JPH04126972A - Reduced pressure cooling device - Google Patents

Reduced pressure cooling device

Info

Publication number
JPH04126972A
JPH04126972A JP24919990A JP24919990A JPH04126972A JP H04126972 A JPH04126972 A JP H04126972A JP 24919990 A JP24919990 A JP 24919990A JP 24919990 A JP24919990 A JP 24919990A JP H04126972 A JPH04126972 A JP H04126972A
Authority
JP
Japan
Prior art keywords
reduced pressure
cylindrical body
pressure chamber
decompression chamber
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24919990A
Other languages
Japanese (ja)
Inventor
Shunji Ito
俊二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP24919990A priority Critical patent/JPH04126972A/en
Publication of JPH04126972A publication Critical patent/JPH04126972A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

PURPOSE:To realize a fast cooling by a method wherein a reduced pressure chamber device has an upper plate and shows a cylindrical form with its lower surface being opened and then a cooled item is held on the upper plate. CONSTITUTION:A food 11 is held on an upper plate 14a of each of reduced pressure chamber devices 14. The reduced pressure chamber device 14 on the pressurizing plate 54 is pushed up by a hydraulic cylinder device 52 to strike against the lower surface of the reduced pressure chamber device 14 of the lower-most stage, a stopper 19 is released and lifted up along a full reduced pressure chamber device 14, and then the stopper 19 is enaged with the reduced pressure chamber device 14 at the lower-most stage. Inside part of the reduced pressure chamber device 14 from the second stage from a lower one is reduced in its pressure under an action of a reduced pressure supplying device 40. To the reduced pressure chamber devices 14 of the third, fourth and fifth stages from below are given a predetermined degree of pressure reduction by reduced pressure supplying devices 42, 44 and 46 connected to through-pass holes 24, 26 and 28 of the cylinder. To the reduced pressure chamber device 14 reached the sixth stage is gradually supplied with surrounding atmosphere through a filter 50 and a valve 48 and then the pressure returns to an atmospheric pressure. The cooled item 11 is moved laterally on the upper table 13 and taken out of the device.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、食品等の温度を減圧によって調整する減圧冷
却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a vacuum cooling device that adjusts the temperature of foods, etc. by reducing pressure.

〔従来の技術〕[Conventional technology]

従来の連続減圧冷却装置としては、例えば特公昭59−
28390号公報に開示されるものがある。この連続減
圧冷却装置は、 (1)、系外の食品を気密入口扉を介して収容する第1
予備室と、該第1予備室に気密出口扉を介して連通ずる
真空冷却手段と該真空冷却手段に気密入口扉を介して連
通し気密出口扉を介して系外に連通ずる第2予備室とを
存し、 (2)、該第1予備室は、バルブを介して大気に連通ず
る大気用配管とバルブを介して真空タンクに連通ずる真
空用配管と、系外の食品を該予備室内へ搬入する搬入手
段とを有し、 (3)、該真空冷却手段は、真空タンクに連結する真空
冷却室でなり、該真空冷却室は該第1予備室の食品を該
真空冷却室に供給する供給手段と食品を該第2予備室の
人L]まで所定速度で移IJIさ−Uる:1ンヘア手段
とを有し、 (4)、該第2予備室は、バルブを介して人気に連通す
る大気用配管とバルブを介して真空タンクに連通ずる真
空用配管と、真空冷却室の食品を該第2予備室へ搬出す
る搬出手段と、食品を系外へ取出す取出手段とを有して
なる。
As a conventional continuous decompression cooling device, for example,
There is one disclosed in Japanese Patent No. 28390. This continuous vacuum cooling system consists of: (1) a first part that accommodates food outside the system through an airtight entrance door;
a preliminary chamber, a vacuum cooling means communicating with the first preliminary chamber via an airtight exit door, and a second preliminary chamber communicating with the vacuum cooling means via an airtight inlet door and communicating with the outside of the system via an airtight exit door. (2) The first preliminary chamber includes atmospheric piping that communicates with the atmosphere via a valve, vacuum piping that communicates with the vacuum tank via a valve, and food from outside the system into the preliminary chamber. (3) The vacuum cooling means is a vacuum cooling chamber connected to a vacuum tank, and the vacuum cooling chamber supplies the food in the first preliminary chamber to the vacuum cooling chamber. (4) The second preparatory room has a supply means for transferring the food to the person L in the second preparatory room at a predetermined speed; It has a vacuum pipe that communicates with the vacuum tank via an atmospheric pipe that communicates with the vacuum tank, a carry-out means that carries the food in the vacuum cooling chamber to the second preliminary chamber, and a take-out means that takes the food out of the system. It will be done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の連続減圧冷却装置にあ
っては、真空冷却手段は、真空タンクに連結する真空冷
却室でなり、単一の減圧度が与えられた真空冷却室に複
数個の材料容器をコンヘア手段によって移動させる構造
であるため、下記の技術的問題点がある。
However, in such conventional continuous reduced pressure cooling equipment, the vacuum cooling means consists of a vacuum cooling chamber connected to a vacuum tank, and a plurality of material containers are placed in the vacuum cooling chamber given a single degree of reduced pressure. Since it has a structure in which it is moved by a conhair means, there are the following technical problems.

