JPH04126520A - Waste gas treating device - Google Patents

Waste gas treating device

Info

Publication number
JPH04126520A
JPH04126520A JP2246915A JP24691590A JPH04126520A JP H04126520 A JPH04126520 A JP H04126520A JP 2246915 A JP2246915 A JP 2246915A JP 24691590 A JP24691590 A JP 24691590A JP H04126520 A JPH04126520 A JP H04126520A
Authority
JP
Japan
Prior art keywords
fluidized bed
adsorption
bed
exhaust gas
adsorption member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2246915A
Other languages
Japanese (ja)
Other versions
JP3002514B2 (en
Inventor
Shoichi Sakuma
昭一 佐久間
Nobuo Fujie
藤江 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2246915A priority Critical patent/JP3002514B2/en
Publication of JPH04126520A publication Critical patent/JPH04126520A/en
Application granted granted Critical
Publication of JP3002514B2 publication Critical patent/JP3002514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To reduce the cost and to improve reliability in treatment by roughly removing an org. solvent in the fluidized bed of an adsorption tower, removing the low-concn. solvent in the fixed bed provided in the fluidized bed and making the height of the fluidized bed different from that of a regeneration tower. CONSTITUTION:A fluidized bed 4 in which a first adsorbent 9 is circulated through the flow holes 7 of plural beds 8 and a fixed bed 5 are provided in an adsorption tower 2. The org. solvent is roughly removed by the first adsorbent 9 of the fluidized bed 4, and the low-concn. solvent is removed by a second adsorbent 10 of the fixed bed 5. Consequently, the second adsorbent 10 can be used for a long period, and the running cost is reduced. Furthermore, many kinds of components can be removed, and reliability in treatment is improved. The exhausted first adsorbent 9 is sent by a conveyor line 14a and regenerated. The height of the regeneration tower 3 is made different from that of the fluidized bed 4. Namely, highly reliable treatment is performed in the case when priority is given to the fluidized bed or to the regenerating means.

Description

【発明の詳細な説明】 〔概要〕 低濃度の多種の有機溶剤を含む排気ガスを処理する排気
ガス処理装置に関し、 コストの低減、処理の信頼性向上を図ることを目的とし
、 排気ガス中に含む有機溶剤を吸着部材に吸着させて除去
する吸着手段と、該吸着部材を再生する再生手段とを有
する排気ガス処理装置において、前記吸着手段は、流通
孔か形成された床部を複数層設けて所定量の第1の吸着
部材を流動させる流動床と、該流動床に、所定量の第2
の吸着部材が充填された固定床とを有し、前記排気ガス
を該流動床から固定床に通過させるように構成し、また
、前記流動床内の第1の吸着部材は、主に粗除去を行い
、前記固定床内の第2の吸着部材は低濃度の前記有機溶
剤の除去を行わせ、また、前記再生手段は、流通孔が形
成された床部が複数層に設けられて前記第1の吸着部材
を流動させて再生を行い、該再生手段の床部の層数によ
る高さと、前記流動床の床部の層数による高さを異なら
せて形成するように構成する。
[Detailed Description of the Invention] [Summary] Regarding an exhaust gas treatment device that treats exhaust gas containing various types of organic solvents at low concentrations, the present invention aims to reduce costs and improve processing reliability. In the exhaust gas treatment device, the exhaust gas treatment device includes an adsorption means for adsorbing and removing an organic solvent contained in an adsorption member, and a regeneration means for regenerating the adsorption member, wherein the adsorption means is provided with a plurality of layers of a floor portion having a flow hole formed therein. a fluidized bed in which a predetermined amount of a first adsorption member is fluidized;
a fixed bed filled with an adsorption member, and the exhaust gas is configured to pass from the fluidized bed to the fixed bed, and the first adsorption member in the fluidized bed mainly performs rough removal. The second adsorption member in the fixed bed removes the low-concentration organic solvent, and the regeneration means has a plurality of bed sections each having a plurality of flow holes formed therein. Regeneration is performed by fluidizing one adsorption member, and the height of the bed of the regeneration means is made different depending on the number of layers of the bed of the fluidized bed.

