JPH04127090A - Built-in type recirculation pump - Google Patents

Built-in type recirculation pump

Info

Publication number
JPH04127090A
JPH04127090A JP2248528A JP24852890A JPH04127090A JP H04127090 A JPH04127090 A JP H04127090A JP 2248528 A JP2248528 A JP 2248528A JP 24852890 A JP24852890 A JP 24852890A JP H04127090 A JPH04127090 A JP H04127090A
Authority
JP
Japan
Prior art keywords
motor
rotating shaft
impeller
built
recirculation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248528A
Other languages
Japanese (ja)
Inventor
Masahiro Kobayashi
雅弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2248528A priority Critical patent/JPH04127090A/en
Publication of JPH04127090A publication Critical patent/JPH04127090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To ensure constant revolution of a pump even when a power source is lost by mounting a plurality of rotary blades on a rotating shaft to be housed into a motor case, which is provided with an outflow port of a fluid to drive and rotate the rotary blades. CONSTITUTION:A plurality of rotary blades 22 are mounted on a hollow tube 21 on an outer circumference of a rotating shaft within a motor case 8 mounted on an outer circumference of a lower mirror 4 of a reactor pressure vessel. The rotating shaft acts as impeller shaft 9 thereabove and as a motor shaft 10 at a motor section. As the tube 21 is connected to the rotating shaft with a key, with the rotation of the rotary blades 22, an impeller 5 rotates through the rotating shaft. An inflow port 23 and an outflow port 24 of a fluid for rotating the rotary blades 22 are formed in the case 8 and an introduction pipe 25 is connected to the inflow port 23 to introduce a reactor water in the reactor pressure vessel while a discharge pipe 26 is connected to the outflow port 24 to be linked to a low pressure section. An injection valve 27 and a discharge valve 28 set at the introduction pipe 25 and a leader pipe 26 are controlled to open simultaneously when revolution of a pump falls below a fixed value as caused by the losing of a power source.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子炉の内蔵型再循環ポンプに係り、特に万
−外部電源喪失等によっても急激に停止することのない
内蔵型再循環ポンプに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a built-in recirculation pump for a nuclear reactor, and particularly to a recirculation pump that does not suddenly stop even in the event of a loss of external power. Concerning self-contained recirculation pumps.

(従来の技術) 第3図に示すように、沸騰水型原子炉において炉心冷却
水を循環するために内蔵型再循環ポンプ1が炉内に設置
される場合、通常シュラウド2の外側に配置されて原子
炉圧力容器3の下鏡4に8〜12台取付けられ、冷却水
を炉心5下部に送込んでいる。このような内蔵型再循環
ポンプ1は第4図に示すような構造を有し、インペラ5
は炉内ダウンカマ6にあるバッフルプレートに設けられ
ている。モータ7は水没タイプで圧力容器下鏡4外周上
に取付けられたモータケース8内に収納されており、イ
ンペラ5とは上部でインペラシャフト9、下部てモータ
シャフト10となる回転シャフトによって連結され回転
力をインペラ5に伝える。ダウンカマ6を下降する炉内
の冷却水は、このインペラ5によって昇圧され炉心5下
部に送られることにより、上昇して炉心5へ入り、燃料
を冷却する。モータはケーブルを通して外部電源につな
がっている。
(Prior Art) As shown in FIG. 3, when a built-in recirculation pump 1 is installed inside the reactor to circulate core cooling water in a boiling water reactor, it is usually placed outside the shroud 2. Eight to twelve units are attached to the lower mirror 4 of the reactor pressure vessel 3 and feed cooling water to the lower part of the reactor core 5. Such a built-in recirculation pump 1 has a structure as shown in FIG.
is provided on a baffle plate in the downcomer 6 in the furnace. The motor 7 is a submerged type and is housed in a motor case 8 attached to the outer periphery of the pressure vessel lower mirror 4. The motor 7 is connected to the impeller 5 by a rotating shaft, which is an impeller shaft 9 at the upper part and a motor shaft 10 at the lower part. Transmits power to impeller 5. Cooling water in the reactor descending through the downcomer 6 is pressurized by the impeller 5 and sent to the lower part of the reactor core 5, so that it rises and enters the reactor core 5 to cool the fuel. The motor is connected to an external power source through a cable.