■、真空冷却室には、真空冷却室の減圧度を維持するた
めに第1予備室及び第2予鑞室を付属させなければなら
ず、更に、この第1.2予備室には、それぞれ気密入口
扉及び気密出口扉を備えさせると共に、大気用配管及び
真空用配管を付属させなければならなず、構造が複雑に
なる。
■The vacuum cooling chamber must be equipped with a first pre-soldering chamber and a second pre-soldering chamber in order to maintain the degree of depressurization in the vacuum cooling chamber. In addition to providing an airtight entrance door and an airtight exit door, it is necessary to attach atmospheric piping and vacuum piping, which makes the structure complicated.

■、真空冷却室には均一な減圧度が与えられ、真空冷却
室に入った直後の材料容器にも出る直前の材料容器にも
、同じ減圧度が与えられる。その結果、材料容器に収容
した食品の種類によっては、減圧度が高すぎて急激な水
分蒸発に基づく破裂を生じ、或いは減圧度が低すぎて所
要の冷却が急速には得られない。
(2) A uniform degree of reduced pressure is applied to the vacuum cooling chamber, and the same degree of reduced pressure is applied to both the material container immediately after entering the vacuum cooling chamber and the material container immediately before leaving the vacuum cooling chamber. As a result, depending on the type of food contained in the material container, the degree of vacuum may be too high, causing rupture due to rapid water evaporation, or the degree of vacuum may be too low, and the required cooling cannot be achieved rapidly.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、このような従来の技術的課題に鑑みてなされ
たものであり、その構成は、内部空間を中心軸線方向に
有し、側壁に中心軸線方向の所定間隔にて形成された筒
状体貫通穴を有する筒状体と、筒状体の内部空間に摺動
可能に順次挿入され、筒状体貫通穴に連通可能に形成さ
れた減圧室貫通穴を有する複数の減圧室ユニットと、筒
状体貫通穴と合致した減圧室貫通穴のみを通して減圧室
ユニツ1〜の内部が外部と連通されるように減圧室ユニ
ットと筒状体との間を気密にシールするシール部材と、
複数個の筒状体貫通穴に接続される減圧供給装置とを存
し、前記減圧室ユニットは、」二板を有して下面が開口
する筒状をなし、」二板上に被冷却物を保持する減圧冷
却装置である。
The present invention has been made in view of such conventional technical problems, and has a structure in which a cylindrical tube having an internal space in the direction of the center axis and formed on the side wall at predetermined intervals in the direction of the center axis. a cylindrical body having a body through hole; a plurality of decompression chamber units each having a decompression chamber through hole formed to be slidably inserted into the internal space of the cylindrical body and communicated with the cylindrical body through hole; a sealing member that airtightly seals between the decompression chamber unit and the cylindrical body so that the inside of the decompression chamber unit 1 is communicated with the outside only through the decompression chamber through hole that matches the cylindrical body through hole;
a reduced pressure supply device connected to a plurality of through holes of the cylindrical body, and the reduced pressure chamber unit has a cylindrical shape with two plates and an open bottom, and an object to be cooled is placed on the two plates. It is a vacuum cooling device that maintains

〔作用〕[Effect]

このような減圧冷却装置によれば、筒状体の端部にあっ
て減圧供給装置に接続していない減圧室ユニットは内部
が大気圧であるが、端部から2番目以降の複数個の減圧
室ユニッ1−の内部は減圧供給装置の作用により若干減
圧され、所定圧になる。その際、複数個の減圧室ユニッ
I・の内部は、シール部材によって気密が保持され、特
定の減圧供給装置にのみ連通している。
According to such a vacuum cooling device, the interior of the vacuum chamber unit located at the end of the cylindrical body and not connected to the vacuum supply device is at atmospheric pressure; The pressure inside the chamber unit 1- is slightly reduced by the action of the reduced pressure supply device, and becomes a predetermined pressure. At this time, the interiors of the plurality of decompression chamber units I. are kept airtight by sealing members and communicated only with a specific decompression supply device.