〔産業上の利用分野〕[Industrial application field]

本発明は、低濃度の多種の有機溶剤を含む排気ガスを処
理する排気ガス処理装置に関する。
The present invention relates to an exhaust gas treatment device for treating exhaust gas containing various types of organic solvents at low concentrations.

近年、例えば半導体製造のりソゲラフイエ程ではアルコ
ール、石油等の多種多様の有機溶剤か使用される一方、
プロセスの安定性、作業環境の維持のために大量の空気
を排気しており、排気濃度か低い状態となる。従って、
この濃度の薄い排気ガスであっても低コストで有効に処
理する必要かある。
In recent years, for example, a wide variety of organic solvents such as alcohol and petroleum are used in semiconductor manufacturing processes.
A large amount of air is exhausted to maintain process stability and the working environment, resulting in a low exhaust concentration. Therefore,
It is necessary to treat even this low-concentration exhaust gas effectively and at low cost.

〔従来の技術〕[Conventional technology]

従来、排気ガス処理には、吸着方式及び燃焼方式(触媒
酸化を含む)かあり、処理する排気ガスの濃度が薄い場
合には、ランニングコスト、安定性から吸着方式が利用
されるのが一般的である。
Traditionally, there are two methods of exhaust gas treatment: an adsorption method and a combustion method (including catalytic oxidation). When the concentration of exhaust gas to be treated is low, the adsorption method is generally used due to running costs and stability. It is.

吸着方式には、流動床式、固定床式(活性炭粒子、活性
炭繊維)があり、第3図に従来の排気ガス処理装置を示
す。第3図(A)は流動床式の概念図であり、第3図(
B)は固定床式の概念図である。
Adsorption methods include a fluidized bed method and a fixed bed method (activated carbon particles, activated carbon fibers), and FIG. 3 shows a conventional exhaust gas treatment device. Figure 3 (A) is a conceptual diagram of the fluidized bed type;
B) is a conceptual diagram of a fixed bed type.

第3図(A)において、吸着塔20はその内部が多段に
形成され、交互に形成された多数の流通孔を球形粒子の
活性炭21が流動する。そして、最下段に形成された流
入孔22より薄い濃度の排気ガスか流入し、最上段より
有機成分を除去したガスか排出される。
In FIG. 3(A), the interior of the adsorption tower 20 is formed in multiple stages, and activated carbon 21 in the form of spherical particles flows through a large number of alternately formed flow holes. Exhaust gas with a lower concentration flows in through the inflow hole 22 formed at the bottom stage, and gas from which organic components have been removed is discharged from the top stage.

また、再生塔23の内部も複数段に形成され、流通孔を
再生すべき活性炭21aが流動する。この再生塔23の
側部にヒータ24が設けられる。
Furthermore, the inside of the regeneration tower 23 is also formed in multiple stages, and the activated carbon 21a to be regenerated flows through the flow holes. A heater 24 is provided on the side of this regeneration tower 23.

そして、吸着塔20の最下段より再生塔23の最上段に
搬送ライン25aにより汚染された活性炭21をエアと
共に送り、再生塔23の最下段より吸着塔20の最上段
に搬送ライン25bにより再生された活性炭21aをエ
アと共に送る。
Then, the contaminated activated carbon 21 is sent along with air from the bottom of the adsorption tower 20 to the top of the regeneration tower 23 via a transport line 25a, and the contaminated activated carbon 21 is sent from the bottom of the regeneration tower 23 to the top of the adsorption tower 20 via a transport line 25b. The activated carbon 21a is sent together with air.

