JPH04126994A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPH04126994A
JPH04126994A JP2248529A JP24852990A JPH04126994A JP H04126994 A JPH04126994 A JP H04126994A JP 2248529 A JP2248529 A JP 2248529A JP 24852990 A JP24852990 A JP 24852990A JP H04126994 A JPH04126994 A JP H04126994A
Authority
JP
Japan
Prior art keywords
power
heat transfer
flow rate
inertia
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248529A
Other languages
Japanese (ja)
Inventor
Shigeru Nakajima
茂 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2248529A priority Critical patent/JPH04126994A/en
Publication of JPH04126994A publication Critical patent/JPH04126994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To form a compact facility having high energy storage density by providing an operation controller for controlling to satisfy flowrate control characteristic necessary for a system at the time of failure of a power source such as a power converter, etc. CONSTITUTION:An operation controller 9 has a battery 10 a stationary type power converter 11 for converting electric energy to power necessary for a motor 3, and a controller 12 for detecting power interruption of a bus 7 of a power source 6 to control the converter 11 to become a predetermined flowrate attenuating characteristic. If the source 6 is interrupted, a pump 2 and the motor 3 are gradually decelerated by its inertial moment and fluid inertia, and its flow rate is also attenuated. Simultaneously, the interruption of the source 6 is detected, a switch 8 is opened to disconnect the source 6 from the motor 3 and the controller 9. The motor 3 is so driven as to supply or absorb power to the motor 3 from the battery 10 while controlling or to obtain predetermined flowrate control characteristic by control amount 17 of a system side or simple flowrate-time characteristic by the controller 12 from the converter 11.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ポンプ・ファン等の熱媒体を駆動する動力装
置を制御する運転制御装置を有する熱伝達装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a heat transfer device that has an operation control device that controls a power device that drives a heat medium, such as a pump or fan.

(従来の技術) 熱伝達装置のポンプ・ファン等の回転機構(含む動力装
置)は、その形状・重量から定まる固有の慣性モーメン
トを持っている。同様に、ポンプ・ファン等によって駆
動される気体・液体等の流体も慣性を持っている。
(Prior Art) A rotating mechanism (including a power unit) such as a pump or fan of a heat transfer device has a unique moment of inertia determined by its shape and weight. Similarly, fluids such as gas and liquid driven by pumps, fans, etc. also have inertia.

これらの慣性モーメントにより、動力装置の駆動エネル
ギーを遮断した場合にも液体はすぐに静止せず、慣性と
配管系の抵抗によってきまる時間遅れによって徐々に減
衰し流れは止る。
Due to these moments of inertia, even when the driving energy of the power device is cut off, the liquid does not come to rest immediately, but gradually attenuates and stops flowing due to a time delay determined by inertia and resistance of the piping system.

このような現象によってすぐに液体が静止しない性質は
、設備を構成する上で障害となる場合と、利点となる場
合とがある。
The property that the liquid does not stand still immediately due to such a phenomenon may be an obstacle or an advantage when configuring equipment.

例えば、ポンプの出口側の配管に漏洩が発生した場合に
、それを検出して直ちにポンプの動力装置である電動機
の電源を切った際にも、ポンプ及び流体の慣性によって
すぐに流れは止らないため、その時間遅れに相当する分
は配管の漏洩口から流出してしまうことになる。このた
め、慣性を小さくすることが必要となる。
For example, if a leak occurs in the piping on the outlet side of a pump, even if the leak is detected and the electric motor that powers the pump is immediately turned off, the flow will not stop immediately due to the inertia of the pump and fluid. Therefore, the amount corresponding to the time delay will flow out from the leakage port of the piping. Therefore, it is necessary to reduce the inertia.

次に、電気炉等の熱伝達装置の場合を考える。Next, consider the case of a heat transfer device such as an electric furnace.

第4図において、電気炉41にて熱を発生し、ポンプ4
2により駆動される水等の冷却材44により、熱エネル
ギーとして熱交換器45へ取り出し利用する。
In FIG. 4, heat is generated in an electric furnace 41 and a pump 4
A coolant 44 such as water driven by 2 is used as thermal energy to be extracted to a heat exchanger 45 and utilized.