この内蔵型再循環ポンプのインペラは炉内に入るため、
またモータも外部の干渉を避けるためコンパクトにでき
ており、インペラ、モータ共に直径を増すことは限界で
ある。そのため、このポンプの慣性は小さい。
The impeller of this self-contained recirculation pump goes inside the furnace, so
The motor is also made compact to avoid external interference, and there is a limit to increasing the diameter of both the impeller and motor. Therefore, the inertia of this pump is small.

このため、万一、原子炉の運転中、このモータの電源が
なんらかの原因で喪失した場合、例えば落雷により外部
電源が喪失すると、第5図に回転数1200rpm s
ポンプ慣性19.5)cgrrl’のポンプが流量10
0%の仕事をしていた場合の外部電源喪失後の経過時間
(秒)に対するポンプ速度(%)の変化をグラフにして
示したように、ポンプ回転数が急激に下がり、それに対
応して第6図に外部電源喪失後の経過時間(秒)に対す
る炉心流量(%)の変化を示したように、炉心への冷却
水は減少し、燃料に一時的に(数秒間)熱負荷がかかる
Therefore, if the power to this motor is lost for some reason during the operation of the nuclear reactor, for example, if the external power is lost due to a lightning strike, the rotation speed will be reduced to 1200 rpm s as shown in Figure 5.
Pump inertia 19.5) A pump with cgrrl' has a flow rate of 10
As shown in the graph showing the change in pump speed (%) against the elapsed time (seconds) after the loss of external power when the work was 0%, the pump rotation speed suddenly decreased and the pump speed decreased accordingly. As shown in Figure 6, which shows the change in the core flow rate (%) with respect to the elapsed time (seconds) after the loss of external power, the cooling water to the core decreases, and a thermal load is temporarily applied to the fuel (for a few seconds).

このようなことを防ぐため、現在の内蔵型再循環ポンプ
の電源には、第7図に示すようにM−Gセット11を配
置し、万一、外部電源が喪失しても、M−Gセット11
の慣性によって内蔵型再循環ポンプ1の電源を確保して
、急激な喪失を防いている。
In order to prevent this, the power supply of the current built-in recirculation pump is equipped with an M-G set 11 as shown in Figure 7, so that even if the external power supply is lost, the M-G set 11
The inertia of the built-in recirculation pump 1 secures the power supply and prevents sudden loss of power.

(発明が解決しようとする課題) ところで、このM−Gセット11はモータ101と発電
機102とを流体継手を介して機械的に組合わせたもの
で、流体継手は入力軸に接続され回転するインペラと出
力軸に接続されたランチとが向い合って、油中に浸漬さ
れてなり、この油量の調節によって発電機102の回転
数が制御される。そして、この発電機102の出力は変
圧器103や整流器104、インバータ105等を介し
て内蔵型再循環ポンプ1に供給され、内蔵型再循環ポン
プ1をその出力に比例した回転数で回転させるようにな
っている。なお、第7図において符号106は断路器、
107は遮断器、108はケーブル、109は主変圧器
、110は主発電機、111は所内変圧器を示す。
(Problem to be Solved by the Invention) By the way, this M-G set 11 is a mechanical combination of a motor 101 and a generator 102 via a fluid coupling, and the fluid coupling is connected to an input shaft and rotates. The impeller and the launch connected to the output shaft face each other and are immersed in oil, and the rotation speed of the generator 102 is controlled by adjusting the amount of oil. The output of the generator 102 is supplied to the built-in recirculation pump 1 via a transformer 103, a rectifier 104, an inverter 105, etc., and the built-in recirculation pump 1 is rotated at a rotation speed proportional to the output. It has become. In addition, in FIG. 7, the reference numeral 106 is a disconnector,
107 is a circuit breaker, 108 is a cable, 109 is a main transformer, 110 is a main generator, and 111 is a station transformer.

このように、M−Gセット11は大型で、電気系統も複
雑であり、原子炉建屋内で大きなスペースをとるため、
コスト上大きな負担となっている。
As described above, the M-G set 11 is large, has a complicated electrical system, and takes up a large space in the reactor building.
This poses a large cost burden.

本発明はかかる点に対処して成されたもので、上記の諸
欠点を除去し、内蔵型再循環ポンプの電源に大型のM−
Gセットを配置するすることなく、万一電源が喪失して
も、ポンプの回転数を一定以上確保することができる内
蔵型再循環ポンプを提供することを目的とする。
The present invention has been made to address these points, and eliminates the above-mentioned drawbacks and uses a large M-type as a power source for a built-in recirculation pump.
To provide a built-in recirculation pump that can maintain the rotational speed of the pump above a certain level even if power is lost without disposing a G set.