このような流動床式の排気ガス処理装置は、活性炭21
aの再生をヒータ24で加熱(約200”C)すると共
に、窒素(N2)を付加して再生効率を向上させている
。すなわち、再生時にスチームを使用しないことから排
水が発生しないという利点があり、連続的に系外に活性
炭を移送し、再生塔23で十分な加熱を行うことができ
る。なお、再生塔23で活性炭21aより再生された有
機溶剤はコンデンサで冷却され、回収される。
Such a fluidized bed type exhaust gas treatment device uses activated carbon 21
The regeneration of a is heated (approximately 200"C) with a heater 24, and nitrogen (N2) is added to improve the regeneration efficiency. In other words, since no steam is used during regeneration, there is an advantage that no waste water is generated. The activated carbon can be continuously transferred outside the system and sufficiently heated in the regeneration tower 23.The organic solvent regenerated from the activated carbon 21a in the regeneration tower 23 is cooled in a condenser and recovered.

次に、第3図(B)において、2つの塔30a。Next, in FIG. 3(B), two towers 30a.

30bを交互に吸着、再生を行うものである。塔30a
、30b内に活性炭粒子31a、31b(又は活性炭繊
維)か充填される。例えば、塔30aを吸着塔とすると
、塔30bか再生塔となる。この場合、塔(吸着)30
aの下方より排気ガス32がバルブ33aを介して供給
されて上方よりバルブ33bを介して排出され、一方で
塔(再生)30bの上方よりスチームかバルブ34cを
介して供給され、再生された有機溶剤をコンデンサで冷
却して回収するものである。そして、塔30aでの吸着
か所定時間行われた後、塔30bを吸着塔とし、塔30
aを再生塔とするものである。この場合、供給、排出は
それぞれのバルブ33a〜33 c、  34 a〜3
4cによりコントロールされる。
30b is alternately adsorbed and regenerated. tower 30a
, 30b are filled with activated carbon particles 31a, 31b (or activated carbon fibers). For example, if the tower 30a is an adsorption tower, the tower 30b is a regeneration tower. In this case, the tower (adsorption) 30
Exhaust gas 32 is supplied from below a through a valve 33a and discharged from above through a valve 33b, while steam is supplied from above a column (regeneration) 30b through a valve 34c, and the regenerated organic The solvent is cooled and recovered using a condenser. After the adsorption in the column 30a has been carried out for a predetermined period of time, the column 30b is used as an adsorption column, and the column 30a is used as an adsorption column.
A is a regeneration tower. In this case, supply and discharge are carried out through the respective valves 33a to 33c and 34a to 3.
Controlled by 4c.

このような固定床式の排気ガス処理装置は、ランニング
コストが低く、排気ガス濃度、量が変動しても影響がな
いという利点がある。
Such a fixed bed type exhaust gas treatment device has the advantage of low running costs and no influence even if the concentration or amount of exhaust gas fluctuates.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかし、流動床式のものは、吸着の反応速度が一般に0
.8 m/see 〜1.1m/sec (最高1.0
m/5ec)であり、また活性炭21か流動することか
ら、排気ガス濃度、量の変動に対してより均一で信頼性
の高い吸着を行うことが困難である。さらに、流動床式
て確実な除去(吸着)を行うとすると10m以上の高さ
の吸着塔でなければ低濃度レベルまての除去かてきず、
また低い吸着塔では再生用のN2の使用量を増大させな
ければならず、ランニングコストか増大する。一方、固
定床式のものは、活性炭が粒子の場合は装置か大型とな
り設定面積が大きくなる。また活性炭か繊維状の場合は
再生時のスチームの使用量か多くなり、排気物量の増大
又は水を除去するための装置が別途必要となりランニン
グコストが増大する。
However, in the fluidized bed type, the adsorption reaction rate is generally 0.
.. 8 m/see ~1.1 m/sec (maximum 1.0
m/5ec), and since the activated carbon 21 flows, it is difficult to perform more uniform and reliable adsorption against fluctuations in exhaust gas concentration and amount. Furthermore, if reliable removal (adsorption) is to be performed using a fluidized bed method, only an adsorption tower with a height of 10 m or more will be sufficient to remove low concentration levels.
Furthermore, in the case of a low adsorption tower, the amount of N2 used for regeneration must be increased, which increases running costs. On the other hand, in a fixed bed type, if the activated carbon is in the form of particles, the device will be large and the set area will be large. Furthermore, in the case of activated carbon or fibrous material, the amount of steam used during regeneration increases, the amount of exhaust gas increases, or a separate device for removing water is required, increasing running costs.