かくして、それぞれ筒状体貫通穴に接続させた減圧供給
装置によって各減圧室ユニットに所定の減圧度が与えら
れる。しかして、この減圧供給装置による所定の減圧度
は、減圧室ユニットの移動に従った増加と減少との組み
合わせからなるように変化させて設定させ、或いは減圧
室ユニットの移動に従って次第に増加させるように設定
させることができる。このようにして、筒状体の他端に
達した減圧室ユニツI・は、大気圧に戻され、外部に取
り出される。大気を緩徐に導入すれば、吸入空気によっ
て被冷却物が飛散することが防止される。筒状体の他端
に達した減圧室ユニットの上板上に保持された被冷却物
も取り出される。筒状体の一端からは、次々に別の減圧
室ユニットが供給され、筒状体の内部空間内の全減圧室
ユニットは一体に移動される。
In this way, a predetermined degree of reduced pressure is applied to each reduced pressure chamber unit by the reduced pressure supply device connected to the through hole of the cylindrical body. Therefore, the predetermined degree of depressurization by this decompression supply device is set to vary and consist of a combination of increases and decreases as the decompression chamber unit moves, or it is set to gradually increase as the decompression chamber unit moves. Can be set. In this way, the decompression chamber unit I. which has reached the other end of the cylindrical body is returned to atmospheric pressure and taken out to the outside. By slowly introducing the atmosphere, the objects to be cooled are prevented from scattering due to the intake air. The object to be cooled held on the upper plate of the decompression chamber unit that has reached the other end of the cylindrical body is also taken out. Another decompression chamber unit is supplied one after another from one end of the cylindrical body, and all the decompression chamber units within the internal space of the cylindrical body are moved together.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1〜4図には、減圧冷却装置の1実施例を示す。図中
において符号10は、金属製の筒状体を示し、筒状体1
0は中心軸線方向の内部空間10aを有する。この筒状
体10ば、中心軸線を上下方向として一端のフランジ部
10bが図外のボルト・ナツトにて基台12に固定され
ている。基台12は筒状体10の内部空間10aと合致
した開口12aを有している。13は土台であり、同様
に内部空間10aと合致した開口13aを有し、筒状体
10の他端のフランジ部10cが図外のボルト・ナツト
にて固定されている。この筒状体10の側壁には、中心
軸線方向に所定の間隔を置いて複数個の筒状体貫通穴2
2,24.26.28及び30がそれぞれ形成されてい
る。筒状体貫通穴22,24,26.28及び30相互
の間隔は、後記する減圧室ユニット14の中心軸線方向
の幅に合致させである。
1 to 4 show one embodiment of a reduced pressure cooling device. In the figure, the reference numeral 10 indicates a metal cylindrical body, and the cylindrical body 1
0 has an internal space 10a in the central axis direction. The flange portion 10b at one end of the cylindrical body 10b is fixed to the base 12 with bolts and nuts (not shown) with the central axis in the vertical direction. The base 12 has an opening 12a that matches the internal space 10a of the cylindrical body 10. Reference numeral 13 denotes a base, which similarly has an opening 13a that coincides with the internal space 10a, and a flange portion 10c at the other end of the cylindrical body 10 is fixed with bolts and nuts (not shown). A plurality of cylindrical body through holes 2 are provided in the side wall of the cylindrical body 10 at predetermined intervals in the central axis direction.
2, 24, 26, 28 and 30, respectively. The mutual spacing between the cylindrical body through holes 22, 24, 26, 28, and 30 is made to match the width in the central axis direction of the decompression chamber unit 14, which will be described later.

各筒状体貫通穴22,24.26及び28は、第1図に
示すようにそれぞれ配管22a  24a26a及び2
8a並びにバルブ32,34.36及び38を介して真
空ポンプ及び真空タンクからなる減圧供給装置40,4
2.44及び46と接続されている。そして、最後とな
る最上段に位置する筒状体貫通穴30は、バルブ48及
びフィルター50を介して大気と連通され、減圧状態が
次第に解除されるようになっている。
As shown in FIG.
8a and via valves 32, 34, 36 and 38 a reduced pressure supply device 40, 4 consisting of a vacuum pump and a vacuum tank.
2.44 and 46. The last, uppermost cylindrical body through hole 30 is communicated with the atmosphere via a valve 48 and a filter 50, so that the reduced pressure state is gradually released.

次に、筒状体10の下方には油圧シリンダ装置52及び
油圧シリンダ装置52のピストンロッドに固着された押
圧板54からなる押し込み装置56が設けられ、押圧板
54上の減圧室ユニット14を上方に押し上げ可能であ
る。
Next, a pushing device 56 consisting of a hydraulic cylinder device 52 and a pressing plate 54 fixed to a piston rod of the hydraulic cylinder device 52 is provided below the cylindrical body 10, and pushes the decompression chamber unit 14 on the pressing plate 54 upward. It is possible to push up to