[発明の構成] (課題を解決するための手段) 本発明の内蔵型再循環ポンプは、インペラとモーターと
を連結しインペラに回転力を伝える回転シャフトにモー
ターケース内において複数枚の回転翼を取付け、このモ
ーターケースに回転翼を回転駆動する流体の流入口およ
び流出口を設けたものである。
[Structure of the Invention] (Means for Solving the Problems) The built-in recirculation pump of the present invention has a plurality of rotary blades mounted in a motor case on a rotary shaft that connects an impeller and a motor and transmits rotational force to the impeller. The motor case is provided with an inlet and an outlet for the fluid that drives the rotor to rotate.

(作 用) 本発明の内蔵型再循環ポンプにおいては、その電源喪失
時に、高圧部から低圧部に流れる流体をモーターケース
に設けた流入口より導入して流出口より低圧部へ流れる
ようバルブ等を操作することにより、回転シャフトに取
付けた回転翼を回転させることができ、この回転力によ
りインペラの失速を防ぎ、所定以上の回転数を確保する
ことができる。
(Function) In the built-in recirculation pump of the present invention, when the power is lost, a valve or the like is installed so that the fluid flowing from the high pressure section to the low pressure section is introduced from the inlet provided in the motor case and flows from the outlet to the low pressure section. By operating the impeller, the rotor blades attached to the rotary shaft can be rotated, and this rotational force can prevent the impeller from stalling and ensure a rotation speed above a predetermined value.

(実施例) 以下、図面に基いて本発明の一実施例を説明する。なお
、従来例と同一部分については同一符号を付記し、その
説明を省略する。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. Note that the same parts as in the conventional example are given the same reference numerals, and the explanation thereof will be omitted.

第1図に本発明の一実施例の内蔵型再循環ポンプを示す
。さらに、第1図におけるA−Aの切断面を第2図に示
す。本実施例では、原子炉圧力容器下鏡4の外周に取付
けたモータケース8内の回転シャフトの外周にあるホロ
ーチューブ21に数枚の回転g22が取付けられる。回
転シャフトは上方でインペラシャフト9となリモータ部
ではモータシャフト10ととなっており、ホローチュー
ブ21は回転シャフトにキーにて連結されているため、
回転翼22が回転すれば回転シャフトを介してインペラ
5も回転する。回転翼22を回転させる流体の流入口2
3および流出口24がモータケース8に形成されており
、この流入口23には流体として、例えば原子炉圧力容
器3内の炉水を導く導入管25が接続され、流出口24
には低圧部につながる排出管26か接続される。導入管
25および排出管26にはそれぞれ注入バルブ27およ
び排出バルブ28が設置されており、電源喪失によって
ポンプ回転数がある一定値以下に低下するとこれを検知
して注入バルブ27および排出バルブ28が同時に開く
よう制御する。なお、このように回転翼22を回転させ
る流体として炉水を用いた場合、電源復帰まで数秒間炉
水がモータ部に入るため、モータ7の温度を上げないよ
うに導入管25の途中に炉水貯蔵容器2つを設け、炉水
を常時貯蔵して冷却しておく必要がある。さらに念のた
め、モータケース内の回転翼22とモータ7のステータ
7 a %ロータ7bの間に熱遮蔽壁30を設けて、熱
水が入ってきた時もモータ7の絶縁を守るようにする。
FIG. 1 shows a self-contained recirculation pump according to one embodiment of the present invention. Further, FIG. 2 shows a cross section taken along line A-A in FIG. 1. In this embodiment, several rotary members g22 are attached to a hollow tube 21 on the outer periphery of a rotating shaft in a motor case 8 attached to the outer periphery of the lower mirror 4 of the reactor pressure vessel. The rotating shaft is the impeller shaft 9 at the top and the motor shaft 10 at the remoter part, and the hollow tube 21 is connected to the rotating shaft with a key.
When the rotary blade 22 rotates, the impeller 5 also rotates via the rotating shaft. Inflow port 2 for fluid that rotates the rotor blade 22
3 and an outflow port 24 are formed in the motor case 8. An inlet pipe 25 for introducing reactor water in the reactor pressure vessel 3 as a fluid, for example, is connected to the inflow port 23.
A discharge pipe 26 leading to the low pressure section is connected to the drain pipe 26. An injection valve 27 and a discharge valve 28 are installed in the introduction pipe 25 and the discharge pipe 26, respectively, and when the pump rotation speed drops below a certain value due to power loss, this is detected and the injection valve 27 and discharge valve 28 are activated. Control them to open at the same time. Note that when reactor water is used as the fluid to rotate the rotor blades 22 in this way, the reactor water enters the motor section for several seconds until the power is restored, so a furnace is installed in the middle of the inlet pipe 25 to prevent the temperature of the motor 7 from rising. Two water storage containers must be installed to constantly store and cool reactor water. Furthermore, as a precaution, a heat shielding wall 30 is provided between the rotor blade 22 in the motor case and the stator 7 a % rotor 7 b of the motor 7 to protect the insulation of the motor 7 even when hot water enters. .