このように、吸着方式ではイニシャルコスト、ランニン
グコスト及びメンテナンスの合理性を得ることができな
いという問題かある。
As described above, there is a problem in that the adsorption method cannot achieve reasonable initial costs, running costs, and maintenance.

そこで、本発明は上記課題に鑑みなされたものて、コス
トの低減、処理の信頼性向上を図る排気ガス処理装置を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an exhaust gas treatment device that reduces costs and improves processing reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、排気ガス中に含む有機溶剤を吸着部材に吸
着させて除去する吸着手段と、該吸着部材を再生する再
生手段とを有する排気ガス処理装置において、前記吸着
手段は、流通孔か形成された床部を複数層設けて所定量
の第1の吸着部材を流動させる流動床と、該流動床に、
所定量の第2の吸着部材が充填された固定床とを有し、
前記排気ガスを該流動床から固定床に通過させることに
より解決される。また、前記流動床内の第1の吸着部材
は、主に粗除去を行い、前記固定床内の第2の吸着部材
は低濃度の前記有機溶剤の除去を行わせ、また、前記再
生手段は、流通孔か形成された床部か複数層に設けられ
て前記第1の吸着部材を流動させて再生を行い、該再生
手段の床部の層数による高さと、前記流動床の床部の一
層数による高さを異ならせて形成する。
The above problem is solved by an exhaust gas treatment device having an adsorption means for adsorbing and removing an organic solvent contained in exhaust gas on an adsorption member, and a regeneration means for regenerating the adsorption member, in which the adsorption means has a communication hole or the like. a fluidized bed in which a predetermined amount of the first adsorption member is fluidized by providing a plurality of bed sections;
a fixed bed filled with a predetermined amount of the second adsorption member;
The solution is to pass the exhaust gas from the fluidized bed to a fixed bed. Further, the first adsorption member in the fluidized bed mainly performs rough removal, the second adsorption member in the fixed bed removes the organic solvent at a low concentration, and the regeneration means , regeneration is performed by fluidizing the first adsorption member provided in a plurality of layers in a bed portion having communication holes, and the height according to the number of layers of the bed portion of the regeneration means and the bed portion of the fluidized bed. Formed with different heights depending on the number of layers.

〔作用〕[Effect]

上述のように、吸着手段において、流動床と該流動床に
固定床を設けている。すなわち、流動床における複数層
の床部の流通孔を第1の吸着部材か流動する。そこで、
排気ガスを流動床に流入させ、流動床を通過させ、その
後に固定床を通過させて処理を行うものである。例えば
、流動床の第1の吸着部材は、主に粗除去させ、固定床
の第2の吸着部材で低濃度の有機溶剤を除去させる。す
なわち、第1の吸着部材て粗除去を行い、第2の吸着部
材で精密除去を行うことにより、第2の吸着部材(固定
床)の長期ランニングか可能となり、ランニングコスト
の低減が図られる。また多種成分の除去か可能となって
、処理の信頼性を向上させることが可能となる。
As mentioned above, in the adsorption means, a fluidized bed and a fixed bed are provided in the fluidized bed. That is, the first adsorption member flows through the flow holes in the bed section of the plurality of layers in the fluidized bed. Therefore,
The exhaust gas is processed by flowing into a fluidized bed, passing through the fluidized bed, and then passing through a fixed bed. For example, a first adsorption member in a fluidized bed mainly performs coarse removal, and a second adsorption member in a fixed bed removes low-concentration organic solvents. That is, by performing rough removal with the first adsorption member and precise removal with the second adsorption member, the second adsorption member (fixed bed) can be operated for a long period of time, and running costs can be reduced. Furthermore, it becomes possible to remove various components, thereby improving the reliability of the process.