この場合に、ポンプ42の動力装置である電動機43の
電源が停電によって不意に喪失した場合には、電気炉4
]を止めて熱の発生をおさえるが、冷却材44の流量か
すぐに減衰してしまうと電気炉41の残留熱は冷却材4
4によって炉外に運び出されず、電気炉41は一時的に
高温となり損傷する。
In this case, if the power supply of the electric motor 43, which is the power device of the pump 42, is suddenly lost due to a power outage, the electric furnace 43
] to suppress the generation of heat, but if the flow rate of the coolant 44 attenuates quickly, the residual heat in the electric furnace 41 will be absorbed by the coolant 44.
4, the electric furnace 41 is temporarily heated to a high temperature and damaged.

ポンプ42と電動機43の慣性モーメント及び冷却材4
4の慣性を大きくすることにより冷却材44流量の減衰
を遅らせ、電気炉41の一時的な温度上昇を防止し炉の
損傷を防止できる。すなわち、電気炉41の過渡温度上
昇を熱伝達装置の慣性によってトレードオフすることが
でき、炉の耐熱特性と熱伝達装置の慣性の配分を適切に
設計することによって、経済的で信頼性の高いシステム
を構成できる。
Moment of inertia of pump 42 and electric motor 43 and coolant 4
By increasing the inertia of the electric furnace 41, the attenuation of the flow rate of the coolant 44 can be delayed, a temporary temperature rise in the electric furnace 41 can be prevented, and damage to the furnace can be prevented. In other words, the transient temperature rise of the electric furnace 41 can be traded off with the inertia of the heat transfer device, and by appropriately designing the heat resistance characteristics of the furnace and the distribution of the inertia of the heat transfer device, an economical and highly reliable Can configure the system.

熱伝達装置の慣性か極端に大きい場合は、電気炉41を
直ちに止めると炉は急激に冷却されることとなり、温度
の急激な変化により損傷するおそれがある。この場合に
も、炉の熱過渡耐量と熱伝達装置の慣性の配分を適切に
設計することが必要となる。
If the inertia of the heat transfer device is extremely large, if the electric furnace 41 is stopped immediately, the furnace will be cooled down rapidly, and there is a risk of damage due to a sudden change in temperature. In this case as well, it is necessary to appropriately design the distribution of the thermal transient capacity of the furnace and the inertia of the heat transfer device.

第5図及び第6図は、電動機43の電源の喪失発生時刻
をt。とじたときの時間と、冷却材44の流量、電気炉
41の内部温度との関係を示すものである。熱伝達装置
の慣性を大きくし流量の減衰を小さくすれば、電気炉4
]の内部ピーク温度は低くなり、温度の降下は早くなる
In FIGS. 5 and 6, the time when the power supply to the electric motor 43 is lost is t. It shows the relationship between the closing time, the flow rate of the coolant 44, and the internal temperature of the electric furnace 41. If the inertia of the heat transfer device is increased and the attenuation of the flow rate is decreased, the electric furnace 4
] The internal peak temperature will be lower and the temperature drop will be faster.

熱伝達装置の慣性を必要な値に設J1する上では、流体
の慣性は一般に小さく機器設計や配置」二の制限により
大きくすることは難しいため、ポンプ・ファン等及びそ
の動力装置により必要な慣性モーメントを確保すること
が設旧手法となっている。
When setting the inertia of the heat transfer device to the required value, it is difficult to increase the inertia of the fluid because it is generally small and due to limitations in equipment design and layout. The old construction method is to secure the moment.

この場合にも、配管漏洩時の流出量を少なくする必要が
ある場合には、慣性モーメントを小さくする必要かあり
、両者の兼合で熱伝達装置の慣性モメントを定めること
となる。このことは、熱伝達装置の慣性モーメントを機
械的な手段により実現するため、その慣性の大きさある
いは慣性モメントの持つ上記の効果を容品に制御するこ
とが難しいことより発生している。
In this case as well, if it is necessary to reduce the amount of outflow in the event of pipe leakage, it is necessary to reduce the moment of inertia, and the moment of inertia of the heat transfer device is determined by taking both factors into account. This occurs because, since the moment of inertia of the heat transfer device is achieved by mechanical means, it is difficult to precisely control the magnitude of the inertia or the above-mentioned effects of the moment of inertia.

第2に、原子炉の熱伝達装置について考えてみる。一般
に原子炉は負の反応度を有するよう設計され、地震や温
度の変化等如何なる事象に対しても負の反応度を維持し
、原子炉の固有の安全性を確保できるようになっている
Second, let's consider the heat transfer device of a nuclear reactor. In general, nuclear reactors are designed to have negative reactivity, so that they can maintain negative reactivity against any event such as earthquakes or temperature changes, ensuring the inherent safety of nuclear reactors.