減圧室ユニット14は、第2.3図に示すように、筒状
体10の内部空間10aに摺動自在に嵌合する外形を有
し、上板14aを有して下面が開口する筒状をなし、上
板14a上に被冷却物11を保持する。被冷却物11は
、上板14a上に直装置いてもよいが、流動性が大きい
場合には、トレイ15に入れて上板14a上に置く。ま
た、減圧室ユニット14は、側壁に内外を貫通する減圧
室貫通穴16を所定位置に有し、従って、減圧室ユニッ
ト14が順次積み重ねられた状態での減圧室貫通穴16
の間隔は、筒状体貫通穴22,24.26.28及び3
0の間隔と合致している。この減圧室ユニット14の減
圧室貫通穴16の上側及び下側外周にそれぞれ円周方向
の溝17a及び17bが設けられ、更に減圧室ユニット
14の上板14aの外周縁には中心が減圧室ユニット1
4の中心と合致した環状の溝17cが設けられ、溝17
a、17b及び17c内にシール部材18.20及び2
3が環装されている。上板14aの外周縁に設けるシー
ル部材23は、上位置の減圧室ユニット14の下面との
間をシールするものであるが、第2図に詳示するように
上板14aの外周部を削って形成した環状段部14bに
設けられ、トレイ15の移動によってシール部材23が
損傷を受けないようになっている。更に、減圧室ユニッ
ト14の側壁の溝17bより底部側には、凹所14cが
形成され、第1図に示すように筒状体10内の最下段に
位置する減圧室ユニット14の凹所14cに、基台12
の下面に沿って進退自在に設けたストッパ19が係合可
能である。
As shown in FIG. 2.3, the decompression chamber unit 14 has an outer shape that slidably fits into the internal space 10a of the cylindrical body 10, and has a cylindrical shape with an upper plate 14a and an open bottom. The object to be cooled 11 is held on the upper plate 14a. The object to be cooled 11 may be placed directly on the upper plate 14a, but if it has high fluidity, it is placed in a tray 15 and placed on the upper plate 14a. Further, the decompression chamber unit 14 has a decompression chamber through hole 16 at a predetermined position that penetrates the side wall from inside to outside.
The intervals between the cylindrical body through holes 22, 24, 26, 28 and 3
It matches the interval of 0. Circumferential grooves 17a and 17b are provided on the upper and lower outer peripheries of the decompression chamber through hole 16 of the decompression chamber unit 14, respectively, and furthermore, the outer circumferential edge of the upper plate 14a of the decompression chamber unit 14 has the center of the decompression chamber unit. 1
An annular groove 17c that coincides with the center of the groove 17 is provided.
Seal members 18, 20 and 2 in a, 17b and 17c
3 is ringed. The sealing member 23 provided on the outer periphery of the upper plate 14a seals between the lower surface of the decompression chamber unit 14 in the upper position, and as shown in detail in FIG. The sealing member 23 is provided on the annular stepped portion 14b formed by the sealing member 23 to prevent the sealing member 23 from being damaged by the movement of the tray 15. Furthermore, a recess 14c is formed on the bottom side of the side wall groove 17b of the decompression chamber unit 14, and as shown in FIG. , base 12
A stopper 19 provided movably back and forth along the lower surface of the can be engaged.

このような減圧室ユニッ1−14は、押し込み装置56
によって筒状体10の内部空間10aに摺動自在に次々
に挿入され、第1図に示すように筒状体10内の最下段
に位置する減圧室ユニット14の凹所14cにストッパ
19が係合することにより、2段目以降の減圧室ユニッ
ト14が減圧室貫通穴16をそれぞれ筒状体貫通穴22
,24゜26.28又は30に合致させた状態で、落下
が防止されている。
Such a decompression chamber unit 1-14 is equipped with a pushing device 56.
is slidably inserted one after another into the internal space 10a of the cylindrical body 10, and the stopper 19 is engaged with the recess 14c of the decompression chamber unit 14 located at the lowest stage within the cylindrical body 10, as shown in FIG. By combining the decompression chamber units 14 of the second and subsequent stages, the decompression chamber through holes 16 are connected to the cylindrical body through holes 22, respectively.
, 24°26.28 or 30 to prevent falling.

次に作用について説明する。Next, the effect will be explained.