また、第1の吸着剤は再生手段により再生され、この再
生手段の高さと、吸着手段の流動床の高さを異ならせて
形成する。すなわち、流動床に重点を置く(流動床が高
い)場合、又は再生手段に重点を置く(再生手段か高い
)場合でより信頼性の高い処理を行うことか可能となる
Further, the first adsorbent is regenerated by a regeneration means, and the height of the regeneration means and the height of the fluidized bed of the adsorption means are formed to be different. That is, it is possible to perform more reliable processing when placing emphasis on the fluidized bed (the fluidized bed is high) or when placing emphasis on the regeneration means (the regeneration means is high).

〔実施例〕〔Example〕

第1図に本発明の一実施例の構成図を示す。第1図にお
いて、排気ガス処理装置lは、吸着手段である吸着塔2
と再生手段である再生塔3により構成される。
FIG. 1 shows a configuration diagram of an embodiment of the present invention. In FIG. 1, an exhaust gas treatment device 1 includes an adsorption tower 2 which is an adsorption means.
and a regeneration tower 3 which is a regeneration means.

吸着塔2は、流動床4及び固定床5より成り、流動床4
の下部のダクト6より排気ガスを流入して流動床4.固
定床5を通過させ、該固定床5の上方より処理された排
気ガスか排出される。流動床4は所定数の流通孔7か形
成された床部8か複数層に設けられており、この中を第
1の吸着部材9か流動する。また、固定床5内には第2
の吸着部材10か充填される。
The adsorption tower 2 consists of a fluidized bed 4 and a fixed bed 5.
Exhaust gas flows into the fluidized bed 4 through the duct 6 at the bottom of the fluidized bed 4. The exhaust gas is passed through a fixed bed 5, and the treated exhaust gas is discharged from above the fixed bed 5. The fluidized bed 4 is provided in multiple layers in a bed portion 8 having a predetermined number of flow holes 7 formed therein, and the first adsorption member 9 flows therein. In addition, a second
The adsorption member 10 is filled.

ここで、第1の吸着部材9は、水分除去に適し、耐久性
のある高分子用の活性炭か使用され、第2の吸着部材l
Oは長寿命の低分子用の活性炭か選択された量で使用さ
れる。高分子用は、主に活性炭表面の吸着溝の口径の大
きなもので、低分子用の口径の小さなものが選択される
Here, the first adsorption member 9 is made of activated carbon for polymers, which is suitable for moisture removal and durable, and the second adsorption member l
O is used in activated carbon or selected amounts for long-life small molecules. For polymers, those with large diameter adsorption grooves on the activated carbon surface are mainly selected, and for low molecules, those with small diameters are selected.

一方、再生塔3は、吸着塔2の流動床4と同様に、流通
孔11が形成された床部12か複数層に設けられ、この
中で吸着済の第1の吸着部材9か流動して再生される。
On the other hand, similar to the fluidized bed 4 of the adsorption tower 2, the regeneration tower 3 is provided with a plurality of layers in the bed section 12 in which the flow holes 11 are formed, in which the first adsorption member 9 that has already been adsorbed is fluidized. is played.

また、この再生塔3にはヒータ13が設けられる。Further, this regeneration tower 3 is provided with a heater 13.

また、吸着塔2の流動床4の最下部より再生塔3の最上
部間に搬送ライン14aが設けられ、吸着済の第1の吸
着部材9がエアにより再生塔3に送られる。一方、再生
塔3により再生された第1の吸着部材9は、該再生塔3
の最下部より流動床4の最上部に搬送ライン14bによ
り送られる。
Further, a conveyance line 14a is provided between the bottom of the fluidized bed 4 of the adsorption tower 2 and the top of the regeneration tower 3, and the adsorbed first adsorption member 9 is sent to the regeneration tower 3 by air. On the other hand, the first adsorption member 9 regenerated by the regeneration tower 3
is sent from the bottom to the top of the fluidized bed 4 via a conveyance line 14b.