以上のように構成することにより、本実施例では、万一
、電源喪失によって、ポンプ回転数が一定値以下に下が
るとこれを検知して、導入管25上に設けられた注入バ
ルブ27と、モータケース8の他の方位にある排出管2
6上にある排出バルブ28が同時に開く。排出ラインは
コンデンシングチャンバ(図示せず)等、低圧部につな
がっており、したがって、炉水はモータケース8内に急
激に流れ込んで回転翼22に衝突する。回転翼22を取
付けたホローチューブ21は、回転シャフトにキーにて
連結されているため、この炉水の衝突によってインペラ
5は回転する。
With the above configuration, in this embodiment, if the pump rotational speed drops below a certain value due to power loss, this will be detected and the injection valve 27 provided on the introduction pipe 25 will Discharge pipe 2 in another direction of motor case 8
The discharge valve 28 above 6 opens at the same time. The exhaust line is connected to a low pressure area, such as a condensing chamber (not shown), so that reactor water rapidly flows into the motor case 8 and impinges on the rotor blades 22. Since the hollow tube 21 to which the rotor blade 22 is attached is connected to the rotary shaft with a key, the impeller 5 rotates due to the collision of this reactor water.

以上の説明から明らかなように、本実施例による内蔵型
再循環ポンプでは、万一の電源喪失においても、炉水が
ポンプ内の回転翼に勢いよく注入されるため、一定数以
上の必要ポンプ回転数を得ることができ、炉心の燃料の
過負荷を防止することができる。
As is clear from the above explanation, in the built-in recirculation pump according to this embodiment, even in the event of power loss, reactor water is vigorously injected into the rotor blades inside the pump, so that more than a certain number of pumps are required. It is possible to obtain the rotational speed and prevent fuel overload of the reactor core.

[発明の効果] 以上説明したように本発明によれば、大きな設備を必要
とすることなく、万一モータの電源が喪失した場合にも
、ポンプの必要最小限の回転数を確保することができ、
炉心の燃料の過負荷を防止することかできる。したがっ
て、本発明の内臓型再循環ポンプは原子力発電プラント
の安全性の向上およびコスト低減に大いに寄与するもの
である。
[Effects of the Invention] As explained above, according to the present invention, even if the motor power is lost, the minimum necessary rotation speed of the pump can be ensured without requiring large equipment. I can do it,
It is possible to prevent fuel overload in the reactor core. Therefore, the built-in recirculation pump of the present invention greatly contributes to improving the safety and reducing costs of nuclear power plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の内蔵型再循環ポンプの一実施例を示
す断面図、第2図は第1図におけるA−Aの切断面図、
第3図は従来の内蔵型再循環ポンプを有する沸騰水型原
子炉の断面図、第4図は従来の内蔵型再循環ポンプを示
す断面図、第5図および第6図はそれぞれ従来の電源喪
失時のポンプ速度および炉心流量の時間変化を示すグラ
フ、第7図はM−Gセットを有する従来の内蔵型再循環
ポンプの電源系統図である。 4・・・原子炉圧力容器下鏡、5・・・インペラ、7・
・・モータ、8・・・モータケース、9・・・インペラ
シャフト、10・・・モータシャフト、21・・・ポロ
ーチューブ、22・・・回転翼、23・・・流入口、2
4・・・流出口、25・・・導入管、26・・・排出管
、27・・・注入バルブ、28・・・排出バルブ、29
・・・炉水貯蔵容器、3o・・・熱遮蔽壁
FIG. 1 is a sectional view showing an embodiment of the built-in recirculation pump of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1,
Figure 3 is a cross-sectional view of a boiling water reactor with a conventional built-in recirculation pump, Figure 4 is a cross-sectional view of a conventional built-in recirculation pump, and Figures 5 and 6 are each a cross-sectional view of a conventional boiling water reactor with a built-in recirculation pump. FIG. 7 is a graph showing temporal changes in pump speed and core flow rate at the time of loss. FIG. 7 is a power supply system diagram of a conventional built-in recirculation pump having an MG set. 4... Reactor pressure vessel lower mirror, 5... Impeller, 7...
...Motor, 8...Motor case, 9...Impeller shaft, 10...Motor shaft, 21...Porrow tube, 22...Rotor blade, 23...Inflow port, 2
4... Outlet, 25... Inlet pipe, 26... Discharge pipe, 27... Injection valve, 28... Discharge valve, 29
...Reactor water storage container, 3o...Heat shield wall