原子炉の異常時には制御棒が急速に挿入される。In the event of a reactor abnormality, control rods are rapidly inserted.

この時、制御棒か挿入された原子炉炉心出入口での熱伝
達装置の熱媒体の過渡的な温度変化を制御するために、
熱伝達装置の流量は比較的速やかに減少する必要がある
At this time, in order to control the transient temperature change of the heat medium of the heat transfer device at the reactor core entrance/exit where the control rod is inserted,
The flow rate of the heat transfer device needs to decrease relatively quickly.

しかしながら、原子炉の異常時に制御棒の挿入失敗(A
TWS)を想定する場合においては、通常の熱伝達装置
の流量減少特性では、熱媒体の温度か急速に上昇し、原
子炉の構造によっては反応度か正となり、また温度上昇
による熱過渡により原子炉や燃料の破損を引き起こすお
それがある。
However, control rod insertion failure (A
TWS), the flow rate reduction characteristic of a normal heat transfer device causes the temperature of the heating medium to rise rapidly, and depending on the structure of the reactor, the reactivity may become positive, and the thermal transient caused by the temperature rise may cause the atomic This may cause damage to the furnace or fuel.

このような場合は、通常の熱伝達装置の流量減少特性に
比べて極端に緩やかなる流量減少特性が必要となる。こ
のような事象をも考慮した場合には、熱伝達装置の慣性
モーメントを各々の事象に合せて選択して動作させる必
要がでてくる。
In such a case, a flow rate reduction characteristic that is extremely gentler than that of a normal heat transfer device is required. If such events are taken into consideration, it becomes necessary to select and operate the moment of inertia of the heat transfer device in accordance with each event.

(発明か解決しようとする課題) 従来の熱伝達装置においては、必要な慣性を確保するた
め、ポンプ・ファン等の回転機械及びその動力装置であ
る電動機に必要な慣性モーメントを有する(あるいはフ
ライホイール等の形で付加する)設計としていた。
(Problem to be solved by the invention) In conventional heat transfer devices, in order to ensure the necessary inertia, rotating machines such as pumps and fans and electric motors that are their power devices have the necessary moment of inertia (or flywheels) It was designed to be added in the form of etc.

中でも、ポンプ・ファン等の回転機械に比較して設計の
自由度か大きい動力装置である電動機の内部に持たせる
慣性モーメントを確保することが一般的であった。
Among these, it has been common to secure a moment of inertia inside an electric motor, which is a power device with a greater degree of freedom in design than rotating machines such as pumps and fans.

大抵の場合は、このような方法によって充分合理的な設
備を構成することができるが、システムか必要としてい
る慣性モーメントが極端に大きい場合や、電動機等の動
力装置の設計の自由度が小さい場合、例えば、効率や力
率等の電気性能に特別の要求がある場合や、配置上のコ
ンパクトさを要求される場合(特に、回転体の慣性モー
メントを大きくする上で影響の大きい半径方向の寸法を
制限される場合)は、不合理な設備構成あるいは設計不
成立となっていた。電動機の外部にフライホイール等を
別置する場合も、同様であった。
In most cases, it is possible to construct a sufficiently rational facility using this method, but if the moment of inertia required by the system is extremely large, or if the degree of freedom in designing the power device such as an electric motor is small. For example, when there are special requirements for electrical performance such as efficiency or power factor, or when compactness in layout is required (especially the radial dimension, which has a large effect on increasing the moment of inertia of the rotating body) (in cases where the equipment is restricted), the equipment configuration was unreasonable or the design was unsatisfactory. The same applies when a flywheel or the like is placed separately outside the electric motor.

熱伝達装置に設けた慣性は、どのような場合にも働くの
で、流れを直ちに止めたいとの要求、例えば配管漏洩時
には、返って都合の悪いことになる。
Since the inertia provided in the heat transfer device acts in any case, it becomes inconvenient when there is a need to immediately stop the flow, for example in the event of a pipe leak.

さらに、従来技術の第2において説明したように、シス
テムが要求している熱伝達装置の慣性の大きさが2つ以
上ある場合、さらに考え方を拡張してシステム側の要求
している最適な流量の減衰特性を発生する事象に合せて
実現するためには、熱伝達装置の慣性モーメントを機械
的な手段によって実現することは難しい。
Furthermore, as explained in the second part of the prior art, if there are two or more inertia sizes of the heat transfer device required by the system, the idea can be further expanded to find the optimal flow rate required by the system. It is difficult to realize the moment of inertia of the heat transfer device by mechanical means in order to realize the damping characteristic of the heat transfer device in accordance with the occurring event.