このような排気ガス処理装置1は、有機溶剤を含む排気
ガスが吸着塔2のダクト6より流動床4に流入する。流
動床4では、第1の吸着部材9の高分子用活性炭により
水分、高濃度有機物等が除去され、その後固定床5にお
いて低濃度の有機物が除去されるものである。このよう
な処理の繰返しにより流動床4内の第1の吸着部材9が
汚染されてくると、搬送ライン14aにより再生塔3に
送られる。
In such an exhaust gas treatment apparatus 1, exhaust gas containing an organic solvent flows into the fluidized bed 4 from the duct 6 of the adsorption tower 2. In the fluidized bed 4, moisture, high concentration organic matter, etc. are removed by the activated carbon for polymers of the first adsorption member 9, and then in the fixed bed 5, low concentration organic matter is removed. When the first adsorption member 9 in the fluidized bed 4 becomes contaminated due to repetition of such processing, it is sent to the regeneration tower 3 via the conveyance line 14a.

再生塔3では窒素(N2)を供給しつつヒータ13によ
り加熱することで、第1の吸着部材9より分離した水や
高濃度の有機物が窒素により排出され、コンデンサて液
化・回収される。そして、再生された第1の吸着部材9
は搬送ライン14bにより再び吸着塔2の流動床4に送
られ、これらが繰返される。
In the regeneration tower 3, by heating with a heater 13 while supplying nitrogen (N2), water and high concentration organic matter separated from the first adsorption member 9 are discharged with nitrogen, and are liquefied and recovered by a condenser. Then, the regenerated first adsorption member 9
is again sent to the fluidized bed 4 of the adsorption tower 2 via the conveyance line 14b, and these steps are repeated.

このように、吸着塔2の流動床4て粗除去を行い、固定
床5て精密除去を行うことから、多種成分の除去を行う
ことができると共に、固定床5の第2の吸着部材10の
長寿命化を図ることができ、これによりランニングコス
トを低減される。
In this way, since the fluidized bed 4 of the adsorption tower 2 performs rough removal and the fixed bed 5 performs precise removal, it is possible to remove various components, and the second adsorption member 10 of the fixed bed 5 can be removed. It is possible to extend the service life, thereby reducing running costs.

なお、第1図の排気ガス処理装置lは再生塔3より吸着
塔2を高く形成した場合を示している。
Note that the exhaust gas treatment apparatus 1 in FIG. 1 shows a case where the adsorption tower 2 is formed higher than the regeneration tower 3.

これは、前述のように、例えば第1の吸着部材9の活性
炭に吸着される絶対量は一定であることから、流動床4
が高く形成され、該活性炭の量が多い場合には、再生塔
3において多量の活性炭の再生処理を行う必要がないこ
とによる。すなわち、流動床4での除去効率を高め、処
理の信頼性を向上させたものである。
This is because, as mentioned above, the absolute amount adsorbed by the activated carbon of the first adsorption member 9 is constant, so the fluidized bed 4
This is because when a high amount of activated carbon is formed and the amount of activated carbon is large, it is not necessary to perform regeneration treatment of a large amount of activated carbon in the regeneration tower 3. That is, the removal efficiency in the fluidized bed 4 is increased and the reliability of the treatment is improved.

ここで、第2図に本発明の他の実施例の構成図を示す。Here, FIG. 2 shows a configuration diagram of another embodiment of the present invention.

第2図の排気ガス処理装置lAは、再生塔3Aの高さを
吸着塔2Aの流動床4Aより高く形成したもので、他の
構成は第1図と同様である。
The exhaust gas treatment apparatus 1A shown in FIG. 2 has a regeneration tower 3A higher than the fluidized bed 4A of the adsorption tower 2A, and the other configurations are the same as in FIG. 1.