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器下鏡の炉外に取付けられるモーターケー
スと、このモーターケース内に収納されるモーターと、
原子炉圧力容器内に配置され回転して冷却水を炉心に送
込むインペラと、このインペラと前記モーターとを連結
しインペラに回転力を伝える回転シャフトとを具備する
内蔵型再循環ポンプにおいて、前記回転シャフトに前記
モーターケース内に収納される複数枚の回転翼を取付け
、前記モーターケースに前記回転翼を回転駆動する流体
の流入口および流出口を設けたことを特徴とする内蔵型
再循環ポンプ。
A motor case attached to the outside of the reactor pressure vessel lower mirror, a motor housed within this motor case,
In the built-in recirculation pump, the built-in recirculation pump includes an impeller that is arranged in a reactor pressure vessel and rotates to send cooling water to the reactor core, and a rotating shaft that connects the impeller and the motor and transmits rotational force to the impeller. A built-in recirculation pump characterized in that a plurality of rotary blades housed in the motor case are attached to the rotary shaft, and the motor case is provided with an inlet and an outlet for a fluid that rotationally drives the rotor blades. .
JP2248528A 1990-09-18 1990-09-18 Built-in type recirculation pump Pending JPH04127090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248528A JPH04127090A (en) 1990-09-18 1990-09-18 Built-in type recirculation pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248528A JPH04127090A (en) 1990-09-18 1990-09-18 Built-in type recirculation pump

Publications (1)

Publication Number Publication Date
JPH04127090A true JPH04127090A (en) 1992-04-28

Family

ID=17179530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248528A Pending JPH04127090A (en) 1990-09-18 1990-09-18 Built-in type recirculation pump

Country Status (1)

Country Link
JP (1) JPH04127090A (en)

Similar Documents

Publication Publication Date Title
EP0351488B1 (en) Canned pump having a high inertia flywheel
JP3231317B2 (en) Core isolation cooling system with dedicated generator
EP0331887A2 (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
US4769209A (en) Compact small pressurized water nuclear power plant
US4554129A (en) Gas-cooled nuclear reactor
JPH04127090A (en) Built-in type recirculation pump
US3912584A (en) LMFBR with booster pump in pumping loop
US4808369A (en) Emergency core cooling apparatus
EP0017685A1 (en) Pump drive assembly for liquid metal reactor
US3666623A (en) Gas turbine installation for nuclear power plant
RU2080488C1 (en) Horizontal leak-free pump
JP2714020B2 (en) Recirculation pump with built-in reactor
KR20200018994A (en) Reactor Coolant System AND NUCLEAR POWER PLANT HAVING THE SAME
KR100558054B1 (en) Main Coolant Pump for SMART
JPH05256983A (en) Reactor built in type recirculation pump device
JPH05142381A (en) Recirculation pump system with built-in nuclear reactor
JP2634709B2 (en) Containment vessel recirculation fan device
JP3597062B2 (en) Internal pump
JP2895315B2 (en) Internal pump
JPH05296177A (en) Reactor built-in type recirculating pump
JPS5836212Y2 (en) Rotating electrical machine coolant derivation device
US3719557A (en) Circulating system for a nuclear reactor
JPS60177298A (en) Nuclear reactor
JPH01114796A (en) Power supply equipment for coolant pump driving motor for nuclear power generation
Rubinstein LMFBR with booster pump in pumping loop