JPH04127065A - Washing mechanism of biochemical automatic analyzer - Google Patents
Washing mechanism of biochemical automatic analyzerInfo
- Publication number
- JPH04127065A JPH04127065A JP24699390A JP24699390A JPH04127065A JP H04127065 A JPH04127065 A JP H04127065A JP 24699390 A JP24699390 A JP 24699390A JP 24699390 A JP24699390 A JP 24699390A JP H04127065 A JPH04127065 A JP H04127065A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- reaction
- sample
- flow path
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005406 washing Methods 0.000 title abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000004140 cleaning Methods 0.000 claims description 35
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- 238000002835 absorbance Methods 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 4
- 238000011109 contamination Methods 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 13
- 210000002445 nipple Anatomy 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011481 absorbance measurement Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、生化学自動分析装置に係り、真空を利用しサ
ンプルを装置外に排出する流路の洗浄に好適な生化学自
動分析装置の洗浄機構に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic biochemical analyzer, and relates to an automatic biochemical analyzer that is suitable for cleaning a channel for discharging a sample out of the apparatus using vacuum. Regarding the cleaning mechanism.
従来の自動分析装置における分析動作を第2図を用いて
説明する。試料容器30中のサンプルは、試料容器30
がラック26上に乗せられていることにより、サンプラ
1を介して移動し、サンプリング機構6の位置まで移動
する。ここでサンプルは、サンプリング機構6の定量分
取機構5により一定量分取され、反応ディスク2上の反
応容器31に吐出される。反応容器31は、反応ディス
ク2の外縁に円周状−列に配置固定されており、回転駆
動機構(図示省略)により反応ディスク2に固定されて
いる反応容器31は恒温水槽(図示省略)に浸った状態
で円周軌道上を移動する。反応容器31は反応ディスク
2が回転することにより試薬吐出機構10の位置に移動
する。試薬吐出機構10には多連分注器16を介して試
薬容器20がつながっており、試薬容器20中の試薬が
多連分注器16により一定量、サンプルの入った反応容
器に吐出される。試薬のサンプルへの混合は、サンプル
項目等の必要に応じて第1試薬、第2試薬が混入される
。反応容器31中のサンプルと試薬の混合液は、反応デ
ィスク2の回転により撹拌機構13により撹拌され、混
電が促進される。これら一連の動作により検体と試薬の
着色反応が行われ、反応ディスク2の回転により、該反
応容器31は光源と吸光光度計15の間の光軸を横切り
、吸光度が測定され、A/Dコンパ−22でデータをデ
ジタル化した後、コンピータ25へ送る。The analysis operation in a conventional automatic analyzer will be explained using FIG. 2. The sample in the sample container 30
is placed on the rack 26, so that it moves via the sampler 1 and moves to the position of the sampling mechanism 6. Here, a fixed amount of the sample is taken out by the quantitative separation mechanism 5 of the sampling mechanism 6 and discharged into the reaction container 31 on the reaction disk 2. The reaction vessels 31 are arranged and fixed in a circumferential row on the outer edge of the reaction disk 2, and the reaction vessels 31, which are fixed to the reaction disk 2 by a rotational drive mechanism (not shown), are placed in a constant temperature water bath (not shown). It moves in a circular orbit while submerged. The reaction container 31 is moved to the position of the reagent discharge mechanism 10 as the reaction disk 2 rotates. A reagent container 20 is connected to the reagent discharge mechanism 10 via a multiple dispenser 16, and a fixed amount of the reagent in the reagent container 20 is discharged by the multiple dispenser 16 into a reaction container containing a sample. . When mixing the reagents into the sample, the first reagent and the second reagent are mixed according to the needs of the sample item and the like. The mixed liquid of the sample and reagent in the reaction container 31 is stirred by the stirring mechanism 13 as the reaction disk 2 rotates, and current mixing is promoted. Through these series of operations, a coloring reaction between the specimen and the reagent is performed, and the rotation of the reaction disk 2 causes the reaction container 31 to cross the optical axis between the light source and the spectrophotometer 15, and the absorbance is measured. After the data is digitized at -22, it is sent to the computer 25.