第1図に示す各減圧室ユニツ)14の上板14a上には
、冷却すべき食品が被冷却物11として保持されている
。いま、筒状体10内の最下段に位置する減圧室ユニッ
ト14は、凹所14cにストッパ19が係合して落下が
防止されている。押し込み装置56の押圧板54上にあ
る減圧室ユニット14は、油圧シリンダ装置52の作動
によって押し上げられ、筒状体10内の最下段に位置す
る減圧室ユニット14の下面に当接した状態で、ストッ
パ19が解除され、筒状体10内の全減圧室ユニット1
4を伴って上昇駆動され、最下段となった減圧室ユニッ
ト14にストッパ19を係合させる。押し込み装置56
は、次の減圧室ユニット14に備え、押圧板54を下降
復帰させる。
Food to be cooled is held as an object to be cooled 11 on the upper plate 14a of each decompression chamber unit 14 shown in FIG. Now, the decompression chamber unit 14 located at the lowest stage within the cylindrical body 10 is prevented from falling by engaging the stopper 19 in the recess 14c. The decompression chamber unit 14 on the pressing plate 54 of the pushing device 56 is pushed up by the operation of the hydraulic cylinder device 52, and is in contact with the lower surface of the decompression chamber unit 14 located at the lowest stage in the cylindrical body 10. The stopper 19 is released and the entire decompression chamber unit 1 inside the cylindrical body 10
4, the stopper 19 is engaged with the reduced pressure chamber unit 14 which is at the lowest stage. Pushing device 56
In preparation for the next decompression chamber unit 14, the press plate 54 is lowered and returned.

しかして、第1図に示す状態では筒状体10内の最下段
及び最上段の減圧室ユニツ)14は内部が大気圧である
が、下から2段目の減圧室ユニット14の内部は減圧供
給装置40の作用により若干減圧され、所定圧(例えば
0. 3kg/cJ)にある。その際、筒状体10内の
最下段を除く減圧室ユニット14は、減圧室ユニット1
4のシール部材1B、20.23によって気密が保持さ
れ、滅圧室貫通穴16のめが筒状体貫通穴22と連通ず
る。
Therefore, in the state shown in FIG. 1, the interior of the lowermost and uppermost vacuum chamber units 14 in the cylindrical body 10 is at atmospheric pressure, but the interior of the second vacuum chamber unit 14 from the bottom is under reduced pressure. The pressure is slightly reduced by the action of the supply device 40 and is at a predetermined pressure (for example, 0.3 kg/cJ). At that time, the vacuum chamber units 14 except the lowest stage in the cylindrical body 10 are the vacuum chamber units 1
Airtightness is maintained by the seal members 1B and 20.23 of No. 4, and the eye of the depressurization chamber through hole 16 communicates with the cylindrical body through hole 22.

このようにして、筒状体10内の下から3段目、4段目
及び5段目の減圧室ユニット14には、それぞれ筒状体
貫通穴24.26及び28に接続させた減圧供給装置4
2.44及び46によって所定の減圧度が与えられる。
In this way, the third, fourth, and fifth vacuum chamber units 14 from the bottom in the tubular body 10 are provided with vacuum supply devices connected to the tubular body through holes 24, 26, and 28, respectively. 4
2.44 and 46 give a predetermined degree of vacuum.

その際、この減圧供給装置40,42.44及び46に
よる所定の減圧度は任意に設定可能である。例えば、減
圧室ユニット14の移動に従った増加と減少との組み合
わせからなるように変化させて設定さゼ、具体的には第
2〜5段目の減圧室ユニット14に、それぞれ0 、 
3 kg / cfl、0 、 1 kg/cffl、
 0 、 2 kg/cJ及び0. 1kg/c+fi
といった増減変更された減圧度を与えることができる。
At this time, the predetermined degree of pressure reduction by the reduced pressure supply devices 40, 42, 44, and 46 can be set arbitrarily. For example, it is set to change to consist of a combination of increase and decrease according to the movement of the decompression chamber unit 14, specifically, 0, 0,
3 kg/cffl, 0, 1 kg/cffl,
0, 2 kg/cJ and 0. 1kg/c+fi
It is possible to provide a degree of reduced pressure that is increased or decreased.

このような減圧度の変化は、被冷却物11の種類によっ
て破裂を生ずる減圧度が異なるため、例えば急激な減圧
を与えて被冷却物11の冷却を促すと共に急激な減圧を
解除させて被冷却物11の破裂を防止するように考慮し
て設定され、或いは次第に減圧度を増加させて最大減圧
度を与えた後、次第に減圧度を減少させ、大気圧に緩や
かに復帰させる。更に、減圧供給装置/+0.42./
+4及び46によって与えられる減圧室ユニット14の
減圧度を、減圧室ユニット14の移動に従って減圧度が
増加するようにのみ変化させて設定することもできる。
Such a change in the degree of depressurization is such that the degree of depressurization that causes rupture differs depending on the type of object 11 to be cooled. It is set in consideration of preventing the object 11 from bursting, or the degree of pressure reduction is gradually increased to give the maximum degree of pressure reduction, and then the degree of pressure reduction is gradually reduced to slowly return to atmospheric pressure. Furthermore, a reduced pressure supply device/+0.42. /
It is also possible to set the degree of vacuum of the vacuum chamber unit 14 given by +4 and 46 so that it only increases as the vacuum chamber unit 14 moves.

このように減圧室ユニツi・14内を減圧すると、水の
沸点が下がって被冷却物11である食品中の水分が急速
に医発する。この水分の蒸発によって被冷却物11から
熱が奪われるので、被冷却物11の温度を低下調整する
ことができる。そして、この冷却作用は被冷却物11の
内部においても発生ずるので、例えば通風式の冷却装置
と比較して、冷却速度が速い。また減圧を解除するとき
以外は外気が入らないので衛生的でもある。
When the pressure inside the vacuum chamber unit i 14 is reduced in this way, the boiling point of water is lowered, and the moisture in the food, which is the object to be cooled 11, is rapidly released. Since heat is removed from the object 11 to be cooled by the evaporation of this water, the temperature of the object 11 to be cooled can be adjusted to decrease. Since this cooling effect also occurs inside the object to be cooled 11, the cooling rate is faster than, for example, a ventilation type cooling device. It is also sanitary because outside air does not enter except when decompression is released.

かくして、第1図上にて減圧室ユニット14内の下から
6段目に達した減圧室ユニット14にば、フィルター5
0及び絞りを形成するバルブ48を通して大気が緩徐に
導入され、大気圧に戻る。
Thus, when the vacuum chamber unit 14 reaches the sixth stage from the bottom in the vacuum chamber unit 14 in FIG.
Atmospheric pressure is slowly introduced through the valve 48, which forms a 0 and a constriction, returning to atmospheric pressure.

大気を緩徐に導入すれば、吸入空気によって被塗加物1
1が飛散することが防止される。
If the atmosphere is introduced slowly, the inhaled air will cause
1 is prevented from scattering.

このようにして、減圧供給装置40,42.44及び4
6の所定時間の作動によって各減圧室ユニット14内の
圧力が所定の値になったなら、その残圧状態を適当時間
保持する。最上段に達し、高さ位置が上台13と合致し
た減圧室ユニット14ば、第1図上にて上方に取り去り
、被冷却物11を上台13上に横移動させることにより
、筒状体10から外部に取り出される。最下段には別の
減圧室ユニット14が、押し込み装置56によって次々
と供給され、ストッパ19に係止させて落ドが防止され
る。その際、全減圧室ユニット14は、押し込み装置5
Gによって一体に」二重駆動される。8減圧室ユニット
14が1段」二重駆動され、最下段の減圧室ユニット1
4の凹所14cにストッパ19を係合させた状態で、所
定時間減圧供給装置40.42./14及び46によっ
て減圧を行い、筒状体10内の下から2〜5段目の減圧
室ユニツl−14の減圧度を所定に与える。以下、同様
の作業が繰り返えざわる。しかして、1個の滅圧室ユニ
ット14に注目すると、第4図に示すように当初は大気
圧にあり、筒状体10の下部から上昇移動するに従って
減圧度が増加又は減少して変化し、再び大気圧状態に戻
される。第4図に示す仮想線Aは、大気圧状態の最下段
と最」二段との中間部に減圧度のピークを与え、全体の
減圧度の変化を時間の経過と共に比較的緩やかに与えた
例を示し、実線Bは、次第に減圧度を増加させて最大減
圧度を与えた後、−旦減圧度を減少させ、その後再度増
加させてから大気圧に復帰させる例を示し、破線Cは、
減圧室ユニット14の移動に従って減圧度が増加するよ
うにのみ変化させて設定する例を示す。
In this way, the reduced pressure supply devices 40, 42, 44 and 4
When the pressure inside each decompression chamber unit 14 reaches a predetermined value by the operation of step 6 for a predetermined time, the residual pressure state is maintained for an appropriate time. When the decompression chamber unit 14 reaches the top stage and its height matches the upper stage 13, it is removed upward in FIG. taken outside. Other decompression chamber units 14 are successively supplied to the lowermost stage by a pushing device 56, and are stopped by a stopper 19 to prevent them from falling. At that time, the entire decompression chamber unit 14 is
Double driven by G. 8 decompression chamber units 14 are double-driven, and the lowest decompression chamber unit 1
4 with the stopper 19 engaged in the recess 14c of the reduced pressure supply device 40.42.4 for a predetermined period of time. /14 and 46 to reduce the pressure to a predetermined degree of pressure reduction in the second to fifth stage vacuum chamber units l-14 from the bottom in the cylindrical body 10. From now on, the same work is repeated. If we pay attention to one decompression chamber unit 14, as shown in FIG. 4, it is initially at atmospheric pressure, and as it moves upward from the bottom of the cylindrical body 10, the degree of decompression increases or decreases and changes. , the pressure is returned to atmospheric pressure. The imaginary line A shown in Figure 4 gives a peak in the degree of decompression at the midpoint between the lowest stage and the second most atmospheric pressure stage, and gives a relatively gradual change in the overall degree of decompression over time. For example, the solid line B shows an example in which the degree of decompression is gradually increased to give the maximum degree of decompression, and then the degree of decompression is decreased once, then increased again, and then returned to atmospheric pressure, and the broken line C is
An example will be shown in which the degree of decompression is changed and set only so that it increases as the decompression chamber unit 14 moves.

ところで、減圧室ユニット14の減圧室貫通穴16を含
む位置に円周方向溝を形成し、ス1〜ツバ19が係合す
る凹所14cを円周方向に環状とすれば、減圧室貫通穴
16と筒状体貫通穴22,2426.28及び30との
周方向の位置合わせが不要になる。減圧室貫通穴1Gを
円周方向に蝮数個形成することもできる。勿論、筒状体
10の内部空間10a及び減圧室ユニット14の外形に
円形以外の適合する異形断面を与えて、円周方向の位置
決めを行うこともできる。また、減圧室ユニット14が
摩擦力によって筒状体10の内部空間10aに保持され
るように構成すれば、減圧室ユニット14の凹所14c
及びストッパ19は省略することができる。更に、上記
実施例のように筒状体10の内部空間10aの中心軸線
を上下方向に配置すれば、減圧冷却装置の設置スペース
を削減することができる。
By the way, if a circumferential groove is formed at a position of the decompression chamber unit 14 that includes the decompression chamber through hole 16, and the recess 14c that engages the collars 1 to 19 is made circular in the circumferential direction, the decompression chamber through hole 16 and the cylindrical body through holes 22, 2426, 28 and 30 are no longer required to be aligned in the circumferential direction. It is also possible to form several decompression chamber through holes 1G in the circumferential direction. Of course, positioning in the circumferential direction can also be performed by providing a modified cross section other than a circle to match the internal space 10a of the cylindrical body 10 and the external shape of the decompression chamber unit 14. Further, if the decompression chamber unit 14 is configured to be held in the internal space 10a of the cylindrical body 10 by frictional force, the recess 14c of the decompression chamber unit 14
And the stopper 19 can be omitted. Furthermore, if the central axis of the internal space 10a of the cylindrical body 10 is arranged in the vertical direction as in the above embodiment, the installation space for the reduced pressure cooling device can be reduced.

[発明の効果] 以上の説明によって理解されるように、本発明によれば
、減圧室ユニット自体が減圧冷却室を構成し、減圧度を
維持するための予備室が不要であるため、構造が簡素で
ある。また、減圧室ユニット内には連続的に増減変化さ
せた減圧度を与えることができ、冷却塔内に入った直後
から出る直前までの間の減圧室ユニットに適正な減圧度
を順次に与えることができる。その結果、減圧室ユニッ
トの上板上に保持した被冷却物の種類に応して適正な減
圧度を与えることができ、減圧度が高すぎて袋、激な水
分蒸発に基づく破裂を生じ、或いは減圧度が低すぎて所
要の冷却が得られないといった不具合が解消し、象、速
冷却が実現される。加えて、被冷却物が減圧室ユニット
の上板上に保持されるので、被冷却物の出し入れが容易
であり、単に横方向へ押すだけで簡単に移動できる。
[Effects of the Invention] As understood from the above explanation, according to the present invention, the decompression chamber unit itself constitutes a decompression cooling chamber, and there is no need for a preliminary chamber for maintaining the degree of decompression, so the structure is improved. It's simple. In addition, it is possible to give a degree of decompression that is continuously increased or decreased within the decompression chamber unit, and it is possible to sequentially give an appropriate degree of decompression to the decompression chamber unit from immediately after entering the cooling tower to just before leaving the cooling tower. I can do it. As a result, it is possible to provide an appropriate degree of decompression depending on the type of object to be cooled held on the upper plate of the decompression chamber unit, and if the degree of decompression is too high, the bag may burst due to rapid water evaporation. Alternatively, the problem of not being able to obtain the required cooling due to the degree of reduced pressure being too low is resolved, and rapid cooling is realized. In addition, since the object to be cooled is held on the upper plate of the decompression chamber unit, it is easy to take in and take out the object to be cooled, and it can be easily moved by simply pushing it in the lateral direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明の1実施例を示し、第1図は減圧冷
却装置を示す断面図、第2図は減圧室ユニットを拡大し
て示す断面図、第3図は減圧室ユニットを示す平面図、
第4図は圧力−時間特性を示す線図である。 10:筒状体、10a:内部空間、10b、10c:フ
ランジ部、11:被冷却物、12:基台13:上台、1
4:減圧室ユニット、14a:上板、14b:環状段部
、14c:凹所、15ニドレイ、16:減圧室貫通穴、
18,20.23=シ一ル部材、19:ストツパ、22
,24,26.28. 3o:筒状体貫通穴、40,4
2.446:減圧供給装置 50:フィルター :押し込み装置。
1 to 4 show one embodiment of the present invention, FIG. 1 is a sectional view showing a reduced pressure cooling device, FIG. 2 is an enlarged sectional view of a reduced pressure chamber unit, and FIG. 3 is a sectional view showing a reduced pressure chamber unit. A plan view showing,
FIG. 4 is a diagram showing pressure-time characteristics. 10: Cylindrical body, 10a: Internal space, 10b, 10c: Flange portion, 11: Cooled object, 12: Base 13: Upper base, 1
4: Decompression chamber unit, 14a: Upper plate, 14b: Annular step, 14c: Recess, 15 Nidle, 16: Decompression chamber through hole,
18, 20.23 = Seal member, 19: Stopper, 22
, 24, 26.28. 3o: Cylindrical body through hole, 40,4
2.446: Reduced pressure supply device 50: Filter: Pushing device.

Claims (1)

【特許請求の範囲】[Claims] (1)、内部空間を中心軸線方向に有し、側壁に中心軸
線方向の所定間隔にて形成された筒状体貫通穴を有する
筒状体と、筒状体の内部空間に摺動可能に順次挿入され
、筒状体貫通穴に連通可能に形成された減圧室貫通穴を
有する複数の減圧室ユニットと、筒状体貫通穴と合致し
た減圧室貫通穴のみを通して減圧室ユニットの内部が外
部と連通されるように減圧室ユニットと筒状体との間を
気密にシールするシール部材と、複数個の筒状体貫通穴
に接続される減圧供給装置とを有し、前記減圧室ユニッ
トは、上板を有して下面が開口する筒状をなし、上板上
に被冷却物を保持することを特徴とする減圧冷却装置。
(1) A cylindrical body having an internal space in the direction of the central axis and having through-holes formed in the side wall at predetermined intervals in the direction of the central axis, and a cylindrical body capable of sliding into the internal space of the cylindrical body. A plurality of decompression chamber units are inserted in sequence and have decompression chamber through holes formed to communicate with the cylindrical body through holes, and the inside of the decompression chamber units is connected to the outside through only the decompression chamber through holes that match the cylindrical body through holes. a sealing member that airtightly seals between the reduced pressure chamber unit and the cylindrical body so as to communicate with the cylindrical body, and a reduced pressure supply device connected to the plurality of through holes of the cylindrical body, the reduced pressure chamber unit A vacuum cooling device characterized by having a cylindrical shape with an upper plate and an open lower surface, and holding an object to be cooled on the upper plate.
JP24919990A 1990-09-19 1990-09-19 Reduced pressure cooling device Pending JPH04126972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24919990A JPH04126972A (en) 1990-09-19 1990-09-19 Reduced pressure cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24919990A JPH04126972A (en) 1990-09-19 1990-09-19 Reduced pressure cooling device

Publications (1)

Publication Number Publication Date
JPH04126972A true JPH04126972A (en) 1992-04-27

Family

ID=17189384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24919990A Pending JPH04126972A (en) 1990-09-19 1990-09-19 Reduced pressure cooling device

Country Status (1)

Country Link
JP (1) JPH04126972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129822A (en) * 2004-11-09 2006-05-25 Miura Co Ltd Vacuum cooling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129822A (en) * 2004-11-09 2006-05-25 Miura Co Ltd Vacuum cooling machine

Similar Documents

Publication Publication Date Title
DE2821852C3 (en) Device for storing perishable goods
DE68907565T2 (en) Device with high vacuum chamber.
WO2003024510A8 (en) Blood product transfer system
CA2368202A1 (en) Needleless access device
US5518771A (en) Method and apparatus for subjecting a workpiece to elevated pressure
WO1994017836A1 (en) A method of decontaminating a chamber that has movable shelves
CN101468523B (en) Vacuum hotpressing machine
JPH04126972A (en) Reduced pressure cooling device
JP2007532317A (en) Method and apparatus for shaping container body
EP3452768A1 (en) Vacuum insulation body
CA2436543A1 (en) Method and apparatus for filling needleless injector capsules
EP0076285B1 (en) Dual motion press
SU1714285A1 (en) Device for filling interwall cavity of vessels with powder heat insulation
AU2020313431A1 (en) A vacuum chamber system
JPH04106383A (en) Vacuum cooling method
JPH0123114Y2 (en)
JPH04106382A (en) Vacuum cooling device
JPH11325303A (en) Cylinder device, and cylinder type closing valve
JPH04126971A (en) Continuous pressure reducing cooling method and deice therefor
CN209698897U (en) A kind of valve body verification clamping lock
JP4494025B2 (en) Dry cold isostatic pressurizer
JPS629798A (en) Metal die for compressing powder body
CN109965550B (en) Intelligent household cabinet
WO2004026531A3 (en) Device and method for connecting objects
JPH08267296A (en) Treatment of dry process high pressure treatment and device for treatment therefor