本発明は、このような従来の欠点を除去するためになさ
れたもので、熱伝達装置におけるポンプ・ファン等の熱
媒体動力装置の電源の喪失時あるいは電源の異常と他の
異常が同時期に発生した時、システムが要求している流
量制御特性を得ることができ、ポンプ・ファン等(含む
動力装置)を他の条件のみによって最適設計することが
できると共に、機械系の慣性エネルギーに相当するエネ
ルギーを、電池に電気エネルギーとして保存するため、
最近、性能向上の著しい高放電率の電池を使用すること
によって、トータルとしてエネルギー貯蔵密度が高くコ
ンパクトな設備を構成することができる熱伝達装置を提
供することを目的とする。
The present invention has been made in order to eliminate such conventional drawbacks, and is designed to prevent power loss of a heat medium power device such as a pump or fan in a heat transfer device, or when an abnormality in the power source and another abnormality occur at the same time. When this occurs, it is possible to obtain the flow rate control characteristics required by the system, and it is possible to optimally design pumps, fans, etc. (including power equipment) based only on other conditions. To store energy as electrical energy in batteries,
It is an object of the present invention to provide a heat transfer device that can construct compact equipment with a high total energy storage density by using batteries with a high discharge rate whose performance has recently been significantly improved.

[発明の構成] (課題を解決するための手段) 上記従来の目的を達成する本発明は、熱伝達装置におい
て、熱輸送に使用する熱媒体を駆動するポンプ・ファン
等の駆動装置及び該駆動装置の動力装置に、電池からな
る補助電源と、静止形電力変換装置と、該補助電源と静
止形電力変換装置の制御装置とを備え前記電力装置等の
電源の喪失時にシステムが必要とする流量制御特性を満
たす制御を行う運転制御装置を設けたことを特徴とする
[Structure of the Invention] (Means for Solving the Problems) The present invention, which achieves the above-mentioned conventional objects, provides a drive device such as a pump or fan for driving a heat medium used for heat transport in a heat transfer device, and a drive device for the drive. The power unit of the device includes an auxiliary power source consisting of a battery, a static power converter, and a control device for the auxiliary power source and the static power converter, and the flow rate required by the system when the power source of the power device etc. is lost. The present invention is characterized in that it includes an operation control device that performs control that satisfies control characteristics.

(作 用) 本発明では、熱媒体駆動設備の電源が停電により不意に
喪失した場合あるいは停電と同時期に他の異常が発生し
た場合に、システムが要求している流量制御特性に対し
て、ポンプ・ファン等の熱媒体駆動設備の回転機械及び
その動力装置を他の条件によって最適設計した場合の慣
性モーメントだけでは過大あるいは不足する慣性エネル
ギーに相当するエネルギーを運転制御装置から供給ある
いは吸収し、所要の流量特性を得る。
(Function) In the present invention, when the power supply of the heat medium drive equipment is suddenly lost due to a power outage, or when another abnormality occurs at the same time as the power outage, the flow rate control characteristics required by the system are Supplying or absorbing energy from an operation control device that corresponds to excessive or insufficient inertial energy due to the moment of inertia alone when the rotating machinery of heat medium drive equipment such as pumps and fans and its power equipment are optimally designed according to other conditions, Obtain the desired flow characteristics.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

第1図において、熱伝達装置の熱媒体のポンプ2の動力
装置である電動機3は、電路13により電源6及び運転
制御装置9と接続されている。
In FIG. 1, an electric motor 3, which is a power device for a heat medium pump 2 of a heat transfer device, is connected to a power source 6 and an operation control device 9 through an electric line 13.

運転制御装置9は、エネルギーを電気エネルギの形で貯
蔵し必要なときに吸収あるいは放出する固体電池や蓄電
池等の電池10と、電池1oからの電気エネルギーを電
動機3が必要とする電力に変換する(または、その逆変
換をする)サイリスクインバータ等の静止形電力変換装
置11と、電源6の母線7の停電を検出して静止形電力
変換装置11を所要の流量減衰特性となるよう制御する
制御装置12からなる。
The operation control device 9 converts electrical energy from a battery 10, such as a solid state battery or storage battery, which stores energy in the form of electrical energy and absorbs or releases it when necessary, and a battery 1o into electric power required by the electric motor 3. (or performs the inverse conversion) A static power converter 11 such as a silic inverter and a power outage of the bus 7 of the power source 6 are detected and the static power converter 11 is controlled to have the required flow rate attenuation characteristic. It consists of a control device 12.

電源6が停電した場合、ポンプ2及び電動機3はその持
っている慣性モーメント及び流体の慣性によって徐々に
回転数が下がり流量も減衰し始める。
When the power supply 6 is out of power, the rotation speed of the pump 2 and the electric motor 3 gradually decreases due to their moment of inertia and the inertia of the fluid, and the flow rate also begins to decrease.

同時に、電源6の停電を検出し開閉器8を開くことによ
って電源6を電動機3及び運転制御装置9から切り離し
、電動機3への電力を電池10゜静止形電力変換装置1
1から制御装置12によって温度や回転数等のシステム
側の制御量17等により、または単純な流量−時間特性
により、制御しながら供給あるいは吸収し、所要の流量
制御特性を得るよう電動機3を駆動する。最終的には、
流量はゼロになるか、もとの電源6に引継がれる。
At the same time, a power outage of the power source 6 is detected and the switch 8 is opened to disconnect the power source 6 from the electric motor 3 and the operation control device 9, and power to the electric motor 3 is transferred to the battery 10° static power converter 1.
From 1 to 1, the electric motor 3 is driven to obtain the desired flow rate control characteristics by supplying or absorbing the flow in a controlled manner using the control amount 17 on the system side such as temperature and rotational speed, or by using simple flow rate-time characteristics. do. eventually,
The flow rate becomes zero or is taken over by the original power source 6.

第2図にこの場合の単純に流量か減衰しゼロになり電池
]Oから電力を供給するケースのポンプの流量と時間の
関係を示す。
FIG. 2 shows the relationship between the pump flow rate and time in this case where the flow rate simply attenuates and becomes zero and power is supplied from the battery.

停電か時刻t。に発生した場合、システムが必要として
いる流量制御特性曲線16、ポンプ等の慣性による流量
制御特性曲線15によって各々かこまれているところの
1.5 aはポンプ等の慣性エネルギーの大きさを示し
、16aは運転制御装置9から電動機3を駆動するエネ
ルギーの大きさを示す。運転制御装置9は、流量制御特
性曲線15から電池]0の能力によって決る最大の駆動
曲線までの範囲で、流量制御特性を変化させることがで
きる。
Power outage or time t. 1.5 a, which is surrounded by the flow rate control characteristic curve 16 required by the system and the flow rate control characteristic curve 15 due to the inertia of the pump, indicates the amount of inertial energy of the pump, etc. 16a indicates the amount of energy for driving the electric motor 3 from the operation control device 9. The operation control device 9 can change the flow rate control characteristic within a range from the flow rate control characteristic curve 15 to the maximum drive curve determined by the capacity of the battery.

次に、運転制御装置9の動作及び調整方法について説明
する。
Next, the operation and adjustment method of the operation control device 9 will be explained.

運転制御装置9か電動機3を駆動するエネルギーは、静
止形電力変換装置11を制御する制御装置12に、静止
形電力変換装置1]の出力と流量の関係を予めプログラ
ムし記憶させておき、電源6の停電信号あるいは開閉器
8の開路信号を起動1 ] 信号として駆動を開始し、システム側制御量17あるい
は単純な流量−時間特性によりプログラム曲線に従い制
御することにより調整する。
The energy that drives the operation control device 9 or the electric motor 3 is obtained by programming and storing the relationship between the output of the static power converter 1 and the flow rate in advance in the control device 12 that controls the static power converter 11, and Driving is started using the power outage signal of 6 or the open circuit signal of switch 8 as the activation signal, and adjustment is made by controlling according to a program curve using system side control amount 17 or simple flow rate-time characteristics.

制御装置12は、電動機3の周波数と電圧を監視し、起
動信号を受けると静止形電力変換装置1]を構成する可
変電圧可変周波数型のサイリスタインバータに対して、
電動機3の残留電圧とその周波数に同期して制御を開始
し、予めプログラムされた周波数−流量の曲線に従って
静止形電力変換装置11の出力周波数を制御する。また
、同時に静止形電力変換装置]1の出力電圧は、出力周
波数との比をほぼ一定になるよう制御装置12により制
御し、良好な制御特性を維持する。
The control device 12 monitors the frequency and voltage of the electric motor 3, and upon receiving the start signal, controls the variable voltage variable frequency thyristor inverter that constitutes the static power converter 1.
Control is started in synchronization with the residual voltage of the electric motor 3 and its frequency, and the output frequency of the static power converter 11 is controlled according to a preprogrammed frequency-flow rate curve. At the same time, the output voltage of the static power converter 1 is controlled by the control device 12 so that the ratio to the output frequency is approximately constant, thereby maintaining good control characteristics.

制御装置]2のプログラムは、予め計算により求めた曲
線に基づき設定し、熱伝達装置の試運転時に最適な流量
制御特性となるよう調整する。外部からの制御量は、温
度や回転数等の1つあるいは2つが異常のシステム側制
御量]7てあってもよいし、単純な流量−時間特性を表
わすプログラム曲線であってもよい。また、システム側
制御量]7も連続的な制御目標値であってもよいし、各
対象に対応した1つあるいは2つ以上のプログラム曲線
でもよい。
The program for control device] 2 is set based on a curve obtained by calculation in advance, and adjusted to provide the optimum flow rate control characteristics during a test run of the heat transfer device. The externally controlled variable may be a system-side controlled variable in which one or two of the temperature, rotation speed, etc. are abnormal, or may be a program curve representing a simple flow rate-time characteristic. Further, the system side control amount] 7 may also be a continuous control target value, or may be one or more program curves corresponding to each object.

なお、ポンプをファン等の他の回転機械に置き換えても
同様の効果を実現できる。
Note that the same effect can be achieved by replacing the pump with another rotating machine such as a fan.

本発明の他の実施例を第3図に示す。Another embodiment of the invention is shown in FIG.

ポンプ・ファン等の回転機械を、電気エネルギにより直
接流体を駆動する電磁ポンプ14によって構成した場合
を示す。運転制御装置9、電源6等の他の構成は同様で
ある。
A case is shown in which a rotating machine such as a pump or fan is configured with an electromagnetic pump 14 that directly drives fluid using electrical energy. Other structures such as the operation control device 9 and the power supply 6 are the same.

電磁ポンプ14は、機械式ポンプと異なり流体駆動部と
動力装置か同一要素となっており、電源6が停電すると
、電磁ポンプ14はその原理から慣性モーメントを持っ
ていないので、流体の慣性によって流量は減衰する。運
転制御装置9等の他の機器の動作は第1の実施例と同様
である。
The electromagnetic pump 14 differs from a mechanical pump in that the fluid drive unit and the power unit are the same element, and if the power supply 6 fails, the electromagnetic pump 14 does not have a moment of inertia due to its principle, so the flow rate will be reduced due to the inertia of the fluid. is attenuated. The operations of other devices such as the operation control device 9 are similar to those in the first embodiment.

[発明の効果] 以上説明したように本発明の熱伝達装置の運転制御装置
によれば、熱伝達装置におけるポンプ・ファン等の熱媒
体動力装置の電源の喪失時あるいは電源の異常と他の異
常か同時期に発生した時、システムか要求している流量
制御特性を得ることができ、ポンプ・ファン等(含む動
力装置)を他の条件のみによって最適設計することがで
きる。
[Effects of the Invention] As explained above, according to the operation control device for a heat transfer device of the present invention, when the power of the heat medium power device such as a pump or fan in the heat transfer device is lost, or there is an abnormality in the power supply and other abnormalities, When these conditions occur at the same time, the system can obtain the required flow rate control characteristics, and pumps, fans, etc. (including power equipment) can be optimally designed based only on other conditions.

また、機械系の慣性エネルギーに相当するエネルギーを
、電池に電気エネルギーとして保存するため、最近、性
能向上の著しい高放電率の電池を使用することによって
、トータルとしてエネルギー貯蔵密度が高くコンパクト
な設備を構成することができる。
In addition, in order to store energy equivalent to the inertial energy of mechanical systems as electrical energy in batteries, the use of batteries with high discharge rates, which have recently improved in performance, has enabled compact equipment with a high total energy storage density. Can be configured.

また、静止形電力変換装置は短時間のみ動作するため、
その発熱は一時的であり放熱装置として熱容量か大きい
ものを使用することによって、簡易な放熱システムを構
成することができる。
Additionally, static power converters only operate for short periods of time;
The heat generated is temporary, and by using a heat radiating device with a large heat capacity, a simple heat radiating system can be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる運転制御装置の構成
を示すブロック図、第2図は第1図に示す装置の特性を
示す説明図、第3図は本発明の他の実施例の構成を示す
ブロック図、第4図は従来の装置の構成を示すブロック
図、第5図及び第6図は第4図に示す従来の装置の特性
を示す説明図である。 2・・・ポンプ、3・・・電動機、6・・・電源、7・
・・母線、8・・・開閉器、10・・・電池、11・・
・静止形電力変換装置、12・・・制御装置、13・・
・電路、14・・・電磁ポンプ、15・・・流量制御特
性曲線、16・・・流量制御特性曲線、17・・・制御
量、41・・・電気炉。 出願人      株式会社 東芝
FIG. 1 is a block diagram showing the configuration of an operation control device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing characteristics of the device shown in FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a block diagram showing the configuration of a conventional device, and FIGS. 5 and 6 are explanatory diagrams showing characteristics of the conventional device shown in FIG. 4. 2...Pump, 3...Electric motor, 6...Power source, 7.
...Bus bar, 8...Switch, 10...Battery, 11...
・Static power converter, 12...control device, 13...
- Electric circuit, 14... Electromagnetic pump, 15... Flow rate control characteristic curve, 16... Flow rate control characteristic curve, 17... Control amount, 41... Electric furnace. Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] 熱伝達装置において、熱輸送に使用する熱媒体を駆動す
るポンプ・ファン等の駆動装置及び該駆動装置の動力装
置に、電池からなる補助電源と、静止形電力変換装置と
、該補助電源と静止形電力変換装置の制御装置とを備え
、前記電力装置等の電源の喪失時にシステムが必要とす
る流量制御特性を満たす制御を行う運転制御装置を設け
たことを特徴とする熱伝達装置。
In a heat transfer device, a drive device such as a pump or fan that drives a heat medium used for heat transport, and a power device for the drive device include an auxiliary power source consisting of a battery, a stationary power converter, and a stationary power converter that is connected to the auxiliary power source. What is claimed is: 1. A heat transfer device comprising: a control device for a power conversion device; and an operation control device that performs control to satisfy flow rate control characteristics required by the system when the power source of the power device or the like is lost.
JP2248529A 1990-09-18 1990-09-18 Heat transfer device Pending JPH04126994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248529A JPH04126994A (en) 1990-09-18 1990-09-18 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248529A JPH04126994A (en) 1990-09-18 1990-09-18 Heat transfer device

Publications (1)

Publication Number Publication Date
JPH04126994A true JPH04126994A (en) 1992-04-27

Family

ID=17179545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248529A Pending JPH04126994A (en) 1990-09-18 1990-09-18 Heat transfer device

Country Status (1)

Country Link
JP (1) JPH04126994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174944A (en) * 2007-01-17 2008-07-31 Toto Ltd Water closet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174944A (en) * 2007-01-17 2008-07-31 Toto Ltd Water closet

Similar Documents

Publication Publication Date Title
JP3231317B2 (en) Core isolation cooling system with dedicated generator
JP4685518B2 (en) Waste heat power generation equipment
JP5816057B2 (en) Cooling system control method and apparatus
JPH04126994A (en) Heat transfer device
JP2009097867A (en) Closed cycle plant
JPH04112697A (en) Inertia controller in fluid drive
Bose Ore-grinding cycloconverter drive operation and fault: My experience with an australian grid
CN211857264U (en) Main transformer air cooling control system
JP5197114B2 (en) Fast reactor
JP2664778B2 (en) Electromagnetic pump controller
JPS5952794A (en) Pump driving device
JP6967995B2 (en) Engine generator system and its control method as well as cogeneration system
JPS61293131A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JPS6249469B2 (en)
JPH05142382A (en) Solenoid pump control device
JPH06169562A (en) Power supply device for driving electromagnetic pump
JPH05284796A (en) Power source controller for electromangetic pump
JPS6232357B2 (en)
JPH09257980A (en) Internal pump system
JPH0686531A (en) Operating device for electromagnetic pump
JP2523520B2 (en) Control device for variable speed turbine generator
JPS6279397A (en) Fast reactor
JP2778475B2 (en) Cooling device for power semiconductor device
JPH08110392A (en) Reactor water supply equipment
JPH0410597B2 (en)