをより小さくすることが可能である。同様に
、位置ずれ検出に供される光の照射位置を3箇所以上に
設定することもできる。
Note that the present invention is not limited to the embodiments described above. For example, the irradiation position of the light used for positional deviation detection may be shifted along the direction facing the detection optical system, as shown in FIGS. 4 and 5. Furthermore, the irradiation position of the light used for positional deviation detection is not limited to one location, but the irradiation position is set to two locations sandwiching the irradiation area of the light used for the pattern inspection, as shown in FIG. However, the positional shift may be detected by averaging the reflected light from each irradiation position. In this case, it is possible to further reduce the vertical positional deviation due to the difference between the pattern inspection position and the positional deviation detection position. Similarly, the irradiation positions of light used for positional deviation detection can be set to three or more locations.

また、前記位置ずれ検出機構の構成は必ずしも実施例に
限定されるものではなく、仕様に応じて適宜変更するこ
とができる。さらに、前記位置ずれ補正機構も仕様に応
じて適宜変更できるのは勿論のことである。また、パタ
ーン欠陥検査装置の他に、パターン寸法測定やパターン
観察等に供される各種のパターン検査装置に適用するこ
とが可能である。要するに本発明は、その要旨を逸脱し
ない範囲で、種々変形して実施することができる。
Further, the configuration of the positional deviation detection mechanism is not necessarily limited to the embodiment, and can be changed as appropriate according to specifications. Furthermore, it goes without saying that the positional deviation correction mechanism can also be changed as appropriate depending on the specifications. In addition to the pattern defect inspection apparatus, the present invention can be applied to various pattern inspection apparatuses used for pattern dimension measurement, pattern observation, and the like. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上詳述したように、本発明によれば、試料り被検査面
を検出光学系の焦点位置に高い周波数肝答性で精度良く
合わせることが可能となり、微細なパターンの欠陥等を
も高精度に検査すること力できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to precisely align the surface to be inspected with the focal position of the detection optical system with high frequency response, thereby eliminating defects in fine patterns. etc. can be inspected with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わるパターン欠陥検査装
置を示す概略構成図、第2図(a)(b)は上記実施例
装置に用いた弾性部材の形状を示す平面図および断面図
、第3図は上記実施例の作用を説明するための平面図、
第4図乃至第6図はそれぞれ変形例を説明するための図
、第7図は従来の装置を示す概略構成図である。 21・・レチクル(試料)、22・・・光源、23−・
・集光レンズ、24・・・光学鏡筒、25a、25b。 25c・・・対物レンズ、26・・・パターン検査用光
検出素子、27.28・・・弾性部材、29・・・固定
部。 30・・・カウンタスプリング、31・・・駆動部材。 32・・・駆動回路、42・・・発光素子、43a、4
3b 。 ビームベンダ。 44b・・・レンズ。 5・・・受光素子 (位置ずれ検出 用光検出素子) 照射領域。 2・・・照射位 置。
FIG. 1 is a schematic configuration diagram showing a pattern defect inspection device according to an embodiment of the present invention, and FIGS. 2(a) and 2(b) are a plan view and a cross-sectional view showing the shape of an elastic member used in the above embodiment device. , FIG. 3 is a plan view for explaining the operation of the above embodiment,
4 to 6 are diagrams for explaining modified examples, respectively, and FIG. 7 is a schematic configuration diagram showing a conventional device. 21... Reticle (sample), 22... Light source, 23-...
- Condensing lens, 24... Optical lens barrel, 25a, 25b. 25c...Objective lens, 26...Photodetection element for pattern inspection, 27.28...Elastic member, 29...Fixing part. 30... Counter spring, 31... Drive member. 32... Drive circuit, 42... Light emitting element, 43a, 4
3b. beam bender. 44b...Lens. 5... Light receiving element (light detecting element for detecting positional deviation) irradiation area. 2...Irradiation position.

Claims (3)

【特許請求の範囲】[Claims] (1)試料の被検査面に第1の光を照射しその透過光或
いは反射光の持つ情報により被検査面のパターンを検査
するパターン検査装置において、前記第1の光の光軸方
向に沿って設けられパターン検査用検出手段を取着した
光学鏡筒と、一端が固定部に固定されその自由端で前記
光学鏡筒を前記第1の光の光軸方向に移動可能に支持す
る弾性部材と、 前記光学鏡筒と前記固定部との間に接続され前記光学鏡
筒の重量をバランスするためのカウンタスプリングと、 前記光学鏡筒と前記固定部との間に接続され前記光学鏡
筒を前記第1の光の光軸方向に移動駆動するための駆動
手段と、 前記検査面に所定の入射角でかつ、前記第1の光の照射
領域とはずらして第2の光を照射し、その反射光を検出
して前記被検査面の所望位置と実際位置とのずれを検出
する位置ずれ検出機構と、この位置ずれ検出機構の検出
情報に基づいて前記駆動手段による前記光学鏡筒の移動
量を制御する制御手段と、 を具備してなることを特徴とするパターン検査装置。
(1) In a pattern inspection device that irradiates a surface to be inspected of a sample with first light and inspects a pattern on the surface to be inspected based on information contained in the transmitted light or reflected light, a pattern of the surface to be inspected is inspected along the optical axis direction of the first light. an elastic member having one end fixed to a fixed part and supporting the optical barrel movably in the optical axis direction of the first light at its free end; a counter spring connected between the optical barrel and the fixing part to balance the weight of the optical barrel; and a counter spring connected between the optical barrel and the fixing part to balance the weight of the optical barrel. a drive means for moving and driving the first light in the optical axis direction; irradiating the inspection surface with a second light at a predetermined angle of incidence and offset from the irradiation area of the first light; a positional deviation detection mechanism that detects the reflected light to detect a deviation between the desired position and the actual position of the surface to be inspected, and movement of the optical lens barrel by the drive means based on the detection information of the positional deviation detection mechanism. A pattern inspection device comprising: a control means for controlling an amount; and a pattern inspection device.
(2)前記第2の光の照射領域は、前記第1の光の照射
領域外であって、かつ前記第1の光の照射領域近傍に照
射されることを特徴とする特許請求の範囲第1項記載の
パターン検査装置。
(2) The irradiation area of the second light is outside the irradiation area of the first light and is irradiated in the vicinity of the irradiation area of the first light. The pattern inspection device according to item 1.
(3)前記光学鏡筒は円筒状に形成されると共にその外
周面にねじ部が設けられ、かつ内周面にねじ部が設けら
れた固定部の中空部内に配置されており、前記弾性部材
および駆動手段の各一端を前記外周ねじ部に螺合するナ
ット類により前記光学鏡筒に固定し、前記弾性部材およ
び駆動手段の各他端を上記内周ねじ部に螺合するナット
類により前記固定部に固定してなることを特徴とする特
許請求の範囲第1項記載のパターン検査装置。
(3) The optical lens barrel is formed in a cylindrical shape and has a threaded portion on its outer circumferential surface, and is disposed in a hollow portion of a fixing portion provided with a threaded portion on its inner circumferential surface, and the elastic member and one end of the driving means is fixed to the optical barrel by nuts screwed into the outer threaded portion, and the other ends of the elastic member and the driving means are fixed to the optical barrel by nuts screwed into the inner threaded portion. 2. The pattern inspection device according to claim 1, wherein the pattern inspection device is fixed to a fixed portion.
JP19860790A 1990-07-26 1990-07-26 Pattern inspection equipment Expired - Lifetime JPH0646300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19860790A JPH0646300B2 (en) 1990-07-26 1990-07-26 Pattern inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19860790A JPH0646300B2 (en) 1990-07-26 1990-07-26 Pattern inspection equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13244182A Division JPS5922327A (en) 1982-07-29 1982-07-29 Pattern inspection device

Publications (2)

Publication Number Publication Date
JPH04127151A true JPH04127151A (en) 1992-04-28
JPH0646300B2 JPH0646300B2 (en) 1994-06-15

Family

ID=16394009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19860790A Expired - Lifetime JPH0646300B2 (en) 1990-07-26 1990-07-26 Pattern inspection equipment

Country Status (1)

Country Link
JP (1) JPH0646300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150792A (en) * 2007-12-21 2009-07-09 Gunze Ltd Film inspecting apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150792A (en) * 2007-12-21 2009-07-09 Gunze Ltd Film inspecting apparatus

Also Published As

Publication number Publication date
JPH0646300B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
KR100471524B1 (en) Exposure method
JP5464155B2 (en) Exposure apparatus and exposure method
KR100230690B1 (en) Method and apparatus for projecting mask pattern on board
JP3181050B2 (en) Projection exposure method and apparatus
KR101963012B1 (en) Exposure apparatus, exposure method, and device manufacturing method
US4730927A (en) Method and apparatus for measuring positions on the surface of a flat object
JP2003066341A (en) Reticle inspection device
KR20020077515A (en) Position measuring apparatus and aligner
JP2007107884A (en) Substrate inspection device and substrate inspection method
JP3677263B2 (en) How to adjust the height position of the sample surface
JP4261689B2 (en) EXPOSURE APPARATUS, METHOD USED FOR THE EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD USING THE EXPOSURE APPARATUS
JPH0258766B2 (en)
JPH04127151A (en) Pattern inspecting device
JPH0328688B2 (en)
JPS5922327A (en) Pattern inspection device
JPS5946611A (en) Device for optical inspection
JP2006013266A (en) Measuring method, exposure method, and aligner
JPH09199573A (en) Positioning stage apparatus and aligner using the same
JPH0645228A (en) Projection aligner
JPS59119205A (en) Sample position measuring method
WO2010143652A1 (en) Method and apparatus for exposure and device fabricating method
EP3800505A1 (en) Measurement system and method for characterizing a patterning device
TW202314192A (en) Through-the-lens height measurement
CN115406905A (en) Defect detection device and correction method for defect detection
CN114675514A (en) Leveling and focusing device