すなわち、流動床4Aの第1の吸着部材9は量が少なく
吸着濃度が高いことから、再生塔3Aにおいて十分に時
間を要して再生を行うものである。
That is, since the first adsorption member 9 of the fluidized bed 4A is small in quantity and has a high adsorption concentration, it takes a sufficient amount of time to perform regeneration in the regeneration tower 3A.

これによっても、第1図と同様に、多種成分を除去する
と共に、ランニングコストを低減させ、処理の信頼性向
上を図ることかてきる。
With this, as well as in FIG. 1, it is possible to remove various components, reduce running costs, and improve processing reliability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、流動床に固定床を設け、
また流動床で粗除去を行い、固定床で低濃度の有機溶剤
を除去し、また流動床と再生塔の高さを異ならせること
により、多種成分の除去を行うことができると共に、ラ
ンニングコストを低減させ、処理の信頼性を向上させる
ことができる。
As described above, according to the present invention, a fixed bed is provided in a fluidized bed,
In addition, by performing rough removal in a fluidized bed and removing low-concentration organic solvents in a fixed bed, and by making the heights of the fluidized bed and regeneration tower different, it is possible to remove various components and reduce running costs. The reliability of processing can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、 第2図は本発明の他の実施例の構成図、第3図は従来の
排気ガス処理装置の概念図である。 図において、 1、IAは排気ガス処理装置、 2.2Aは吸着塔、 3.3Aは再生塔、 4.4Aは流動床、 5は固定床、 6はダクト、 7;11は流通孔、 8.12は床部、 9は第1の吸着部材、 lOは第2の吸着部材、 13はヒータ、 14a、14bは搬送ライン を示す。 本発明の一実施例の構成図 第1図 本発明の他の実施例の構成図 (A) 従来の排気ガス処理装置の概念図 第3図
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a block diagram of another embodiment of the present invention, and FIG. 3 is a conceptual diagram of a conventional exhaust gas treatment device. In the figure, 1. IA is an exhaust gas treatment device, 2.2A is an adsorption tower, 3.3A is a regeneration tower, 4.4A is a fluidized bed, 5 is a fixed bed, 6 is a duct, 7; 11 is a flow hole, 8 .12 is a floor, 9 is a first suction member, IO is a second suction member, 13 is a heater, and 14a and 14b are conveyance lines. Fig. 1 is a block diagram of an embodiment of the present invention; Fig. 1 is a block diagram of another embodiment of the present invention (A); Fig. 3 is a conceptual diagram of a conventional exhaust gas treatment device.

Claims (1)

【特許請求の範囲】 (1)排気ガス中に含む有機溶剤を吸着部材に吸着させ
て除去する吸着手段(2)と、該吸着部材を再生する再
生手段(3)とを有する排気ガス処理装置において、 前記吸着手段(2)は、 流通孔(7)が形成された床部(8)を複数層設けて所
定量の第1の吸着部材(9)を流動させる流動床(4)
と、 該流動床(4)に、所定量の第2の吸着部材(10)か
充填された固定床(5)とを有し、前記排気ガスを該流
動床(4)から固定床 (5)に通過させることを特徴とする排気ガス処理装置
。 (2)前記流動床(4)内の第1の吸着部材(9)は、
主に粗除去を行い、前記固定床(5)内の第2の吸着部
材(10)は低濃度の前記有機溶剤の除去を行うことを
特徴とする請求項(1)記載の排気ガス処理装置。 (3)前記再生手段(3、3_A)は、流通孔(7、1
1)が形成された床部(8、12)が複数層に設けられ
て前記第1の吸着部材(9)を流動させて再生を行い、
該再生手段(3、3_A)の床部(12)の層数による
高さと、前記流動床(4、4_A)の床部(8)の層数
による高さを異ならせて形成することを特徴とする請求
項(1)又は(2)記載の排気ガス処理装置。
[Scope of Claims] (1) Exhaust gas treatment device comprising adsorption means (2) for removing organic solvents contained in exhaust gas by adsorption to an adsorption member, and regeneration means (3) for regenerating the adsorption member. In this case, the adsorption means (2) is a fluidized bed (4) that includes a plurality of bed sections (8) in which flow holes (7) are formed and in which a predetermined amount of the first adsorption member (9) is fluidized.
and a fixed bed (5) filled with a predetermined amount of the second adsorption member (10) in the fluidized bed (4), and the exhaust gas is transferred from the fluidized bed (4) to the fixed bed (5). ). (2) The first adsorption member (9) in the fluidized bed (4) is
The exhaust gas treatment apparatus according to claim 1, wherein the exhaust gas treatment apparatus mainly performs rough removal, and the second adsorption member (10) in the fixed bed (5) removes the organic solvent at a low concentration. . (3) The regeneration means (3, 3_A) has a communication hole (7, 1
1) is provided in multiple layers, and the first adsorption member (9) is fluidized and regenerated;
The height depending on the number of layers of the bed section (12) of the regeneration means (3, 3_A) and the height depending on the number of layers of the bed section (8) of the fluidized bed (4, 4_A) are formed to be different. The exhaust gas treatment device according to claim (1) or (2).
JP2246915A 1990-09-17 1990-09-17 Exhaust gas treatment device Expired - Fee Related JP3002514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246915A JP3002514B2 (en) 1990-09-17 1990-09-17 Exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246915A JP3002514B2 (en) 1990-09-17 1990-09-17 Exhaust gas treatment device