以後、試料分注と試薬注入の動作、反応ディスク2の回
転動作を一定時間間隔で繰り返す。その間、該反応容器
31は一定時間間隔ごとに吸光光度計15の光軸を横切
るため、反応液の化学反応過程の吸光度変化を断続的に
追跡コンピュータ22に記録される、この吸光度変化を
コンピュータ22でデータ処理することで、試料中の各
種の成分濃度を算出、装置の操作者が操作部25より操
作することで、各種測定結果がプリンタ、CRTより出
力されたり、フロッピディスク(図示省略)に書き込ま
れたりする。Thereafter, the operations of sample dispensing, reagent injection, and rotation of the reaction disk 2 are repeated at regular time intervals. During this time, the reaction container 31 crosses the optical axis of the spectrophotometer 15 at regular intervals, so that the computer 22 intermittently tracks changes in absorbance during the chemical reaction process of the reaction solution. By processing the data, the concentrations of various components in the sample are calculated, and when the operator of the device operates the operation unit 25, various measurement results can be output to a printer, CRT, or to a floppy disk (not shown). It may be written.
吸光度を測定し終えた反応容器31は、所定の位置で反
応容器洗浄機構14により洗浄される。The reaction container 31 whose absorbance has been measured is cleaned by the reaction container cleaning mechanism 14 at a predetermined position.
該反応容器31が洗浄されているとき、他の反応容器3
1では並行して試料の成分分析が行われているので、反
応容器の洗浄により処理能力が低下することはない。洗
浄を終えた反応容器は次の分析用に供される。第3図に
従来、真空を使用した反応容器31の洗浄機構の廃液吸
引流路系を示す。When the reaction vessel 31 is being cleaned, other reaction vessels 3
In No. 1, the component analysis of the sample is performed in parallel, so cleaning the reaction container does not reduce the throughput. After washing, the reaction vessel is used for the next analysis. FIG. 3 shows a conventional waste liquid suction channel system of a cleaning mechanism for a reaction vessel 31 using a vacuum.
53は反応容器で円周状に断面した図である。80は洗
浄用の給水ノズルで図のようにA−Dの位置にある。5
4は廃液吸引ノズルA−C,G、H。53 is a circumferential cross-sectional view of the reaction vessel. Reference numeral 80 denotes a water supply nozzle for cleaning, which is located at positions A-D as shown in the figure. 5
4 are waste liquid suction nozzles A-C, G, and H.
■の位置にある。洗浄の一連の動作を以下説明する。最
初に、測定の終了した反応容器53内サンプルは吸引ノ
ズル54のAで以下に説明する真空流路により吸引され
次に吸水ノズル80のAで給水される。次にBCに位置
で吸引、給水が行なわれ、Gの位置で反応容器53の壁
面に付着している水滴を吸引する。壁面の液を吸引する
ため吸引ノズル54のG先端は反応容器と同形状品であ
る。。It is located at ■. A series of cleaning operations will be explained below. First, the sample in the reaction container 53 after the measurement is sucked in by the suction nozzle 54 A through a vacuum channel described below, and then water is supplied by the water suction nozzle 80 A. Next, suction and water supply are performed at position BC, and water droplets adhering to the wall surface of reaction vessel 53 are sucked at position G. The G tip of the suction nozzle 54 has the same shape as the reaction vessel in order to suction the liquid on the wall surface. .
給水ノズル80Dは吸光度測定のセルブランク用水であ
る。セルブランク用水を吸引ノズル54Hで吸引し、5
4Iで反応容器53内の壁面の水滴を吸引する。The water supply nozzle 80D is a cell blank water for absorbance measurement. Suction the cell blank water with the suction nozzle 54H,
At step 4I, water droplets on the wall inside the reaction vessel 53 are sucked.
次に真空流路にってい説明する。流路はサンプル吸引と
洗浄水吸引の2流路となっていて、トレインパイプも、
サンプルドレインバイブロ4と洗浄水ドレインバイブロ
5とに分かれ、真空ビンもサンプル真空ビン58と洗浄
水真空ビン59とに分かれている。50〜52は個々の
ノズルに配管される流路用の分岐管である。55〜57
.60〜63は真空系の制御用電磁弁である。57は電
磁弁用分岐管である。66は真空ポンプであり、真空バ
ッファ用の真空タンク69に接続されている。67は真
空度検知用検知器である。真空タンク69内の構造は、
内部が3室に分かれている。Next, the vacuum flow path will be explained. There are two flow paths, one for sample suction and one for washing water suction, and the train pipe is also
It is divided into a sample drain vibro 4 and a wash water drain vibro 5, and the vacuum bottle is also divided into a sample vacuum bottle 58 and a wash water vacuum bottle 59. 50 to 52 are branch pipes for flow paths that are piped to individual nozzles. 55-57
.. 60 to 63 are vacuum system control solenoid valves. 57 is a branch pipe for a solenoid valve. A vacuum pump 66 is connected to a vacuum tank 69 for a vacuum buffer. 67 is a detector for detecting the degree of vacuum. The structure inside the vacuum tank 69 is as follows:
The interior is divided into three rooms.
1室70には吸引ノズル54系に配管されているノズル
があり、2室71には真空検知67に接続されるセンサ
74が取付されている。センサ74の位置は、万一、霧
状の排液、戎は流路の故障により液が溜っても支障無い
高さとしている。1室70と2室71に分けるため、下
部が切断されている仕切が設けられている。3室72に
は真空ポンプ66に接続されるノズルがある。2室71
と3室72に分けるためここにも仕切があるが、万一で
も1室71,2室72に溜った液が入り込まぬようセン
サ74よりも高い位置に小径の穴が明けられたものであ
る。The first chamber 70 has a nozzle connected to the suction nozzle 54 system, and the second chamber 71 has a sensor 74 connected to the vacuum detection 67. The position of the sensor 74 is set at a height that will not cause any problems even if atomized drainage liquid or liquid accumulates due to a failure in the flow path. In order to divide the chamber into one chamber 70 and two chambers 71, a partition whose lower part is cut off is provided. The third chamber 72 has a nozzle connected to the vacuum pump 66. 2nd room 71
There is also a partition here to divide it into three chambers 72, but a small diameter hole is drilled at a position higher than the sensor 74 to prevent the liquid accumulated in the first chamber 71 and the second chamber 72 from entering. .
真空系の一連の動作をサンプル吸引側にて説明する。動
作としては洗浄水側流路も同じ動作を行なう。A series of operations of the vacuum system will be explained on the sample suction side. The same operation is performed for the cleaning water side flow path.
真空ポンプ66が動作し、電磁弁62が閉じた状態で真
空タンク内の真空度が約−600rrnHg程度に保た
れている時に、洗浄機構14が反応容器31に下降と同
時に電磁弁55.62が開けられサンプルの吸引が行な
われ一担、サンプル真空ビンに溜められる。直後に電磁
弁55.60が閉められ、次に給水ノズル80から図示
していない給水機構により、約700μQ程度の洗浄液
が入れられる。終了後再度電磁弁55.60が開けられ
ここでも一担、サンプル真空ビン58に洗浄液が溜めら
れる。更に電磁弁55.60が閉められると、電磁弁6
0が開けられ、サンプル真空ビン58に溜められたサン
プル及び洗浄液がサンプルトレインバイブロ4を通り、
装置外に排出される。ここまでが終了した時点で洗浄機
構]4が反応容器31上に上陸する。When the vacuum pump 66 is operating and the solenoid valve 62 is closed and the vacuum level in the vacuum tank is maintained at about -600rrnHg, the cleaning mechanism 14 is lowered into the reaction vessel 31 and at the same time the solenoid valve 55.62 is closed. It is opened and the sample is aspirated and stored in a sample vacuum bottle. Immediately after, the solenoid valves 55 and 60 are closed, and then approximately 700 μQ of cleaning liquid is poured into the water supply nozzle 80 by a water supply mechanism (not shown). After completion, the solenoid valves 55 and 60 are opened again, and the cleaning liquid is once again stored in the sample vacuum bottle 58. Further, when the solenoid valves 55 and 60 are closed, the solenoid valve 6
0 is opened, the sample and washing liquid stored in the sample vacuum bottle 58 pass through the sample train vibro 4,
It is discharged outside the device. When this is completed, the cleaning mechanism] 4 lands on the reaction vessel 31.
これら一連の動作が繰り返し行なわれる。These series of operations are repeated.
以上従来の自動分析装置の洗浄機構はこのようになって
いた。The cleaning mechanism of the conventional automatic analyzer is as described above.
上記従来技術の問題点を以下に述べる。 The problems of the above conventional technology will be described below.
自動分析装置が大形化になるに従い、処理能力も多くな
り、信頼性についてもこれに追従しなければならないが
、洗浄機構のシステムに大きな問題があった。それは、
反応容器内そのものの洗浄方法には間厘無いが、真空を
利用した洗浄流路の洗浄においては配慮がされていなか
った。廃液の流れが一方的であり、汚れが蓄積されるの
みで、この流路を洗浄するシステムが組み込まれていな
かった。As automatic analyzers become larger, their processing capacity also increases, and reliability must follow suit, but there has been a major problem with the cleaning mechanism system. it is,
Although there is no shortage of methods for cleaning the inside of the reaction vessel itself, no consideration has been given to cleaning the cleaning channel using vacuum. The flow of waste liquid was unidirectional, which only allowed dirt to accumulate, and no system was built in to clean this flow path.
大型の自動分析装置の場合、処理能力が600検体/時
にもなると真空流路内の汚れ、詰りか必定となり、装置
の信頼性が低下することとなる。In the case of a large automatic analyzer, if the processing capacity reaches 600 samples/hour, the vacuum channel will inevitably become contaminated or clogged, which will reduce the reliability of the device.
本発明の目的は、前記した従来技術の問題点を除去し、
大形分析装置においても、流路内に汚れ、詰りか無く信
頼性が高い、生化学自動分析装置の洗浄機構を提供する
ことにある。The purpose of the present invention is to eliminate the problems of the prior art described above,
It is an object of the present invention to provide a cleaning mechanism for an automatic biochemical analyzer that is highly reliable and free from dirt and clogging in the flow path even in a large analyzer.
上記目的を達成するために、真空流路系の真空バッファ
用真空タンクにマニュアル用の分岐管を設け、メンテナ
ンス時外部洗浄水を分岐管から真空流路の逆方向に流す
システムを装置に内蔵したものである。In order to achieve the above objectives, a manual branch pipe was installed in the vacuum tank for the vacuum buffer in the vacuum channel system, and a system was built into the equipment to flow external cleaning water from the branch pipe in the opposite direction of the vacuum channel during maintenance. It is something.
上記したように、真空流路系の真空バッファ用真空タン
クにマニュアル用の分岐管を設ける。メンテナンス時、
真空ポンプの電源を切り、真空タンク内の2室と3室を
遮蔽し、真空流路系の電磁弁を開けた状態で真空タンク
のマニュアル用分岐管に外部洗浄水を接続し通水する。As described above, a manual branch pipe is provided in the vacuum tank for the vacuum buffer in the vacuum channel system. During maintenance,
Turn off the power to the vacuum pump, shield chambers 2 and 3 in the vacuum tank, open the solenoid valve of the vacuum flow path system, and connect external cleaning water to the manual branch pipe of the vacuum tank to flow water.
これにより、真空流路系の接続チューブ、真空タンク、
電磁弁。This allows connecting tubes for vacuum flow systems, vacuum tanks,
solenoid valve.
サンプル真空ビン、洗浄水真空ビン、分岐管は洗浄水が
流れ洗浄されて、サンプルドレイン管、洗浄水トレイン
管、吸引ノズルより排出される。反応容器は予め、反応
ディスクより取外しておけば反応槽内に洗浄水が吐出さ
れ、反応槽オーバーフロ一部より排出される。後に反応
槽の水交換を行なえば、反応吸光度測定上問題となる反
応槽水の汚れについては問題にならない。Washing water flows through the sample vacuum bottle, wash water vacuum bottle, and branch pipe to be washed and discharged from the sample drain pipe, wash water train pipe, and suction nozzle. If the reaction vessel is removed from the reaction disk in advance, washing water will be discharged into the reaction vessel and will be discharged from a portion of the reaction vessel overflow. If the water in the reaction tank is exchanged afterwards, the staining of the reaction tank water, which is a problem in measuring reaction absorbance, will not be a problem.
これらにより、従来不可能であった真空系の洗浄が可能
となり、装置の大幅な信頼性向上が可能となる。These make it possible to clean the vacuum system, which was previously impossible, and significantly improve the reliability of the device.
以下、本発明の一実施例を第1図により説明する。第1
図は本発明の洗浄機構の真空系流路である。この洗浄機
構の動作としては公知のものであるが本発明の構成とし
ては真空タンク90の流路系が大きく異なる点である。An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a vacuum system flow path of the cleaning mechanism of the present invention. Although the operation of this cleaning mechanism is well known, the structure of the present invention is largely different in the flow path system of the vacuum tank 90.
真空タンク90の構造について説明する。内部は3室に
分かれている。1室70には吸引ノズル54系に配管さ
れるノズルがある。従来このノズルは1本でノズルと電
磁弁62.63との間に分岐管が設けられていたが、汚
れ、詰りの可能性が有るため本発明においてはノズルを
2本設は直接電磁弁62.63に接続することとする。The structure of the vacuum tank 90 will be explained. The interior is divided into three rooms. The first chamber 70 has a nozzle connected to the suction nozzle 54 system. Conventionally, this nozzle had one branch pipe installed between the nozzle and the solenoid valve 62, 63, but since there is a possibility of dirt and clogging, in the present invention, two nozzles are installed and a branch pipe is provided between the nozzle and the solenoid valve 62, 63. .63.
また従来1室70,2室71内に溜ったトレインは真空
タンク90全体を装置外に取外したまま付随して流路配
管を取外した後に排出しなければ困餐でメンテナンスに
非常に時間を費やすため本発明においては1室70の前
面にトレインニップル91と栓92を設は通常の装置運
転時にはチューブ76にて接続し真空洩れの無いように
する。2室71上部には3室72と接続されるようにニ
ップルを設はチューブ75にて接続する。1室70と2
室71に分けるため、下部が切断されている仕切板を設
ける。2室71と3室72とは完全に仕切る仕切板を設
ける。3室72には2室71との接続用のニップルと真
空検知67に接続されたセンサ74を取付する。センサ
74の位置は、2室71より、万一、霧状の排液、戒は
流路の故障により液が混入し溜っても一時的には支障な
い高さとする。また3室72には、真空ポンプ66に接
続されるニップルを設ける。Furthermore, conventionally, the train accumulated in the first chamber 70 and the second chamber 71 must be drained after removing the entire vacuum tank 90 outside the device and removing the flow path piping, otherwise it would be difficult to drain, and maintenance would be very time consuming. Therefore, in the present invention, a train nipple 91 and a stopper 92 are provided on the front side of the first chamber 70, and are connected through a tube 76 during normal operation of the apparatus to prevent vacuum leakage. A nipple is provided at the upper part of the second chamber 71 so that it is connected to the third chamber 72 through a tube 75. 1 room 70 and 2
In order to divide the room into chambers 71, a partition plate whose lower part is cut is provided. A partition plate is provided to completely partition the second chamber 71 and the third chamber 72. A nipple for connection to the second chamber 71 and a sensor 74 connected to the vacuum detection 67 are attached to the third chamber 72. The sensor 74 is located at a height from the second chamber 71 that will not cause any temporary problems even if the liquid gets mixed in and accumulates due to a failure in the flow path. Further, the third chamber 72 is provided with a nipple connected to the vacuum pump 66.
以上のように構成されている。It is configured as described above.
次に本発明により真空系の流路洗浄方法のシステムを説
明する。Next, a system for a vacuum channel cleaning method according to the present invention will be explained.
真空ポンプ66の電源を切り、真空タンク90の2室7
1と3室72の接続チューブ75を図示してい力いピン
チコック等で締め3室72.真空検知67、真空ポンプ
66内に洗浄液が入り込まないようにする。Turn off the power to the vacuum pump 66 and open the second chamber 7 of the vacuum tank 90.
Tighten the connecting tubes 75 of chambers 1 and 3 72 with a strong pinch cock or the like as shown in the figure. Cleaning liquid is prevented from entering the vacuum detection 67 and vacuum pump 66.
真空タンク90前面の栓92からチューブ7Gを取外し
て、真空系の流路を大気開放にする。The tube 7G is removed from the stopper 92 on the front of the vacuum tank 90, and the flow path of the vacuum system is opened to the atmosphere.
次に図示していない外部給水ポンプからチューブ76に
接続し、真空流路系の電磁弁55〜57゜60〜63を
開けた状態で通水する。これにより、真空タンク90内
1室70,2室72、真空流路系の接続チューブ、電磁
弁55〜57.60〜63゜サンプル真空ビン58.洗
浄水真空ピン592分岐管50〜52.吸引ノズル54
は洗浄水が流れ洗浄されて、サンプルドレイン管64.
洗浄水トレイン管65.吸引ノズル54より排呂される
。Next, an external water supply pump (not shown) is connected to the tube 76, and water is supplied with the solenoid valves 55-57 and 60-63 of the vacuum passage system open. As a result, the first chamber 70, the second chamber 72 in the vacuum tank 90, the connecting tube of the vacuum flow path system, the solenoid valves 55-57, the sample vacuum bottle 58. Cleaning water vacuum pin 592 branch pipes 50-52. Suction nozzle 54
The sample drain tube 64. is washed by the flow of washing water.
Wash water train pipe 65. The water is discharged from the suction nozzle 54.
反応容器53は予め、反応ディスクより取外しておけば
反応槽内に洗浄水が吐出され、反応槽オーバーフロ一部
より排出される。If the reaction vessel 53 is removed from the reaction disk in advance, cleaning water will be discharged into the reaction vessel and will be discharged from a portion of the reaction vessel overflow.
本発明によれば、従来不可能であった真空系の洗浄が可
能となり、装置の著しい信頼性向上が可能となり、また
、多項目、多検体を処理する大形自動分析装置に適した
洗浄機構となる。According to the present invention, it is possible to clean the vacuum system, which was previously impossible, and the reliability of the device can be significantly improved.In addition, the cleaning mechanism is suitable for large automatic analyzers that process multiple items and multiple samples. becomes.
以上の説明で明らかなように、本発明によれば洗浄機構
の真空系を洗浄する機能を内蔵したことにより、従来問
題の多発した電磁弁、流路の詰り、汚れが無くなり、大
形自動分析装置の信頼性が著し2く向上する。また従来
、電磁弁、流路が汚れると各部品を交換していたが、こ
れが無くなり装置のランニングコストも大幅な低減が出
来、付随して装置の停止時間も大幅な低減が出来る。As is clear from the above explanation, according to the present invention, by incorporating a function to clean the vacuum system of the cleaning mechanism, clogging and dirt in the solenoid valve and flow path, which had many problems in the past, are eliminated, and large-scale automatic analysis The reliability of the device is significantly improved. In addition, conventionally, when the solenoid valve or flow path became dirty, each part had to be replaced, but this is no longer necessary, and the running cost of the device can be significantly reduced, as well as the downtime of the device.
第1図は本発明の一実施例を示す洗浄機構の真空系流路
の構成図、第2図は従来技術の装置全体構成図、第3図
は従来技術の洗浄機構の真空系流路の構成図である。
2・・・反応ディスク、6・・サンプリング機構、14
・・・洗浄機構、26・・・ラック、30・・・試薬容
器、31・・・反応容器、50〜52・・・分岐管、5
4・・・吸引ノズル、55〜57.60〜63・・・電
磁弁、58・・・サンプル真空ビン、59・・・洗浄水
真空ビン、64・・・サンプルドレインパイプ、65・
・・洗浄水トレインパイプ、66・・・真空ポンプ、6
7・・真空検知、69・・・真空タンク、74・・・セ
ンサ、75・・・チューブ、76・・・チューブ、8o
・・・給水ノズル、9o・・・真空タンク、91・・・
ニップル、92・・・栓。FIG. 1 is a configuration diagram of a vacuum system flow path of a cleaning mechanism showing an embodiment of the present invention, FIG. 2 is an overall configuration diagram of a conventional device, and FIG. 3 is a configuration diagram of a vacuum system flow path of a cleaning mechanism of the prior art. FIG. 2... Reaction disk, 6... Sampling mechanism, 14
...Cleaning mechanism, 26...Rack, 30...Reagent container, 31...Reaction container, 50-52...Branch pipe, 5
4... Suction nozzle, 55-57. 60-63... Solenoid valve, 58... Sample vacuum bottle, 59... Washing water vacuum bottle, 64... Sample drain pipe, 65...
...Washing water train pipe, 66...Vacuum pump, 6
7...Vacuum detection, 69...Vacuum tank, 74...Sensor, 75...Tube, 76...Tube, 8o
...Water supply nozzle, 9o...Vacuum tank, 91...
Nipple, 92...plug.
Claims (1)
注する試料サンプリング機構、試薬を注入する試薬注入
機構、反応容器内の反応液の吸光度を測定する吸光光度
計、反応容器を外周縁に保持する反応ディスク、反応デ
ィスクを回転させる回転駆動機構、反応容器内のサンプ
ルと試薬とが混合しそれを一定温度に保ち化学反応させ
るための恒温水槽、一定時間内において化学反応が終了
し吸光度が測定された反応容器内のサンプルを装置外に
排出し反応容器内を洗浄する洗浄機構、またそれに付随
する流路とより成る生化学自動分析装置において、連続
的に繰り返し使用する反応容器の洗浄機構で、主に、真
空を利用しサンプルを吸引する流路系の真空バッファ用
タンクにマニュアル用の分岐路を設け、メンテナンス時
外部洗浄水を分岐管から真空吸引流路の逆方向に流すシ
ステムにすることを特徴とした生化学自動分析装置の洗
浄機構。1. A sample sampling mechanism that dispenses the sample into a reaction container where the sample and reagent are chemically reacted, a reagent injection mechanism that injects the reagent, an absorptiometer that measures the absorbance of the reaction solution in the reaction container, A reaction disk is held in the reaction disk, a rotation drive mechanism rotates the reaction disk, a constant temperature water bath is used to mix the sample and reagent in the reaction container and keep it at a constant temperature for chemical reaction, and the chemical reaction is completed within a certain period of time and the absorbance is measured. Cleaning of the reaction container that is used repeatedly in a biochemical automatic analyzer that consists of a cleaning mechanism that discharges the sample in the reaction container where it has been measured outside the device and cleans the inside of the reaction container, and an accompanying flow path. In this system, a manual branch is provided in the vacuum buffer tank of the flow path system that uses vacuum to aspirate samples, and external cleaning water is flowed from the branch pipe in the opposite direction of the vacuum suction flow path during maintenance. A cleaning mechanism for an automatic biochemical analyzer characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24699390A JPH04127065A (en) | 1990-09-19 | 1990-09-19 | Washing mechanism of biochemical automatic analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24699390A JPH04127065A (en) | 1990-09-19 | 1990-09-19 | Washing mechanism of biochemical automatic analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04127065A true JPH04127065A (en) | 1992-04-28 |
Family
ID=17156783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24699390A Pending JPH04127065A (en) | 1990-09-19 | 1990-09-19 | Washing mechanism of biochemical automatic analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04127065A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8870298B2 (en) | 2011-11-30 | 2014-10-28 | Mitsubishi Heavy Industries, Ltd. | Brake control device |
US9114793B2 (en) | 2011-11-30 | 2015-08-25 | Mitsubishi Heavy Industries, Ltd. | Brake control device |
-
1990
- 1990-09-19 JP JP24699390A patent/JPH04127065A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8870298B2 (en) | 2011-11-30 | 2014-10-28 | Mitsubishi Heavy Industries, Ltd. | Brake control device |
US9114793B2 (en) | 2011-11-30 | 2015-08-25 | Mitsubishi Heavy Industries, Ltd. | Brake control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9442129B2 (en) | Automatic analyzer | |
JP2009042067A (en) | Automatic analyzer | |
US6197255B1 (en) | Chemical analyzing apparatus | |
US20080099057A1 (en) | Method and Device for Cleaning a Liquid Aspiration and Dispense Probe | |
US9989549B2 (en) | Automatic analyzer | |
JPH0365654A (en) | Apparatus for analyzing liquid sample and analyzing method thereof | |
US6003531A (en) | Pipette-washing device for automatic biochemical analyzer | |
JPH1062431A (en) | Cleaner in automatically biochemical analyzer | |
JPH01209372A (en) | Cleaner for automatic chemical analyzer | |
JP4175916B2 (en) | Automatic analyzer | |
JPH04127065A (en) | Washing mechanism of biochemical automatic analyzer | |
JP2002040035A (en) | Biochemical automatic analyzer | |
EP4393609A1 (en) | Automated analysis device and feed tank for automated analysis device | |
JPH028746A (en) | Analyzer | |
JP6355960B2 (en) | CLINICAL INSPECTION DEVICE AND CONTAINER CLEANING METHOD | |
JPH05264555A (en) | Method and apparatus for water supply for automatic analysis system | |
JPH1073601A (en) | Autoanalyzer | |
JP4576340B2 (en) | Automatic analyzer | |
JP3047365B2 (en) | Cleaning device for automatic biochemical analyzer | |
JPH06102281A (en) | Cleaning system for biochemical autoanalyzer | |
JP2796352B2 (en) | Particle counting device | |
JPH0527677U (en) | Cleaning device for automatic biochemical analyzer | |
WO2020170751A1 (en) | Automated analyzer | |
JPH0611446Y2 (en) | Automatic analyzer | |
JPH06213906A (en) | Automatic cleaning mechanism for reagent nozzle |