Publications (2)

Publication Number Publication Date
JPH04126520A true JPH04126520A (en) 1992-04-27
JP3002514B2 JP3002514B2 (en) 2000-01-24

Family

ID=17155645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246915A Expired - Fee Related JP3002514B2 (en) 1990-09-17 1990-09-17 Exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JP3002514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219327A (en) * 2001-01-30 2002-08-06 Denso Corp Dehumidifier
CN114177844A (en) * 2021-11-18 2022-03-15 国能(山东)能源环境有限公司 Multilayer fluidized bed reactor and active coke dry-type desulfurization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219327A (en) * 2001-01-30 2002-08-06 Denso Corp Dehumidifier
JP4491973B2 (en) * 2001-01-30 2010-06-30 株式会社デンソー Dehumidifier
CN114177844A (en) * 2021-11-18 2022-03-15 国能(山东)能源环境有限公司 Multilayer fluidized bed reactor and active coke dry-type desulfurization method

Also Published As

Publication number Publication date
JP3002514B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
US5496395A (en) System for recovering organic solvent in soil
EP0839569A1 (en) Organic solvent recovering system and organic solvent recovering method
CA1070620A (en) Apparatus for the continuous purification of exhaust gas containing solvent vapours
US6232254B1 (en) Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US5676738A (en) VOC control/solvent recovery system
JP2004533916A (en) Biofilter system for removing volatile organic compounds equipped with an inlet load equalizing device
US6306189B1 (en) Clean room
JP7055556B2 (en) Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
CN108404630A (en) Waste plastic granulation exhaust treatment system and method
JP2007083238A (en) Apparatus for concentrating volatile organic compound
JPS6348574B2 (en)
JPH04126520A (en) Waste gas treating device
JP2010142728A (en) System for treating exhaust
CN105771582A (en) Treatment method of waste gas generated by production of modified asphalt waterproof material
KR102221628B1 (en) Fludized Bed Adsorption Unit
JPH0952015A (en) Solvent treatment apparatus and method therefor
EP0604198B1 (en) Method for treating ammonia
JPH0768127A (en) Hot-air desorption type solvent recovering device
JPS6348573B2 (en)
TWM570308U (en) No heat regeneration system
JP2007175595A (en) Exhaust gas treatment facility and exhaust gas treatment method
JP2004121921A (en) Organic solvent recovery system
JP2002058962A (en) Equipment and method for treating exhaust gas
JP3643979B2 (en) Purification equipment for water containing volatile organic compounds
KR102564047B1 (en) Screbber apparatus with adsorption and desorption fluidized bed reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees